1
|
Sui L, Danzl N, Campbell SR, Viola R, Williams D, Xing Y, Wang Y, Phillips N, Poffenberger G, Johannesson B, Oberholzer J, Powers AC, Leibel RL, Chen X, Sykes M, Egli D. β-Cell Replacement in Mice Using Human Type 1 Diabetes Nuclear Transfer Embryonic Stem Cells. Diabetes 2018; 67:26-35. [PMID: 28931519 PMCID: PMC5741143 DOI: 10.2337/db17-0120] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022]
Abstract
β-Cells derived from stem cells hold great promise for cell replacement therapy for diabetes. Here we examine the ability of nuclear transfer embryonic stem cells (NT-ESs) derived from a patient with type 1 diabetes to differentiate into β-cells and provide a source of autologous islets for cell replacement. NT-ESs differentiate in vitro with an average efficiency of 55% into C-peptide-positive cells, expressing markers of mature β-cells, including MAFA and NKX6.1. Upon transplantation in immunodeficient mice, grafted cells form vascularized islet-like structures containing MAFA/C-peptide-positive cells. These β-cells adapt insulin secretion to ambient metabolite status and show normal insulin processing. Importantly, NT-ES-β-cells maintain normal blood glucose levels after ablation of the mouse endogenous β-cells. Cystic structures, but no teratomas, were observed in NT-ES-β-cell grafts. Isogenic induced pluripotent stem cell lines showed greater variability in β-cell differentiation. Even though different methods of somatic cell reprogramming result in stem cell lines that are molecularly indistinguishable, full differentiation competence is more common in ES cell lines than in induced pluripotent stem cell lines. These results demonstrate the suitability of NT-ES-β-cells for cell replacement for type 1 diabetes and provide proof of principle for therapeutic cloning combined with cell therapy.
Collapse
Affiliation(s)
- Lina Sui
- Naomi Berrie Diabetes Center and Department of Pediatrics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Nichole Danzl
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Sean R Campbell
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Ryan Viola
- Naomi Berrie Diabetes Center and Department of Pediatrics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Damian Williams
- Columbia Stem Cell Core Facility, Columbia University Medical Center, New York, NY
| | - Yuan Xing
- Department of Surgery/Division of Transplantation, University of Illinois at Chicago, Chicago, IL
| | - Yong Wang
- Department of Surgery/Division of Transplantation, University of Illinois at Chicago, Chicago, IL
| | - Neil Phillips
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Greg Poffenberger
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Jose Oberholzer
- Department of Surgery/Division of Transplantation, University of Illinois at Chicago, Chicago, IL
| | - Alvin C Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- VA Tennessee Valley Healthcare System, Nashville, TN
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center and Department of Pediatrics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Xiaojuan Chen
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
- Department of Surgery, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
- Department of Surgery, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Dieter Egli
- Naomi Berrie Diabetes Center and Department of Pediatrics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
- New York Stem Cell Foundation Research Institute, New York, NY
| |
Collapse
|
2
|
Abstract
Reproductive engineering techniques are essential for assisted reproduction of animals
and generation of genetically modified animals. They may also provide invaluable research
models for understanding the mechanisms involved in the developmental and reproductive
processes. At the RIKEN BioResource Center (BRC), I have sought to develop new
reproductive engineering techniques, especially those related to cryopreservation,
microinsemination (sperm injection), nuclear transfer, and generation of new stem cell
lines and animals, hoping that they will support the present and future projects at BRC. I
also want to combine our techniques with genetic and biochemical analyses to solve
important biological questions. We expect that this strategy makes our research more
unique and refined by providing deeper insights into the mechanisms that govern the
reproductive and developmental systems in mammals. To make this strategy more effective,
it is critical to work with experts in different scientific fields. I have enjoyed
collaborations with about 100 world-recognized laboratories, and all our collaborations
have been successful and fruitful. This review summarizes development of reproductive
engineering techniques at BRC during these 15 years.
Collapse
Affiliation(s)
- Atsuo Ogura
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
3
|
Czernik M, Toschi P, Zacchini F, Iuso D, Ptak GE. Deregulated Expression of Mitochondrial Proteins Mfn2 and Bcnl3L in Placentae from Sheep Somatic Cell Nuclear Transfer (SCNT) Conceptuses. PLoS One 2017; 12:e0169579. [PMID: 28076382 PMCID: PMC5226789 DOI: 10.1371/journal.pone.0169579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/18/2016] [Indexed: 12/28/2022] Open
Abstract
In various animal species, the main cause of pregnancy loss in conceptuses obtained by somatic cell nuclear transfer (SCNT) are placental abnormalities. Most abnormalities described in SCNT pregnancies (such as placentomegaly, reduced vascularisation, hypoplasia of trophoblastic epithelium) suggest that placental cell degeneration may be triggered by mitochondrial failure. We hypothesized that placental abnormalities of clones obtained by SCNT are related to mitochondrial dysfunction. To test this, early SCNT and control (CTR, from pregnancies obtained by in vitro fertilization) placentae were collected from pregnant ewes (at day 20 and 22 of gestation) and subjected to morphological, mRNA and protein analysis. Here, we demonstrated swollen and fragmented mitochondria and low expression of mitofusin 2 (Mfn2), the protein which plays a crucial role in mitochondrial functionality, in SCNT early placentae. Furthermore, reduced expression of the Bcnl3L/Nix protein, which plays a crucial role in selective elimination of damaged mitochondria, was observed and reflected by the accumulation of numerous damaged mitochondria in SCNT placental cells. Likely, this accumulation of damaged organelles led to uncontrolled apoptosis in SCNT placentae, as demonstrated by the high number of apoptotic bodies, fragmented cytoplasm, condensed chromatin, lack of integrity of the nuclear membrane and the perturbed mRNA expression of apoptotic genes (BCL2 and BAX). In conclusion, our data indicate that deregulated expression of Mfn2 and Bcnl3L is responsible for placental abnormalities in SCNT conceptuses. Our results suggest that some nuclear genes, that are involved in the regulation of mitochondrial function, do not work well and consequently this influence the function of mitochondria.
Collapse
Affiliation(s)
- Marta Czernik
- Faculty of Veterinary Medicine, Experimental Embryology, University of Teramo, Teramo, Italy
| | - Paola Toschi
- Faculty of Veterinary Medicine, Experimental Embryology, University of Teramo, Teramo, Italy
| | - Federica Zacchini
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Domenico Iuso
- Faculty of Veterinary Medicine, Experimental Embryology, University of Teramo, Teramo, Italy
| | - Grażyna Ewa Ptak
- Faculty of Veterinary Medicine, Experimental Embryology, University of Teramo, Teramo, Italy
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
- National Research Institute of Animal Production, Balice n/Krakow, Poland
- * E-mail:
| |
Collapse
|
4
|
Loi P, Iuso D, Czernik M, Ogura A. A New, Dynamic Era for Somatic Cell Nuclear Transfer? Trends Biotechnol 2016; 34:791-797. [PMID: 27118511 DOI: 10.1016/j.tibtech.2016.03.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/16/2016] [Accepted: 03/28/2016] [Indexed: 01/24/2023]
Abstract
Cloning animals by somatic cell nuclear transfer (SCNT) has remained an uncontrollable process for many years. High rates of embryonic losses, stillbirths, and postnatal mortality have been typical outcomes. These developmental problems arise from abnormal genomic reprogramming: the capacity of the oocyte to reset the differentiated memory of a somatic cell. However, effective reprogramming strategies are now available. These target the whole genome or single domains such as the Xist gene, and their effectiveness has been validated with the ability of experimental animals to develop to term. Thus, SCNT has become a controllable process that can be used to 'rescue' endangered species, and for biomedical research such as therapeutic cloning and the isolation of induced pluripotent stem cells (iPSCs).
Collapse
Affiliation(s)
- Pasqualino Loi
- Faculty of Veterinary Medicine, University of Teramo, Campus Sant'Agostino, Via Balzarini 1, 64100 Teramo, Italy.
| | - Domenico Iuso
- Faculty of Veterinary Medicine, University of Teramo, Campus Sant'Agostino, Via Balzarini 1, 64100 Teramo, Italy
| | - Marta Czernik
- Faculty of Veterinary Medicine, University of Teramo, Campus Sant'Agostino, Via Balzarini 1, 64100 Teramo, Italy
| | - Atsuo Ogura
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|