1
|
Zhang X, Tang D, Xiao H, Li B, Shang K, Zhao D. Activating the cGAS-STING Pathway by Manganese-Based Nanoparticles Combined with Platinum-Based Nanoparticles for Enhanced Ovarian Cancer Immunotherapy. ACS NANO 2025; 19:4346-4365. [PMID: 39846241 DOI: 10.1021/acsnano.4c12237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Recent research has demonstrated that activating the cGAS-STING pathway can enhance interferon production and the activation of T cells. A manganese complex, called TPA-Mn, was developed in this context. The reactive oxygen species (ROS)-sensitive nanoparticles (NPMn) loaded with TPA-Mn are developed. NPMn activates the cGAS-STING pathway via cGAS activation (i.e., 1.6-fold enhancement of P-STING), which in turn increases the secretion of pro-inflammatory cytokines (e.g., TNF-α, IL-6, and IL-2). This promotes dendritic cell maturation, enhances the infiltration of cytotoxic T lymphocytes, and reduces the percentage of immunosuppressive regulatory T cells. In addition, it is crucial to emphasize that cisplatin-induced DNA damage can potentially trigger activation of the cGAS-STING pathway. NPMn, in combination with low-dose NPPt, a carrier of a Cis(IV) prodrug capable of causing DNA damage, augments the cGAS-STING pathway activation and significantly activates the tumor immune microenvironment (TIME). Furthermore, combined with anti-PD-1 antibody, NPPt+NPMn shows synergistic efficacy in both ovarian cancer peritoneal metastases and recurrence models. It not only effectively eliminates tumors but also induces a strong immune memory response, providing a promising strategy for the clinical management of ovarian cancer. This work offers a design of manganese-based nanoparticles for immunotherapy.
Collapse
Affiliation(s)
- Xiangling Zhang
- Department of Gynecology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Li
- Department of Gynecology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Kun Shang
- Department of Nuclear Medicine, Peking University People's Hospital, Beijing 100044, P. R. China
| | - Dan Zhao
- Department of Gynecology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| |
Collapse
|
2
|
Nakamura K, Ishii Y, Takasu S, Namiki M, Soma M, Takimoto N, Matsushita K, Shibutani M, Ogawa K. Chromosome aberrations cause tumorigenesis through chromosomal rearrangements in a hepatocarcinogenesis rat model. Cancer Sci 2024; 115:3612-3621. [PMID: 39245467 PMCID: PMC11531951 DOI: 10.1111/cas.16324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Chromosome aberrations (CAs), a genotoxic potential of carcinogens, are believed to contribute to tumorigenesis by chromosomal rearrangements through micronucleus formation. However, there is no direct evidence that proves the involvement of CAs in tumorigenesis in vivo. In the current study, we sought to clarify the involvement of CAs in chemical carcinogenesis using a rat model with a pure CA-inducer hepatocarcinogen, acetamide. Whole-genome analysis indicated that hepatic tumors induced by acetamide treatment for 26-30 weeks showed a broad range of copy number alterations in various chromosomes. In contrast, hepatic tumors induced by a typical mutagen (diethylnitrosamine) followed by a nonmutagen (phenobarbital) did not show such mutational patterns. Additionally, structural alterations such as translocations were observed more frequently in the acetamide-induced tumors. Moreover, most of the acetamide-induced tumors expressed c-Myc and/or MDM2 protein due to the copy number gain of each oncogene. These results suggest the occurrence of chromosomal rearrangements and subsequent oncogene amplification in the acetamide-induced tumors. Taken together, the results indicate that CAs are directly involved in tumorigenesis through chromosomal rearrangements in an acetamide-induced hepatocarcinogenesis rat model.
Collapse
Affiliation(s)
- Kenji Nakamura
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
- Laboratory of Veterinary PathologyTokyo University of Agriculture and TechnologyTokyoJapan
| | - Yuji Ishii
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
| | - Shinji Takasu
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
| | - Moeka Namiki
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
| | - Meili Soma
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
| | - Norifumi Takimoto
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
- Laboratory of Veterinary PathologyTokyo University of Agriculture and TechnologyTokyoJapan
| | - Kohei Matsushita
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
| | - Makoto Shibutani
- Laboratory of Veterinary PathologyTokyo University of Agriculture and TechnologyTokyoJapan
| | - Kumiko Ogawa
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
| |
Collapse
|
3
|
Kumar V, Stewart JH. cGLRs Join Their Cousins of Pattern Recognition Receptor Family to Regulate Immune Homeostasis. Int J Mol Sci 2024; 25:1828. [PMID: 38339107 PMCID: PMC10855445 DOI: 10.3390/ijms25031828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Pattern recognition receptors (PRRs) recognize danger signals such as PAMPs/MAMPs and DAMPs to initiate a protective immune response. TLRs, NLRs, CLRs, and RLRs are well-characterized PRRs of the host immune system. cGLRs have been recently identified as PRRs. In humans, the cGAS/STING signaling pathway is a part of cGLRs. cGAS recognizes cytosolic dsDNA as a PAMP or DAMP to initiate the STING-dependent immune response comprising type 1 IFN release, NF-κB activation, autophagy, and cellular senescence. The present article discusses the emergence of cGLRs as critical PRRs and how they regulate immune responses. We examined the role of cGAS/STING signaling, a well-studied cGLR system, in the activation of the immune system. The following sections discuss the role of cGAS/STING dysregulation in disease and how immune cross-talk with other PRRs maintains immune homeostasis. This understanding will lead to the design of better vaccines and immunotherapeutics for various diseases, including infections, autoimmunity, and cancers.
Collapse
Affiliation(s)
- Vijay Kumar
- Laboratory of Tumor Immunology and Immunotherapy, Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | | |
Collapse
|
4
|
Diaz LR, Gil-Ranedo J, Jaworek KJ, Nsek N, Marques JP, Costa E, Hilton DA, Bieluczyk H, Warrington O, Hanemann CO, Futschik ME, Bossing T, Barros CS. Ribogenesis boosts controlled by HEATR1-MYC interplay promote transition into brain tumour growth. EMBO Rep 2024; 25:168-197. [PMID: 38225354 PMCID: PMC10897169 DOI: 10.1038/s44319-023-00017-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/17/2024] Open
Abstract
Cell commitment to tumourigenesis and the onset of uncontrolled growth are critical determinants in cancer development but the early events directing tumour initiating cell (TIC) fate remain unclear. We reveal a single-cell transcriptome profile of brain TICs transitioning into tumour growth using the brain tumour (brat) neural stem cell-based Drosophila model. Prominent changes in metabolic and proteostasis-associated processes including ribogenesis are identified. Increased ribogenesis is a known cell adaptation in established tumours. Here we propose that brain TICs boost ribogenesis prior to tumour growth. In brat-deficient TICs, we show that this dramatic change is mediated by upregulated HEAT-Repeat Containing 1 (HEATR1) to promote ribosomal RNA generation, TIC enlargement and onset of overgrowth. High HEATR1 expression correlates with poor glioma patient survival and patient-derived glioblastoma stem cells rely on HEATR1 for enhanced ribogenesis and tumourigenic potential. Finally, we show that HEATR1 binds the master growth regulator MYC, promotes its nucleolar localisation and appears required for MYC-driven ribogenesis, suggesting a mechanism co-opted in ribogenesis reprogramming during early brain TIC development.
Collapse
Affiliation(s)
- Laura R Diaz
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Jon Gil-Ranedo
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Karolina J Jaworek
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
- School of Biological Sciences, Bangor University, LL57 2UW, Bangor, UK
| | - Nsikan Nsek
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Joao Pinheiro Marques
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Eleni Costa
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - David A Hilton
- Department of Cellular and Anatomical Pathology, University Hospitals Plymouth, PL6 8DH, Plymouth, UK
| | - Hubert Bieluczyk
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Oliver Warrington
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, London, UK
| | - C Oliver Hanemann
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Matthias E Futschik
- School of Biomedical Sciences, Faculty of Health, Derriford Research Facility, University of Plymouth, PL6 8BU, Plymouth, UK
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504, Coimbra, Portugal
| | - Torsten Bossing
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Claudia S Barros
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK.
| |
Collapse
|
5
|
Kumar V, Bauer C, Stewart JH. Cancer cell-specific cGAS/STING Signaling pathway in the era of advancing cancer cell biology. Eur J Cell Biol 2023; 102:151338. [PMID: 37423035 DOI: 10.1016/j.ejcb.2023.151338] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
Pattern-recognition receptors (PRRs) are critical to recognizing endogenous and exogenous threats to mount a protective proinflammatory innate immune response. PRRs may be located on the outer cell membrane, cytosol, and nucleus. The cGAS/STING signaling pathway is a cytosolic PRR system. Notably, cGAS is also present in the nucleus. The cGAS-mediated recognition of cytosolic dsDNA and its cleavage into cGAMP activates STING. Furthermore, STING activation through its downstream signaling triggers different interferon-stimulating genes (ISGs), initiating the release of type 1 interferons (IFNs) and NF-κB-mediated release of proinflammatory cytokines and molecules. Activating cGAS/STING generates type 1 IFN, which may prevent cellular transformation and cancer development, growth, and metastasis. The current article delineates the impact of the cancer cell-specific cGAS/STING signaling pathway alteration in tumors and its impact on tumor growth and metastasis. This article further discusses different approaches to specifically target cGAS/STING signaling in cancer cells to inhibit tumor growth and metastasis in conjunction with existing anticancer therapies.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA.
| | - Caitlin Bauer
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| | - John H Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA; Louisiana Children's Medical Center Cancer Center, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA.
| |
Collapse
|
6
|
Hill HJ, Bonser D, Golic KG. Dicentric chromosome breakage in Drosophila melanogaster is influenced by pericentric heterochromatin and occurs in nonconserved hotspots. Genetics 2023; 224:iyad052. [PMID: 37010100 PMCID: PMC10213500 DOI: 10.1093/genetics/iyad052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/18/2022] [Accepted: 03/13/2023] [Indexed: 04/04/2023] Open
Abstract
Chromosome breakage plays an important role in the evolution of karyotypes and can produce deleterious effects within a single individual, such as aneuploidy or cancer. Forces that influence how and where chromosomes break are not fully understood. In humans, breakage tends to occur in conserved hotspots called common fragile sites (CFS), especially during replication stress. By following the fate of dicentric chromosomes in Drosophila melanogaster, we find that breakage under tension also tends to occur in specific hotspots. Our experimental approach was to induce sister chromatid exchange in a ring chromosome to generate a dicentric chromosome with a double chromatid bridge. In the following cell division, the dicentric bridges may break. We analyzed the breakage patterns of 3 different ring-X chromosomes. These chromosomes differ by the amount and quality of heterochromatin they carry as well as their genealogical history. For all 3 chromosomes, breakage occurs preferentially in several hotspots. Surprisingly, we found that the hotspot locations are not conserved between the 3 chromosomes: each displays a unique array of breakage hotspots. The lack of hotspot conservation, along with a lack of response to aphidicolin, suggests that these breakage sites are not entirely analogous to CFS and may reveal new mechanisms of chromosome fragility. Additionally, the frequency of dicentric breakage and the durability of each chromosome's spindle attachment vary significantly between the 3 chromosomes and are correlated with the origin of the centromere and the amount of pericentric heterochromatin. We suggest that different centromere strengths could account for this.
Collapse
Affiliation(s)
- Hunter J Hill
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Danielle Bonser
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Kent G Golic
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
7
|
Teh SSK, Halper-Stromberg E, Morsberger L, Bennett A, Bowland K, Skaist A, Cai F, Liang H, Hruban RH, Roberts NJ, Scharpf RB, Zou YS, Eshleman JR. Mechanism of delayed cell death following simultaneous CRISPR-Cas9 targeting in pancreatic cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535384. [PMID: 37066222 PMCID: PMC10103988 DOI: 10.1101/2023.04.03.535384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
When we transduced pancreatic cancers with sgRNAs that targeted 2-16 target sites in the human genome, we found that increasing the number of CRISPR-Cas9 target sites produced greater cytotoxicity, with >99% growth inhibition observed by targeting only 12 sites. However, cell death was delayed by 2-3 weeks after sgRNA transduction, in contrast to the repair of double strand DNA breaks (DSBs) that happened within 3 days after transduction. To explain this discrepancy, we used both cytogenetics and whole genome sequencing to interrogate the genome. We first detected chromatid and chromosome breaks, followed by radial formations, dicentric, ring chromosomes, and other chromosomal aberrations that peaked at 14 days after transduction. Structural variants (SVs) were detected at sites that were directly targeted by CRISPR-Cas9, including SVs generated from two sites that were targeted, but the vast majority of SVs (89.4%) were detected elsewhere in the genome that arose later than those directly targeted. Cells also underwent polyploidization that peaked at day 10 as detected by XY FISH assay, and ultimately died via apoptosis. Overall, we found that the simultaneous DSBs induced by CRISPR-Cas9 in pancreatic cancers caused chromosomal instability and polyploidization that ultimately led to delayed cell death.
Collapse
Affiliation(s)
- Selina Shiqing K. Teh
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eitan Halper-Stromberg
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura Morsberger
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexis Bennett
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kirsten Bowland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyza Skaist
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fidel Cai
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hong Liang
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ralph H. Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas J. Roberts
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert B. Scharpf
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ying S. Zou
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R. Eshleman
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Gillard M, Bonnet H, Lartia R, Yacoub H, Dejeu J, Defrancq E, Elias B. Luminescent Ruthenium(II) Complexes Used for the Detection of 8-Oxoguanine in the Human Telomeric Sequence. Bioconjug Chem 2023; 34:414-421. [PMID: 36689988 DOI: 10.1021/acs.bioconjchem.2c00578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Detecting cancer at the early stage of the disease is crucial to keep the best chance for successful treatment. The recent development of genomic screening, a methodology that is addressed to asymptomatic patients presumably at risk of carcinogenesis, has stimulated the quest for new tools able to signal the level of risk. Carcinogenesis has been associated to chronic oxidative stress exceeding the antioxidant defenses and leading to critical genome alteration levels. The telomeric regions are presumably the most exposed to oxidative stress due to their high concentration of guanine (i.e., the easiest oxidizable nucleic base). Accumulation of 8-oxoguanine in telomeres, thus oxidative lesions, was reportedly associated with telomeric crisis and carcinogenesis. In this study, we report on the capacity of Ru(II) polyazaaromatic complexes to photoprobe 8-oxoguanine into the human telomeric sequence with the view of developing new tools for cancer risk screening.
Collapse
Affiliation(s)
- Martin Gillard
- Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Place Louis Pasteur 1, bte L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| | - Hugues Bonnet
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble-Alpes (UGA), CS 40700, 38058 Grenoble, France
| | - Rémy Lartia
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble-Alpes (UGA), CS 40700, 38058 Grenoble, France
| | - Hiba Yacoub
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble-Alpes (UGA), CS 40700, 38058 Grenoble, France
| | - Jérôme Dejeu
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble-Alpes (UGA), CS 40700, 38058 Grenoble, France.,CNRS UMR-6174, FEMTO-ST Institute, Université de Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Eric Defrancq
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble-Alpes (UGA), CS 40700, 38058 Grenoble, France
| | - Benjamin Elias
- Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Place Louis Pasteur 1, bte L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
9
|
Alessandrini I, Percio S, Naghshineh E, Zuco V, Stacchiotti S, Gronchi A, Pasquali S, Zaffaroni N, Folini M. Telomere as a Therapeutic Target in Dedifferentiated Liposarcoma. Cancers (Basel) 2022; 14:2624. [PMID: 35681604 PMCID: PMC9179266 DOI: 10.3390/cancers14112624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Well-differentiated (WD)/dedifferentiated (DD) liposarcoma (LPS) accounts for ~60% of retroperitoneal sarcomas. WDLPS and DDLPS divergently evolve from a common precursor and are both marked by the amplification of the 12q13-q15 region, leading to the abnormal expression of MDM2, CDK4, and HMGA2 genes. DDLPS is a non-lipogenic disease associated with aggressive clinical behavior. Patients have limited therapeutic options, especially for advanced disease, and their outcome remains largely unsatisfactory. This evidence underlines the need for identifying and validating DDLPS-specific actionable targets to design novel biology-driven therapies. METHODS Following gene expression profiling of DDLPS clinical specimens, we observed the up-regulation of "telomere maintenance" (TMM) pathways in paired DD and WD components of DDLPS. Considering the relevance of TMM for LPS onset and progression, the activity of a telomeric G-quadruplex binder (RHPS4) was assessed in DDLPS patient-derived cell lines. RESULTS Equitoxic concentrations of RHPS4 in DDLPS cells altered telomeric c-circle levels, induced DNA damage, and resulted in the accumulation of γ-H2AX-stained micronuclei. This evidence was paralleled by an RHPS4-mediated reduction of in vitro cell migration and induction of apoptosis/autophagy. CONCLUSIONS Our findings support telomere as an intriguing therapeutic target in DDLPS and suggest G-quadruplex binders as innovative therapeutic agents.
Collapse
Affiliation(s)
- Irene Alessandrini
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy; (I.A.); (S.P.); (E.N.); (V.Z.); (S.P.)
| | - Stefano Percio
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy; (I.A.); (S.P.); (E.N.); (V.Z.); (S.P.)
| | - Eisa Naghshineh
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy; (I.A.); (S.P.); (E.N.); (V.Z.); (S.P.)
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy; (I.A.); (S.P.); (E.N.); (V.Z.); (S.P.)
| | - Silvia Stacchiotti
- Adult Mesenchymal Tumor and Rare Cancer Unit, Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, 20133 Milan, Italy;
| | - Alessandro Gronchi
- Sarcoma Service, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, 20133 Milan, Italy;
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy; (I.A.); (S.P.); (E.N.); (V.Z.); (S.P.)
- Sarcoma Service, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, 20133 Milan, Italy;
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy; (I.A.); (S.P.); (E.N.); (V.Z.); (S.P.)
| | - Marco Folini
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy; (I.A.); (S.P.); (E.N.); (V.Z.); (S.P.)
| |
Collapse
|
10
|
Kjeldsen E. Congenital Aneuploidy in Klinefelter Syndrome with B-Cell Acute Lymphoblastic Leukemia Might Be Associated with Chromosomal Instability and Reduced Telomere Length. Cancers (Basel) 2022; 14:cancers14092316. [PMID: 35565445 PMCID: PMC9136641 DOI: 10.3390/cancers14092316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Klinefelter syndrome (KS) is a rare congenital aneuploidy characterized by inherited gain of one X chromosome (XXY). KS is associated with higher susceptibility to the development of cancer. Somatic acquired chromosomal aberrations and chromosomal instability are hallmarks of cancer and leukemia but little is known about the cellular mechanisms involved. The conducted research aimed to identify genomic mechanisms involved in chromosomal evolution mechanisms important for leukemic development. In the leukemic blasts of a patient with KS and B-cell acute lymphoblastic leukemia (B-ALL), we identified additional acquired chromosomal aberration and a significant reduction in the length of the chromosomal ends, i.e., telomeres. A literature review of KS patients with B-ALL revealed that the majority of these patients had acquired two or more additional chromosomal aberrations at B-ALL diagnosis. These data indicate that enhanced reduction in telomere length might be associated with chromosomal instability and may serve as a future target for therapy or prevention. Abstract Rare congenital aneuploid conditions such as trisomy 13, trisomy 18, trisomy 21 and Klinefelter syndrome (KS, 47,XXY) are associated with higher susceptibility to developing cancer compared with euploid genomes. Aneuploidy frequently co-exists with chromosomal instability, which can be viewed as a “vicious cycle” where aneuploidy potentiates chromosomal instability, leading to further karyotype diversity, and in turn, paving the adaptive evolution of cancer. However, the relationship between congenital aneuploidy per se and tumor initiation and/or progression is not well understood. We used G-banding analysis, array comparative genomic hybridization analysis and quantitative fluorescence in situ hybridization for telomere length analysis to characterize the leukemic blasts of a three-year-old boy with KS and B-cell acute lymphoblastic leukemia (B-ALL), to gain insight into genomic evolution mechanisms in congenital aneuploidy and leukemic development. We found chromosomal instability and a significant reduction in telomere length in leukemic blasts when compared with the non-leukemic aneuploid cells. Reviewing published cases with KS and B-ALL revealed 20 additional cases with B-ALL diagnostic cytogenetics. Including our present case, 67.7% (14/21) had acquired two or more additional chromosomal aberrations at B-ALL diagnosis. The presented data indicate that congenital aneuploidy in B-ALL might be associated with chromosomal instability, which may be fueled by enhanced telomere attrition.
Collapse
Affiliation(s)
- Eigil Kjeldsen
- Cancercytogenetics Section, Department of Hematology, Aarhus University Hospital, DK-8200 Aarhus, Denmark
| |
Collapse
|
11
|
|
12
|
Bolzán AD. Mutagen-induced telomere instability in human cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 868-869:503387. [PMID: 34454696 DOI: 10.1016/j.mrgentox.2021.503387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 11/27/2022]
Abstract
Telomere instability is one of the main sources of genome instability and may result from chromosome end loss (due to chromosome breakage at one or both ends) or, more frequently, telomere dysfunction. Dysfunctional telomeres arise when they lose their end-capping function or become critically short, which causes chromosomal termini to behave like a DNA double-strand break. Telomere instability may occur at the chromosomal or at the molecular level, giving rise, respectively, to telomere-related chromosomal aberrations or the loss or modification of any of the components of the telomere (telomere DNA, telomere-associated proteins, or telomere RNA). Since telomeres play a fundamental role in maintaining genome stability, the study of telomere instability in cells exposed to mutagens is of great importance to understand the telomere-driven genomic instability present in those cells. In the present review, we will focus on the current knowledge about telomere instability induced by physical, chemical, and biological mutagens in human cells.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CONICET-CICPBA-UNLP), calle 526 y Camino General Belgrano, B1906APO La Plata, Buenos Aires, Argentina; Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo, calle 60 y 122, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Nakamura K, Ishii Y, Takasu S, Nohmi T, Shibutani M, Ogawa K. Chromosome aberrations induced by the non-mutagenic carcinogen acetamide involve in rat hepatocarcinogenesis through micronucleus formation in hepatocytes. Arch Toxicol 2021; 95:2851-2865. [PMID: 34160648 DOI: 10.1007/s00204-021-03099-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022]
Abstract
Chromosome aberrations (CAs), i.e. changes in chromosome number or structure, are known to cause chromosome rearrangements and subsequently tumorigenesis. However, the involvement of CAs in chemical-induced carcinogenesis is unclear. In the current study, we aimed to clarify the possible involvement of CAs in chemical carcinogenesis using a rat model with the non-mutagenic hepatocarcinogen acetamide. In an in vivo micronucleus (MN) test, acetamide was revealed to induce CAs specifically in rat liver at carcinogenic doses. Acetamide also induced centromere-positive large MN (LMN) in hepatocytes. Immunohistochemical and electron microscopic analyses of the LMN, which can be histopathologically detected as basophilic cytoplasmic inclusion, revealed abnormal expression of nuclear envelope proteins, increased heterochromatinization, and massive DNA damage. These molecular pathological features in LMN progressed with acetamide exposure in a time-dependent manner, implying that LMN formation can lead to chromosome rearrangements. Overall, these data suggested that CAs induced by acetamide play a pivotal role in acetamide-induced hepatocarcinogenesis in rats and that CAs can cause chemical carcinogenesis in animals via MN formation.
Collapse
Affiliation(s)
- Kenji Nakamura
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Yuji Ishii
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Shinji Takasu
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Takehiko Nohmi
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| |
Collapse
|
14
|
Pellestor F, Gaillard JB, Schneider A, Puechberty J, Gatinois V. Chromoanagenesis, the mechanisms of a genomic chaos. Semin Cell Dev Biol 2021; 123:90-99. [PMID: 33608210 DOI: 10.1016/j.semcdb.2021.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Designated under the name of chromoanagenesis, the phenomena of chromothripsis, chromanasynthesis and chromoplexy constitute new types of complex rearrangements, including many genomic alterations localized on a few chromosomal regions, and whose discovery over the last decade has changed our perception about the formation of chromosomal abnormalities and their etiology. Although exhibiting specific features, these new catastrophic mechanisms generally occur within a single cell cycle and their emergence is closely linked to genomic instability. Various non-exclusive exogenous or cellular mechanisms capable of generating chromoanagenesis have been evoked. However, recent experimental data shed light on 2 major processes, which following a defect in the mitotic segregation of chromosomes, can generate a cascade of cellular events leading to chromoanagenesis. These mechanisms are the formation of micronuclei integrating isolated chromosomal material, and the occurrence of chromatin bridges around chromosomal material resulting from telomeric fusions. In both cases, the cellular and molecular mechanisms of fragmentation, repair and transmission of damaged chromosomal material are consistent with the features of chromoanagenesis-related complex chromosomal rearrangements. In this review, we introduce each type of chromoanagenesis, and describe the experimental models that have allowed to validate the existence of chromoanagenesis events and to better understand their cellular mechanisms of formation and transmission, as well as their impact on the stability and the plasticity of the genome.
Collapse
Affiliation(s)
- F Pellestor
- Unit of Chromosomal Genetics and Research Plateform Chromostem, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHU, 371 avenue du Doyen Gaston Giraud, Montpellier Cedex 5 34295, France; INSERM 1183 Unit "Genome and Stem Cell Plasticity in Development and Aging" Institute of Regenerative Medecine and Biotherapies, St Eloi Hospital, Montpellier, France.
| | - J B Gaillard
- Unit of Chromosomal Genetics and Research Plateform Chromostem, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHU, 371 avenue du Doyen Gaston Giraud, Montpellier Cedex 5 34295, France
| | - A Schneider
- Unit of Chromosomal Genetics and Research Plateform Chromostem, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHU, 371 avenue du Doyen Gaston Giraud, Montpellier Cedex 5 34295, France
| | - J Puechberty
- Unit of Chromosomal Genetics and Research Plateform Chromostem, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHU, 371 avenue du Doyen Gaston Giraud, Montpellier Cedex 5 34295, France
| | - V Gatinois
- Unit of Chromosomal Genetics and Research Plateform Chromostem, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHU, 371 avenue du Doyen Gaston Giraud, Montpellier Cedex 5 34295, France; INSERM 1183 Unit "Genome and Stem Cell Plasticity in Development and Aging" Institute of Regenerative Medecine and Biotherapies, St Eloi Hospital, Montpellier, France
| |
Collapse
|
15
|
Sessa M, Cavazzini F, Cavallari M, Rigolin GM, Cuneo A. A Tangle of Genomic Aberrations Drives Multiple Myeloma and Correlates with Clinical Aggressiveness of the Disease: A Comprehensive Review from a Biological Perspective to Clinical Trial Results. Genes (Basel) 2020; 11:E1453. [PMID: 33287156 PMCID: PMC7761770 DOI: 10.3390/genes11121453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a genetically heterogeneous disease, in which the process of tumorigenesis begins and progresses through the appearance and accumulation of a tangle of genomic aberrations. Several are the mechanisms of DNA damage in MM, varying from single nucleotide substitutions to complex genomic events. The timing of appearance of aberrations is well studied due to the natural history of the disease, that usually progress from pre-malignant to malignant phase. Different kinds of aberrations carry different prognostic significance and have been associated with drug resistance in some studies. Certain genetic events are well known to be associated with prognosis and are incorporated in risk evaluation in MM at diagnosis in the revised International Scoring System (R-ISS). The significance of some other aberrations needs to be further explained. Since now, few phase 3 randomized trials included analysis on patient's outcomes according to genetic risk, and further studies are needed to obtain useful data to stratify the choice of initial and subsequent treatment in MM.
Collapse
Affiliation(s)
- Mariarosaria Sessa
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S.Anna, University of Ferrara, 44121 Ferrara, Italy
| | - Francesco Cavazzini
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S.Anna, University of Ferrara, 44121 Ferrara, Italy
| | - Maurizio Cavallari
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S.Anna, University of Ferrara, 44121 Ferrara, Italy
| | - Gian Matteo Rigolin
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S.Anna, University of Ferrara, 44121 Ferrara, Italy
| | - Antonio Cuneo
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S.Anna, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
16
|
Using telomeric chromosomal aberrations to evaluate clastogen-induced genomic instability in mammalian cells. Chromosome Res 2020; 28:259-276. [DOI: 10.1007/s10577-020-09641-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/06/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
|