1
|
Chang K, Jian X, Wu C, Gao C, Li Y, Chen J, Xue B, Ding Y, Peng L, Wang B, He L, Xu Y, Li C, Li X, Wang Z, Zhao X, Pan D, Yang Q, Zhou J, Zhu Z, Liu Z, Xia D, Feng G, Zhang Q, Wen Y, Shi Y, Li Z. The Contribution of Mosaic Chromosomal Alterations to Schizophrenia. Biol Psychiatry 2025; 97:198-207. [PMID: 38942348 DOI: 10.1016/j.biopsych.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Mosaic chromosomal alterations are implicated in neuropsychiatric disorders, but the contribution to schizophrenia (SCZ) risk for somatic copy number variations (sCNVs) emerging in early developmental stages has not been fully established. METHODS We analyzed blood-derived genotype arrays from 9715 patients with SCZ and 28,822 control participants of Chinese descent using a computational tool (MoChA) based on long-range chromosomal information to detect mosaic chromosomal alterations. We focused on probable early developmental sCNVs through stringent filtering. We assessed the burden of sCNVs across varying cell fraction cutoffs, as well as the frequency with which genes were involved in sCNVs. We integrated this data with the PGC (Psychiatric Genomics Consortium) dataset, which comprises 12,834 SCZ cases and 11,648 controls of European descent, and complemented it with genotyping data from postmortem brain tissue of 936 participants (449 cases and 487 controls). RESULTS Patients with SCZ had a significantly higher somatic losses detection rate than control participants (1.00% vs. 0.52%; odds ratio = 1.91; 95% CI, 1.47-2.49; two-sided Fisher's exact test, p = 1.49 × 10-6). Further analysis indicated that the odds ratios escalated proportionately (from 1.91 to 2.78) with the increment in cell fraction cutoffs. Recurrent sCNVs associated with SCZ (odds ratio > 8; Fisher's exact test, p < .05) were identified, including notable regions at 10q21.1 (ZWINT), 3q26.1 (SLITRK3), 1q31.1 (BRINP3) and 12q21.31-21.32 (MGAT4C and NTS) in the Chinese cohort, and some regions were validated with PGC data. Cross-tissue validation pinpointed somatic losses at loci like 1p35.3-35.2 and 19p13.3-13.2. CONCLUSIONS The study highlights the significant impact of mosaic chromosomal alterations on SCZ, suggesting their pivotal role in the disorder's genetic etiology.
Collapse
Affiliation(s)
- Kaihui Chang
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China; National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xuemin Jian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanhong Wu
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chengwen Gao
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Yafang Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China; Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiqiang Xue
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Yonghe Ding
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Lixia Peng
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Pharmacy, Qingdao University, Qingdao, China
| | - Baokun Wang
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Pharmacy, Qingdao University, Qingdao, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yifeng Xu
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changgui Li
- Shandong Provincial Key Laboratory of Metabolic Disease & the Metabolic Disease Institute of Qingdao University, Qingdao, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangzhong Zhao
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zijia Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Disong Xia
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyin Feng
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zhang
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Yanqin Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Shi
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China; Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shandong Provincial Key Laboratory of Metabolic Disease & the Metabolic Disease Institute of Qingdao University, Qingdao, China; Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China; Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China; Department of Psychiatry, First Teaching Hospital of Xinjiang Medical University, Urumqi, China; Changning Mental Health Center, Shanghai, China.
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China; School of Public Health, Qingdao University, Qingdao, China; School of Pharmacy, Qingdao University, Qingdao, China; Shandong Provincial Key Laboratory of Metabolic Disease & the Metabolic Disease Institute of Qingdao University, Qingdao, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.
| |
Collapse
|
2
|
Nelson A, Somerville P, Patel S, Matta J. The Etiology of Autism Spectrum Disorder and Gender Dysphoria. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039933 DOI: 10.1109/embc53108.2024.10781615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
This paper investigates the genetic correlations between Autism Spectrum Disorder (ASD) and Gender Dysphoria (GD) using network science techniques applied to data from the National Institute of Health's All of Us research program. Despite extensive research on the genetic etiology of ASD and the phenotypic overlaps between ASD and GD, a genetic component linking the two has not been explored thoroughly. Our study addresses this gap by integrating phenotypic data and genetic variations, specifically single nucleotide polymorphisms (SNPs), to construct a network graph that reveals potential genetic intersections between these conditions. We identify a single gene linking ASD and GD, indicating a potential genetic overlap. This finding is significant as the gene has been associated with several psychiatric conditions, including ASD.Clinical relevance-The study's methodology extends existing research by combining phenotypic and genetic data to analyze the comorbidity of two different conditions. Our results not only provide insights into the genetic correlations between ASD and GD but also demonstrate the utility of network science in medical research. The approach used here could be generalized to other conditions, offering a new way to understand genetic relationships in neurodevelopmental and psychiatric disorders.
Collapse
|
3
|
Graham JH, Schlachetzki JCM, Yang X, Breuss MW. Genomic Mosaicism of the Brain: Origin, Impact, and Utility. Neurosci Bull 2024; 40:759-776. [PMID: 37898991 PMCID: PMC11178748 DOI: 10.1007/s12264-023-01124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/16/2023] [Indexed: 10/31/2023] Open
Abstract
Genomic mosaicism describes the phenomenon where some but not all cells within a tissue harbor unique genetic mutations. Traditionally, research focused on the impact of genomic mosaicism on clinical phenotype-motivated by its involvement in cancers and overgrowth syndromes. More recently, we increasingly shifted towards the plethora of neutral mosaic variants that can act as recorders of cellular lineage and environmental exposures. Here, we summarize the current state of the field of genomic mosaicism research with a special emphasis on our current understanding of this phenomenon in brain development and homeostasis. Although the field of genomic mosaicism has a rich history, technological advances in the last decade have changed our approaches and greatly improved our knowledge. We will provide current definitions and an overview of contemporary detection approaches for genomic mosaicism. Finally, we will discuss the impact and utility of genomic mosaicism.
Collapse
Affiliation(s)
- Jared H Graham
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, 80045-2581, CO, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, 92093-0021, San Diego, CA, USA
| | - Xiaoxu Yang
- Department of Neurosciences, University of California San Diego, La Jolla, 92093-0021, San Diego, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, 92123, CA, USA
| | - Martin W Breuss
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, 80045-2581, CO, USA.
| |
Collapse
|
4
|
Maury EA, Sherman MA, Genovese G, Gilgenast TG, Kamath T, Burris S, Rajarajan P, Flaherty E, Akbarian S, Chess A, McCarroll SA, Loh PR, Phillips-Cremins JE, Brennand KJ, Macosko EZ, Walters JT, O’Donovan M, Sullivan P, Sebat J, Lee EA, Walsh CA. Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions. CELL GENOMICS 2023; 3:100356. [PMID: 37601975 PMCID: PMC10435376 DOI: 10.1016/j.xgen.2023.100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 06/09/2023] [Indexed: 08/22/2023]
Abstract
While germline copy-number variants (CNVs) contribute to schizophrenia (SCZ) risk, the contribution of somatic CNVs (sCNVs)-present in some but not all cells-remains unknown. We identified sCNVs using blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls, filtering sCNVs at loci recurrently mutated in clonal blood disorders. Likely early-developmental sCNVs were more common in cases (0.91%) than controls (0.51%, p = 2.68e-4), with recurrent somatic deletions of exons 1-5 of the NRXN1 gene in five SCZ cases. Hi-C maps revealed ectopic, allele-specific loops forming between a potential cryptic promoter and non-coding cis-regulatory elements upon 5' deletions in NRXN1. We also observed recurrent intragenic deletions of ABCB11, encoding a transporter implicated in anti-psychotic response, in five treatment-resistant SCZ cases and showed that ABCB11 is specifically enriched in neurons forming mesocortical and mesolimbic dopaminergic projections. Our results indicate potential roles of sCNVs in SCZ risk.
Collapse
Affiliation(s)
- Eduardo A. Maury
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Bioinformatics & Integrative Genomics Program and Harvard/MIT MD-PHD Program, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maxwell A. Sherman
- Brigham and Women’s Hospital, Division of Genetics & Center for Data Sciences, Boston, MA, USA
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thomas G. Gilgenast
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Tushar Kamath
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
| | - S.J. Burris
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Prashanth Rajarajan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Department of Genetics & Genomics, Icahn Institute of Genomics and Multiscale Biology, Department of Psychiatry, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine of Mount Sinai, New York, NY, USA
| | - Erin Flaherty
- Nash Family Department of Neuroscience, Friedman Brain Institute, Department of Genetics & Genomics, Icahn Institute of Genomics and Multiscale Biology, Department of Psychiatry, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine of Mount Sinai, New York, NY, USA
| | - Schahram Akbarian
- Nash Family Department of Neuroscience, Friedman Brain Institute, Department of Genetics & Genomics, Icahn Institute of Genomics and Multiscale Biology, Department of Psychiatry, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine of Mount Sinai, New York, NY, USA
| | - Andrew Chess
- Nash Family Department of Neuroscience, Friedman Brain Institute, Department of Genetics & Genomics, Icahn Institute of Genomics and Multiscale Biology, Department of Psychiatry, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine of Mount Sinai, New York, NY, USA
| | - Steven A. McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Po-Ru Loh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital, Division of Genetics & Center for Data Sciences, Boston, MA, USA
| | | | - Kristen J. Brennand
- Nash Family Department of Neuroscience, Friedman Brain Institute, Department of Genetics & Genomics, Icahn Institute of Genomics and Multiscale Biology, Department of Psychiatry, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine of Mount Sinai, New York, NY, USA
- Departments of Psychiatry and Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Evan Z. Macosko
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA
| | - James T.R. Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychiatry and Clinical Neurosciences, Cardiff University, Cardiff, Wales
| | - Michael O’Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychiatry and Clinical Neurosciences, Cardiff University, Cardiff, Wales
| | - Patrick Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan Sebat
- University of California San Diego, Department of Psychiatry, Department of Cellular & Molecular Medicine, Beyster Center of Psychiatric Genomics, San Diego, CA, USA
| | - Eunjung A. Lee
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
5
|
Iourov IY, Gerasimov AP, Zelenova MA, Ivanova NE, Kurinnaia OS, Zabrodskaya YM, Demidova IA, Barantsevich ER, Vasin KS, Kolotii AD, Ushanov VV, Sitovskaya DA, Lobzhanidze TBA, Iuditskaia ME, Iakushev NS, Zhumatov MM, Vorsanova SG, Samochernyh KA. Cytogenomic epileptology. Mol Cytogenet 2023; 16:1. [PMID: 36600272 PMCID: PMC9814426 DOI: 10.1186/s13039-022-00634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Molecular cytogenetic and cytogenomic studies have made a contribution to genetics of epilepsy. However, current genomic research of this devastative condition is generally focused on the molecular genetic aspects (i.e. gene hunting, detecting mutations in known epilepsy-associated genes, searching monogenic causes of epilepsy). Nonetheless, chromosomal abnormalities and copy number variants (CNVs) represent an important part of genetic defects causing epilepsy. Moreover, somatic chromosomal mosaicism and genome/chromosome instability seem to be a possible mechanism for a wide spectrum of epileptic conditions. This idea becomes even more attracting taking into account the potential of molecular neurocytogenetic (neurocytogenomic) studies of the epileptic brain. Unfortunately, analyses of chromosome numbers and structure in the affected brain or epileptogenic brain foci are rarely performed. Therefore, one may conclude that cytogenomic area of genomic epileptology is poorly researched. Accordingly, molecular cytogenetic and cytogenomic studies of the clinical cohorts and molecular neurocytogenetic analyses of the epileptic brain appear to be required. Here, we have performed a theoretical analysis to define the targets of the aforementioned studies and to highlight future directions for molecular cytogenetic and cytogenomic research of epileptic disorders in the widest sense. To succeed, we have formed a consortium, which is planned to perform at least a part of suggested research. Taking into account the nature of the communication, "cytogenomic epileptology" has been introduced to cover the research efforts in this field of medical genomics and epileptology. Additionally, initial results of studying cytogenomic variations in the Russian neurodevelopmental cohort are reviewed with special attention to epilepsy. In total, we have concluded that (i) epilepsy-associated cytogenomic variations require more profound research; (ii) ontological analyses of epilepsy genes affected by chromosomal rearrangements and/or CNVs with unraveling pathways implicating epilepsy-associated genes are beneficial for epileptology; (iii) molecular neurocytogenetic (neurocytogenomic) analysis of postoperative samples are warranted in patients suffering from epileptic disorders.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia.
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia.
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia.
| | - Alexandr P Gerasimov
- Research Laboratory of Pediatric Neurosurgery, Polenov Neurosurgical Institute, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Maria A Zelenova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Natalya E Ivanova
- Scientific Department of Polenov Neurosurgical Institute, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Oksana S Kurinnaia
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Yulia M Zabrodskaya
- Research Laboratory of Pathomorphology of the Nervous System, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Irina A Demidova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Evgeny R Barantsevich
- Postgraduate Neurology and Manual Medicine Department, Pavlov First Saint-Petersburg State Medical University, Saint Petersburg, Russia
| | - Kirill S Vasin
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Alexey D Kolotii
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Vseslav V Ushanov
- Department of Neurosurgery, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Darya A Sitovskaya
- Research Laboratory of Pathomorphology of the Nervous System, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | | | - Maria E Iuditskaia
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Nikita S Iakushev
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Muslim M Zhumatov
- Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Konstantin A Samochernyh
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
6
|
Iourov IY, Vorsanova SG, Kurinnaia OS, Kutsev SI, Yurov YB. Somatic mosaicism in the diseased brain. Mol Cytogenet 2022; 15:45. [PMID: 36266706 PMCID: PMC9585840 DOI: 10.1186/s13039-022-00624-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/10/2022] Open
Abstract
It is hard to believe that all the cells of a human brain share identical genomes. Indeed, single cell genetic studies have demonstrated intercellular genomic variability in the normal and diseased brain. Moreover, there is a growing amount of evidence on the contribution of somatic mosaicism (the presence of genetically different cell populations in the same individual/tissue) to the etiology of brain diseases. However, brain-specific genomic variations are generally overlooked during the research of genetic defects associated with a brain disease. Accordingly, a review of brain-specific somatic mosaicism in disease context seems to be required. Here, we overview gene mutations, copy number variations and chromosome abnormalities (aneuploidy, deletions, duplications and supernumerary rearranged chromosomes) detected in the neural/neuronal cells of the diseased brain. Additionally, chromosome instability in non-cancerous brain diseases is addressed. Finally, theoretical analysis of possible mechanisms for neurodevelopmental and neurodegenerative disorders indicates that a genetic background for formation of somatic (chromosomal) mosaicism in the brain is likely to exist. In total, somatic mosaicism affecting the central nervous system seems to be a mechanism of brain diseases.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia.
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia.
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia.
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Oxana S Kurinnaia
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | | | - Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| |
Collapse
|
7
|
Lin X, Yang Y, Melton PE, Singh V, Simpson-Yap S, Burdon KP, Taylor BV, Zhou Y. Integrating Genetic Structural Variations and Whole-Genome Sequencing Into Clinical Neurology. Neurol Genet 2022. [DOI: 10.1212/nxg.0000000000200005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Advances in genome sequencing technologies have unlocked new possibilities in identifying disease-associated and causative genetic markers, which may in turn enhance disease diagnosis and improve prognostication and management strategies. With the capability of examining genetic variations ranging from single-nucleotide mutations to large structural variants, whole-genome sequencing (WGS) is an increasingly adopted approach to dissect the complex genetic architecture of neurologic diseases. There is emerging evidence for different structural variants and their roles in major neurologic and neurodevelopmental diseases. This review first describes different structural variants and their implicated roles in major neurologic and neurodevelopmental diseases, and then discusses the clinical relevance of WGS applications in neurology. Notably, WGS-based detection of structural variants has shown promising potential in enhancing diagnostic power of genetic tests in clinical settings. Ongoing WGS-based research in structural variations and quantifying mutational constraints can also yield clinical benefits by improving variant interpretation and disease diagnosis, while supporting biomarker discovery and therapeutic development. As a result, wider integration of WGS technologies into health care will likely increase diagnostic yields in difficult-to-diagnose conditions and define potential therapeutic targets or intervention points for genome-editing strategies.
Collapse
|
8
|
Genetic mosaicism in the human brain: from lineage tracing to neuropsychiatric disorders. Nat Rev Neurosci 2022; 23:275-286. [PMID: 35322263 DOI: 10.1038/s41583-022-00572-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 12/18/2022]
Abstract
Genetic mosaicism is the result of the accumulation of somatic mutations in the human genome starting from the first postzygotic cell generation and continuing throughout the whole life of an individual. The rapid development of next-generation and single-cell sequencing technologies is now allowing the study of genetic mosaicism in normal tissues, revealing unprecedented insights into their clonal architecture and physiology. The somatic variant repertoire of an adult human neuron is the result of somatic mutations that accumulate in the brain by different mechanisms and at different rates during development and ageing. Non-pathogenic developmental mutations function as natural barcodes that once identified in deep bulk or single-cell sequencing can be used to retrospectively reconstruct human lineages. This approach has revealed novel insights into the clonal structure of the human brain, which is a mosaic of clones traceable to the early embryo that contribute differentially to the brain and distinct areas of the cortex. Some of the mutations happening during development, however, have a pathogenic effect and can contribute to some epileptic malformations of cortical development and autism spectrum disorder. In this Review, we discuss recent findings in the context of genetic mosaicism and their implications for brain development and disease.
Collapse
|