1
|
Chu SSH, Xing G, Jha VK, Ling H. The Shu complex is an ATPase that regulates Rad51 filaments during homologous recombination in the DNA damage response. DNA Repair (Amst) 2025; 145:103792. [PMID: 39647428 DOI: 10.1016/j.dnarep.2024.103792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 12/10/2024]
Abstract
Rad51 filaments are Rad51-coated single-stranded DNA and essential in homologous recombination (HR). The yeast Shu complex (Shu) is a conserved regulator of homologous recombination, working through its modulation on Rad51 filaments to direct HR-associated DNA damage response. However, the biochemical properties of Shu remain unclear, which hinders molecular insights into Shu's role in HR and the DNA damage response. In this work, we biochemically characterized Shu and analyzed its molecular actions on single-stranded DNA and Rad51 filaments. First, we revealed that Shu preferentially binds fork-shaped DNA with 20nt ssDNA components. Then, we identified and validated, through site-specific mutagenesis, that Shu is an ATPase and hydrolyzes ATP in a DNA-dependent manner. Furthermore, we showed that Shu interacts with ssDNA and Rad51 filaments and alters the properties of ssDNA and the filaments with a 5'-3' polarity. The alterations depend on the ATP hydrolysis of Shu, suggesting that the ATPase activity of Shu is important in regulating its functions. The preference of Shu for acting on the 5' end of Rad51 filaments aligns with the observation that Shu promotes lesion bypass at the lagging strand of a replication fork. Our work on Shu, a prototype modulator of Rad51 filaments in eukaryotes, provides a general molecular mechanism for Rad51-mediated error-free DNA lesion bypass.
Collapse
Affiliation(s)
- Sam S H Chu
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Guangxin Xing
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Vikash K Jha
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Hong Ling
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
2
|
Seifeldin S, Saeed M, Alshaghdali K, Yousif E, Abu Sabaa A, Rabie H, Siddiqui S, Saeed A. Investigating the effects of the ARG258HIS mutation on RAD51C in inherited Fanconi Anemia and cancer disease. J Biomol Struct Dyn 2024:1-11. [PMID: 39648652 DOI: 10.1080/07391102.2024.2431656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/03/2024] [Indexed: 12/10/2024]
Abstract
Fanconi anemia is a rare chromosomal instability disorder associated with developmental abnormalities, bone marrow failure, and a heightened susceptibility to leukemia and other cancers. It is an autosomal recessive genetic disorder, necessitating both parents to carry the faulty gene. Diagnostic methods include blood tests, chromosome breakage assessments, and genetic testing. While there is no cure, treatments encompass blood transfusions, bone marrow transplants, and gene therapy, with patients requiring regular check-ups, supportive care, and cancer screening to enhance their quality of life. In this study, we identify a specific substitution (R258H) targeting the crucial binding site of the alpha-helix region in RAD51C. This substitution induces structural disorder in distinct regions, as indicated by the near absence of electron density for multiple amino acids. Intriguingly, these disordered regions do not follow a continuous sequence from the mutation site and extend across domain boundaries. We utilized computational prediction algorithms and Molecular Dynamics (MD) simulations to model RAD51C and its mutation (R258H) structurally. These simulations highlighted alterations in conformational dynamics, the Free Energy Landscape (FEL), and intrinsic molecular motions induced by the mutation, suggesting structural destabilization that could disrupt its function. This observed destabilization in RAD51C due to mutations offers valuable insights that may serve as diagnostic markers for individuals carrying these mutations, particularly in Fanconi anemia.
Collapse
Affiliation(s)
- Sara Seifeldin
- Department of Clinical Laboratory Science, College of Applied Medical Science, University of Hail, Hail, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Khalid Alshaghdali
- Department of Clinical Laboratory Science, College of Applied Medical Science, University of Hail, Hail, Saudi Arabia
| | - Elgeli Yousif
- Department of Diagnostic Radiology, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Amal Abu Sabaa
- Department of Immunology, Genetics & Pathology, Uppsala University, Sweden
| | - Hatem Rabie
- Ministry of Health -Hail Regional Laboratory, Hail, Saudi Arabia
| | - Samra Siddiqui
- Department Health Services Management, College of Public Health and Health Informatics, University of Hail, Hail, Saudi Arabia
| | - Amir Saeed
- Department of Clinical Laboratory Science, College of Applied Medical Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
3
|
Witham M, Hengel S. The role of RAD51 regulators and variants in primary ovarian insufficiency, endometriosis, and polycystic ovary syndrome. NAR MOLECULAR MEDICINE 2024; 1:ugae010. [PMID: 39359934 PMCID: PMC11443433 DOI: 10.1093/narmme/ugae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The study of RAD51 regulators in female reproductive diseases has novel biomarker potential and implications for therapeutic advancement. Regulators of RAD51 play important roles in maintaining genome integrity and variations in these genes have been identified in female reproductive diseases including primary ovarian insufficiency (POI), endometriosis, and polycystic ovary syndrome (PCOS). RAD51 modulators change RAD51 activity in homologous recombination, replication stress, and template switching pathways. However, molecular implications of these proteins in primary ovarian insufficiency, endometriosis, and polycystic ovary syndrome have been understudied. For each reproductive disease, we provide its definition, current diagnostic and therapeutic treatment strategies, and associated genetic variations. Variants were discovered in RAD51, and regulators including DMC1, RAD51B, SWS1, SPIDR, XRCC2 and BRCA2 linked with POI. Endometriosis is associated with variants in XRCC3, BRCA1 and CSB genes. Variants in BRCA1 were associated with PCOS. Our analysis identified novel biomarkers for POI (DMC1 and RAD51B) and PCOS (BRCA1). Further biochemical and cellular analyses of RAD51 regulator functions in reproductive disorders will advance our understanding of the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Maggie Witham
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sarah R Hengel
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
4
|
Tischler JD, Tsuchida H, Bosire R, Oda TT, Park A, Adeyemi RO. FLIP(C1orf112)-FIGNL1 complex regulates RAD51 chromatin association to promote viability after replication stress. Nat Commun 2024; 15:866. [PMID: 38286805 PMCID: PMC10825145 DOI: 10.1038/s41467-024-45139-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Homologous recombination (HR) plays critical roles in repairing lesions that arise during DNA replication and is thus essential for viability. RAD51 plays important roles during replication and HR, however, how RAD51 is regulated downstream of nucleofilament formation and how the varied RAD51 functions are regulated is not clear. We have investigated the protein c1orf112/FLIP that previously scored in genome-wide screens for mediators of DNA inter-strand crosslink (ICL) repair. Upon ICL agent exposure, FLIP loss leads to marked cell death, elevated chromosomal instability, increased micronuclei formation, altered cell cycle progression and increased DNA damage signaling. FLIP is recruited to damage foci and forms a complex with FIGNL1. Both proteins have epistatic roles in ICL repair, forming a stable complex. Mechanistically, FLIP loss leads to increased RAD51 amounts and foci on chromatin both with or without exogenous DNA damage, defective replication fork progression and reduced HR competency. We posit that FLIP is essential for limiting RAD51 levels on chromatin in the absence of damage and for RAD51 dissociation from nucleofilaments to properly complete HR. Failure to do so leads to replication slowing and inability to complete repair.
Collapse
Affiliation(s)
- Jessica D Tischler
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Hiroshi Tsuchida
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | | | - Tommy T Oda
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- University of Washington, Seattle, 98195, USA
| | - Ana Park
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- University of Washington, Seattle, 98195, USA
| | - Richard O Adeyemi
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
| |
Collapse
|
5
|
Francisco-Velilla R, Abellan S, Garcia-Martin JA, Oliveros JC, Martinez-Salas E. Alternative splicing events driven by altered levels of GEMIN5 undergo translation. RNA Biol 2024; 21:23-34. [PMID: 39194147 PMCID: PMC11364065 DOI: 10.1080/15476286.2024.2394755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
GEMIN5 is a multifunctional protein involved in various aspects of RNA biology, including biogenesis of snRNPs and translation control. Reduced levels of GEMIN5 confer a differential translation to selective groups of mRNAs, and biallelic variants reducing protein stability or inducing structural conformational changes are associated with neurological disorders. Here, we show that upregulation of GEMIN5 can be detrimental as it modifies the steady state of mRNAs and enhances alternative splicing (AS) events of genes involved in a broad range of cellular processes. RNA-Seq identification of the mRNAs associated with polysomes in cells with high levels of GEMIN5 revealed that a significant fraction of the differential AS events undergo translation. The association of mRNAs with polysomes was dependent on the type of AS event, being more frequent in the case of exon skipping. However, there were no major differences in the percentage of genes showing open-reading frame disruption. Importantly, differential AS events in mRNAs engaged in polysomes, eventually rendering non-functional proteins, encode factors controlling cell growth. The broad range of mRNAs comprising AS events engaged in polysomes upon GEMIN5 upregulation supports the notion that this multifunctional protein has evolved as a gene expression balancer, consistent with its dual role as a member of the SMN complex and as a modulator of protein synthesis, ultimately impinging on cell homoeostasis.
Collapse
Affiliation(s)
| | - Salvador Abellan
- Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | | - Juan Carlos Oliveros
- Bioinformatics for Genomics and Proteomics Unit, Centro Nacional de Biotecnologia. CSIC, Madrid, Spain
| | | |
Collapse
|
6
|
Bao Y, Pan Q, Xu P, Liu Z, Zhang Z, Liu Y, Xu Y, Yu Y, Zhou Z, Wei W. Unbiased interrogation of functional lysine residues in human proteome. Mol Cell 2023; 83:4614-4632.e6. [PMID: 37995688 DOI: 10.1016/j.molcel.2023.10.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
CRISPR screens have empowered the high-throughput dissection of gene functions; however, more explicit genetic elements, such as codons of amino acids, require thorough interrogation. Here, we establish a CRISPR strategy for unbiasedly probing functional amino acid residues at the genome scale. By coupling adenine base editors and barcoded sgRNAs, we target 215,689 out of 611,267 (35%) lysine codons, involving 85% of the total protein-coding genes. We identify 1,572 lysine codons whose mutations perturb human cell fitness, with many of them implicated in cancer. These codons are then mirrored to gene knockout screen data to provide functional insights into the role of lysine residues in cellular fitness. Mining these data, we uncover a CUL3-centric regulatory network in which lysine residues of CUL3 CRL complex proteins control cell fitness by specifying protein-protein interactions. Our study offers a general strategy for interrogating genetic elements and provides functional insights into the human proteome.
Collapse
Affiliation(s)
- Ying Bao
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China
| | - Qian Pan
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ping Xu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhiheng Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhixuan Zhang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yiyuan Xu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Yu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China.
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
7
|
Tang N, Wen W, Liu Z, Xiong X, Wu Y. HELQ as a DNA helicase: Its novel role in normal cell function and tumorigenesis (Review). Oncol Rep 2023; 50:220. [PMID: 37921071 PMCID: PMC10652244 DOI: 10.3892/or.2023.8657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/08/2023] [Indexed: 11/04/2023] Open
Abstract
Helicase POLQ‑like (HELQ or Hel308), is a highly conserved, 3'‑5' superfamily II DNA helicase that contributes to diverse DNA processes, including DNA repair, unwinding, and strand annealing. HELQ deficiency leads to subfertility, due to its critical role in germ cell stability. In addition, the abnormal expression of HELQ has been observed in multiple tumors and a number of molecular pathways, including the nucleotide excision repair, checkpoint kinase 1‑DNA repair protein RAD51 homolog 1 and ATM/ATR pathways, have been shown to be involved in HELQ. In the present review, the structure and characteristics of HELQ, as well as its major functions in DNA processing, were described. Molecular mechanisms involving HELQ in the context of tumorigenesis were also described. It was deduced that HELQ biology warrants investigation, and that its critical roles in the regulation of various DNA processes and participation in tumorigenesis are clinically relevant.
Collapse
Affiliation(s)
- Nan Tang
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Weilun Wen
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Yanhua Wu
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China
| |
Collapse
|
8
|
Chen Y, Chen Y, Li Q, Liu H, Han J, Zhang H, Cheng L, Lin G. Short C-terminal Musashi-1 proteins regulate pluripotency states in embryonic stem cells. Cell Rep 2023; 42:113308. [PMID: 37858462 DOI: 10.1016/j.celrep.2023.113308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/04/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
The RNA-binding protein Musashi-1 (MSI1) regulates the proliferation and differentiation of adult stem cells. However, its role in embryonic stem cells (ESCs) and early embryonic development remains poorly understood. Here, we report the presence of short C-terminal MSI1 (MSI1-C) proteins in early mouse embryos and mouse ESCs, but not in human ESCs, under conventional culture conditions. In mouse embryos and mESCs, deletion of MSI1-C together with full-length MSI1 causes early embryonic developmental arrest and pluripotency dissolution. MSI1-C is induced upon naive induction and facilitates hESC naive pluripotency acquisition, elevating the pluripotency of primed hESCs toward a formative-like state. MSI1-C proteins are nuclear localized and bind to RNAs involved in DNA-damage repair (including MLH1, BRCA1, and MSH2), conferring on hESCs better survival in human-mouse interspecies cell competition and prolonged ability to form blastoids. This study identifies MSI1-C as an essential regulator in ESC pluripotency states and early embryonic development.
Collapse
Affiliation(s)
- Youwei Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China; Clinical Center for Brain and Spinal Cord Research, Medical School, Tongji University, Shanghai, China
| | - Ying Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qianyan Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Huahua Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiazhen Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hailin Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China; Clinical Center for Brain and Spinal Cord Research, Medical School, Tongji University, Shanghai, China.
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China; Clinical Center for Brain and Spinal Cord Research, Medical School, Tongji University, Shanghai, China.
| |
Collapse
|
9
|
Yu Y, Wang T, Meng X, Jiang T, Zhao X. Chitosan Thermosensitive Hydrogel Based on DNA Damage Repair Inhibition and Mild Photothermal Therapy for Enhanced Antitumor Treatment. Biomacromolecules 2023; 24:3755-3766. [PMID: 37506051 DOI: 10.1021/acs.biomac.3c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The DNA damage repair of tumor cells limits the effect of photothermal therapy (PTT), and high temperatures induced by PTT can damage adjacent normal tissues. To overcome these limitations, we developed a novel composite hydrogel (OLA-Au-Gel) based on chitosan (CS) and β-glycerophosphate (β-GP), which encapsulated olaparib-liposomes (OLA-lips) and CS-capped gold nanoparticles (CS-AuNPs). OLA-Au-Gel achieved the combination of mild PTT (mPTT) by CS-AuNPs and tumor DNA damage repair inhibition by OLA. The hydrogel showed good biocompatibility, injectability, and photothermal response. Under near-infrared laser irradiation, OLA-Au-Gel inhibited the proliferation of tumor cells, induced the generation of reactive oxygen species in vitro, and effectively inhibited the growth of breast tumors in vivo. OLA-Au-Gel shows a promising application prospect for inhibiting tumor development and improving the antitumor effect. Collectively, we propose a novel strategy for enhanced antitumor therapy based on the combination of mPTT and DNA damage repair inhibition.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Teng Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xin Meng
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
10
|
Goldtzvik Y, Sen N, Lam SD, Orengo C. Protein diversification through post-translational modifications, alternative splicing, and gene duplication. Curr Opin Struct Biol 2023; 81:102640. [PMID: 37354790 DOI: 10.1016/j.sbi.2023.102640] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/26/2023]
Abstract
Proteins provide the basis for cellular function. Having multiple versions of the same protein within a single organism provides a way of regulating its activity or developing novel functions. Post-translational modifications of proteins, by means of adding/removing chemical groups to amino acids, allow for a well-regulated and controlled way of generating functionally distinct protein species. Alternative splicing is another method with which organisms possibly generate new isoforms. Additionally, gene duplication events throughout evolution generate multiple paralogs of the same genes, resulting in multiple versions of the same protein within an organism. In this review, we discuss recent advancements in the study of these three methods of protein diversification and provide illustrative examples of how they affect protein structure and function.
Collapse
Affiliation(s)
- Yonathan Goldtzvik
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Neeladri Sen
- Department of Structural and Molecular Biology, University College London, London, United Kingdom. https://twitter.com/@NeeladriSen
| | - Su Datt Lam
- Department of Structural and Molecular Biology, University College London, London, United Kingdom; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London, United Kingdom.
| |
Collapse
|
11
|
Abstract
High-fidelity DNA replication is critical for the faithful transmission of genetic information to daughter cells. Following genotoxic stress, specialized DNA damage tolerance pathways are activated to ensure replication fork progression. These pathways include translesion DNA synthesis, template switching and repriming. In this Review, we describe how DNA damage tolerance pathways impact genome stability, their connection with tumorigenesis and their effects on cancer therapy response. We discuss recent findings that single-strand DNA gap accumulation impacts chemoresponse and explore a growing body of evidence that suggests that different DNA damage tolerance factors, including translesion synthesis polymerases, template switching proteins and enzymes affecting single-stranded DNA gaps, represent useful cancer targets. We further outline how the consequences of DNA damage tolerance mechanisms could inform the discovery of new biomarkers to refine cancer therapies.
Collapse
Affiliation(s)
- Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
12
|
Faria J, Briggs EM, Black JA, McCulloch R. Emergence and adaptation of the cellular machinery directing antigenic variation in the African trypanosome. Curr Opin Microbiol 2022; 70:102209. [PMID: 36215868 DOI: 10.1016/j.mib.2022.102209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 01/25/2023]
Abstract
Survival of the African trypanosome within its mammalian hosts, and hence transmission between hosts, relies upon antigenic variation, where stochastic changes in the composition of their protective variant-surface glycoprotein (VSG) coat thwart effective removal of the pathogen by adaptive immunity. Antigenic variation has evolved remarkable mechanistic complexity in Trypanosoma brucei, with switching of the VSG coat executed by either transcriptional or recombination reactions. In the former, a single T. brucei cell selectively transcribes one telomeric VSG transcription site, termed the expression site (ES), from a pool of around 15. Silencing of the active ES and activation of one previously silent ES can lead to a co-ordinated VSG coat switch. Outside the ESs, the T. brucei genome contains an enormous archive of silent VSG genes and pseudogenes, which can be recombined into the ES to execute a coat switch. Most such recombination involves gene conversion, including copying of a complete VSG and more complex reactions where novel 'mosaic' VSGs are formed as patchworks of sequences from several silent (pseudo)genes. Understanding of the cellular machinery that directs transcriptional and recombination VSG switching is growing rapidly and the emerging picture is of the use of proteins, complexes and pathways that are not limited to trypanosomes, but are shared across the wider grouping of kinetoplastids and beyond, suggesting co-option of widely used, core cellular reactions. We will review what is known about the machinery of antigenic variation and discuss if there remains the possibility of trypanosome adaptations, or even trypanosome-specific machineries, that might offer opportunities to impair this crucial parasite-survival process.
Collapse
Affiliation(s)
- Joana Faria
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom.
| | - Emma M Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Jennifer A Black
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Richard McCulloch
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom.
| |
Collapse
|
13
|
Zimmermann M, Bernier C, Kaiser B, Fournier S, Li L, Desjardins J, Skeldon A, Rimkunas V, Veloso A, Young JTF, Roulston A, Zinda M. Guiding ATR and PARP inhibitor combinationswith chemogenomic screens. Cell Rep 2022; 40:111081. [PMID: 35830811 DOI: 10.1016/j.celrep.2022.111081] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/27/2022] [Accepted: 06/21/2022] [Indexed: 11/03/2022] Open
Abstract
Combinations of ataxia telangiectasia- and Rad3-related kinase inhibitors (ATRis) and poly(ADP-ribose) polymerase inhibitors (PARPis) synergistically kill tumor cells through modulation of complementary DNA repair pathways, but their tolerability is limited by hematological toxicities. To address this, we performed a genome-wide CRISPR-Cas9 screen to identify genetic alterations that hypersensitize cells to a combination of the ATRi RP-3500 with PARPi, including deficiency in RNase H2, RAD51 paralog mutations, or the "alternative lengthening of telomeres" telomere maintenance mechanism. We show that RP-3500 and PARPi combinations kill cells carrying these genetic alterations at doses sub-therapeutic as single agents. We also demonstrate the mechanism of combination hypersensitivity in RNase H2-deficient cells, where we observe an irreversible replication catastrophe, allowing us to design a highly efficacious and tolerable in vivo dosing schedule. We present a comprehensive dataset to inform development of ATRi and PARPi combinations and an experimental framework applicable to other drug combination strategies.
Collapse
Affiliation(s)
- Michal Zimmermann
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada.
| | - Cynthia Bernier
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Beatrice Kaiser
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Sara Fournier
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Li Li
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Jessica Desjardins
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Alexander Skeldon
- Ventus Therapeutics, 7150 Rue Frederick-Banting, St-Laurent, QC H4S 2A1, Canada
| | - Victoria Rimkunas
- Repare Therapeutics, 101 Main Street, Suite 1650, Cambridge, MA 02142, USA
| | - Artur Veloso
- Repare Therapeutics, 101 Main Street, Suite 1650, Cambridge, MA 02142, USA
| | - Jordan T F Young
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Anne Roulston
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Michael Zinda
- Repare Therapeutics, 101 Main Street, Suite 1650, Cambridge, MA 02142, USA
| |
Collapse
|
14
|
Yin C, Kulasekaran M, Roy T, Decker B, Alexander S, Margolis M, Jha RC, Kupfer GM, He AR. Homologous Recombination Repair in Biliary Tract Cancers: A Prime Target for PARP Inhibition? Cancers (Basel) 2022; 14:2561. [PMID: 35626165 PMCID: PMC9140037 DOI: 10.3390/cancers14102561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 01/27/2023] Open
Abstract
Biliary tract cancers (BTCs) are a heterogeneous group of malignancies that make up ~7% of all gastrointestinal tumors. It is notably aggressive and difficult to treat; in fact, >70% of patients with BTC are diagnosed at an advanced, unresectable stage and are not amenable to curative therapy. For these patients, chemotherapy has been the mainstay treatment, providing an inadequate overall survival of less than one year. Despite the boom in targeted therapies over the past decade, only a few targeted agents have been approved in BTCs (i.e., IDH1 and FGFR inhibitors), perhaps in part due to its relatively low incidence. This review will explore current data on PARP inhibitors (PARPi) used in homologous recombination deficiency (HRD), particularly with respect to BTCs. Greater than 28% of BTC cases harbor mutations in genes involved in homologous recombination repair (HRR). We will summarize the mechanisms for PARPi and its role in synthetic lethality and describe select genes in the HRR pathway contributing to HRD. We will provide our rationale for expanding patient eligibility for PARPi use based on literature and anecdotal evidence pertaining to mutations in HRR genes, such as RAD51C, and the potential use of reliable surrogate markers of HRD.
Collapse
Affiliation(s)
- Chao Yin
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (M.K.); (T.R.)
| | - Monika Kulasekaran
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (M.K.); (T.R.)
| | - Tina Roy
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (M.K.); (T.R.)
| | - Brennan Decker
- Foundation Medicine, Cambridge, MA 20007, USA; (B.D.); (S.A.); (M.M.)
| | - Sonja Alexander
- Foundation Medicine, Cambridge, MA 20007, USA; (B.D.); (S.A.); (M.M.)
| | - Mathew Margolis
- Foundation Medicine, Cambridge, MA 20007, USA; (B.D.); (S.A.); (M.M.)
| | - Reena C. Jha
- Department of Radiology, Georgetown University Medical Center, Washington, DC 20007, USA;
| | - Gary M. Kupfer
- Departments of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA;
| | - Aiwu R. He
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (M.K.); (T.R.)
| |
Collapse
|
15
|
Beyond BRCA1/2: Homologous Recombination Repair Genetic Profile in a Large Cohort of Apulian Ovarian Cancers. Cancers (Basel) 2022; 14:cancers14020365. [PMID: 35053526 PMCID: PMC8773795 DOI: 10.3390/cancers14020365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Ovarian cancer (OC) is the second most common gynecologic malignancy and the most common cause of death among women with gynecologic cancer. Despite significant improvements having been made over the past decades, OC remains one of the most challenging malignancies to treat. Targeted therapies, such as PARPi, have emerged as one of the most interesting treatments for OC, particularly in women with BRCA1 or BRCA2 mutations. or those with a dysfunctional homologous recombination repair pathway. The purpose of our study is to address the role of NGS-targeted resequencing in the clinical routine of OC, focusing not only on BRCA1/2 but also on the homologous recombination repair genetic profile. Abstract Background: Pathogenic variants in homologous recombination repair (HRR) genes other than BRCA1/2 have been associated with a high risk of ovarian cancer (OC). In current clinical practice, genetic testing is generally limited to BRCA1/2. Herein, we investigated the mutational status of both BRCA1/2 and 5 HRR genes in 69 unselected OC, evaluating the advantage of multigene panel testing in everyday clinical practice. Methods: We analyzed 69 epithelial OC samples using an NGS custom multigene panel of the 5 HRR pathways genes, beyond the genetic screening routine of BRCA1/2 testing. Results: Overall, 19 pathogenic variants (27.5%) were detected. The majority (21.7%) of patients displayed a deleterious mutation in BRCA1/2, whereas 5.8% harbored a pathogenic variant in one of the HRR genes. Additionally, there were 14 (20.3%) uncertain significant variants (VUS). The assessment of germline mutational status showed that a small number of variants (five) were not detected in the corresponding blood sample. Notably, we detected one BRIP1 and four BRCA1/2 deleterious variants in the low-grade serous and endometrioid histology OC, respectively. Conclusion: We demonstrate that using a multigene panel beyond BRCA1/2 improves the diagnostic yield in OC testing, and it could produce clinically relevant results.
Collapse
|
16
|
Homologous Recombination as a Fundamental Genome Surveillance Mechanism during DNA Replication. Genes (Basel) 2021; 12:genes12121960. [PMID: 34946909 PMCID: PMC8701046 DOI: 10.3390/genes12121960] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Accurate and complete genome replication is a fundamental cellular process for the proper transfer of genetic material to cell progenies, normal cell growth, and genome stability. However, a plethora of extrinsic and intrinsic factors challenge individual DNA replication forks and cause replication stress (RS), a hallmark of cancer. When challenged by RS, cells deploy an extensive range of mechanisms to safeguard replicating genomes and limit the burden of DNA damage. Prominent among those is homologous recombination (HR). Although fundamental to cell division, evidence suggests that cancer cells exploit and manipulate these RS responses to fuel their evolution and gain resistance to therapeutic interventions. In this review, we focused on recent insights into HR-mediated protection of stress-induced DNA replication intermediates, particularly the repair and protection of daughter strand gaps (DSGs) that arise from discontinuous replication across a damaged DNA template. Besides mechanistic underpinnings of this process, which markedly differ depending on the extent and duration of RS, we highlight the pathophysiological scenarios where DSG repair is naturally silenced. Finally, we discuss how such pathophysiological events fuel rampant mutagenesis, promoting cancer evolution, but also manifest in adaptative responses that can be targeted for cancer therapy.
Collapse
|
17
|
Greene EC, Rothstein R. Editorial overview: Recombination - the ends justify the means. Curr Opin Genet Dev 2021; 71:iii-vii. [PMID: 34764004 DOI: 10.1016/j.gde.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
18
|
Allkanjari K, Baldock RA. Beyond base excision repair: an evolving picture of mitochondrial DNA repair. Biosci Rep 2021; 41:BSR20211320. [PMID: 34608928 PMCID: PMC8527207 DOI: 10.1042/bsr20211320] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are highly specialised organelles required for key cellular processes including ATP production through cellular respiration and controlling cell death via apoptosis. Unlike other organelles, mitochondria contain their own DNA genome which encodes both protein and RNA required for cellular respiration. Each cell may contain hundreds to thousands of copies of the mitochondrial genome, which is essential for normal cellular function - deviation of mitochondrial DNA (mtDNA) copy number is associated with cellular ageing and disease. Furthermore, mtDNA lesions can arise from both endogenous or exogenous sources and must either be tolerated or corrected to preserve mitochondrial function. Importantly, replication of damaged mtDNA can lead to stalling and introduction of mutations or genetic loss, mitochondria have adapted mechanisms to repair damaged DNA. These mechanisms rely on nuclear-encoded DNA repair proteins that are translocated into the mitochondria. Despite the presence of many known nuclear DNA repair proteins being found in the mitochondrial proteome, it remains to be established which DNA repair mechanisms are functional in mammalian mitochondria. Here, we summarise the existing and emerging research, alongside examining proteomic evidence, demonstrating that mtDNA damage can be repaired using Base Excision Repair (BER), Homologous Recombination (HR) and Microhomology-mediated End Joining (MMEJ). Critically, these repair mechanisms do not operate in isolation and evidence for interplay between pathways and repair associated with replication is discussed. Importantly, characterising non-canonical functions of key proteins and understanding the bespoke pathways used to tolerate, repair or bypass DNA damage will be fundamental in fully understanding the causes of mitochondrial genome mutations and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kathrin Allkanjari
- Formerly: Solent University Southampton, East Park Terrace, Southampton, SO14 0YN, UK
| | - Robert A. Baldock
- School of Natural and Social Sciences, University of Gloucestershire, Francis Close Hall, Swindon Road, Cheltenham GL50 4AZ, UK
| |
Collapse
|