1
|
Cardona AH, Peixoto MM, Borjigin T, Gregor T. Bridging spatial and temporal scales of developmental gene regulation. Curr Opin Genet Dev 2025; 92:102328. [PMID: 40080917 DOI: 10.1016/j.gde.2025.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025]
Abstract
The development of multicellular organisms relies on the precise coordination of molecular events across multiple spatial and temporal scales. Understanding how information flows from molecular interactions to cellular processes and tissue organization during development is crucial for explaining the remarkable reproducibility of complex organisms. This review explores how chromatin-encoded information is transduced from localized transcriptional events to global gene expression patterns, highlighting the challenge of bridging these scales. We discuss recent experimental findings and theoretical frameworks, emphasizing polymer physics as a tool for describing the relationship between chromatin structure and dynamics across scales. By integrating these perspectives, we aim to clarify how gene regulation is coordinated across levels of biological organization and suggest strategies for future experimental approaches.
Collapse
Affiliation(s)
- Andrés H Cardona
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Márcia M Peixoto
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Tohn Borjigin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Gregor
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
2
|
Crump NT, Milne TA. Is Enhancer Function Driven by Protein-Protein Interactions? From Bacteria to Leukemia. Bioessays 2025:e70006. [PMID: 40195782 DOI: 10.1002/bies.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
The precise regulation of the transcription of genes is essential for normal development and for the maintenance of life. Aberrant gene expression changes drive many human diseases. Despite this, we still do not completely understand how precise gene regulation is controlled in living systems. Enhancers are key regulatory elements that enable cells to specifically activate genes in response to environmental cues, or in a stage or tissue-specific manner. Any model of enhancer activity needs to answer two main questions: (1) how enhancers are able to identify and act on specific genes and (2) how enhancers influence transcription. To address these points, we first outline some of the basic principles that can be established from simpler prokaryotic systems, then discuss recent work on aberrant enhancer activity in leukemia. We argue that highly specific protein-protein interactions are a key driver of enhancer-promoter proximity, allowing enhancer-bound factors to directly act on RNA polymerase and activate transcription.
Collapse
Affiliation(s)
- Nicholas T Crump
- Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Lee J, Chen LF, Gaudin S, Gupta K, Spakowitz A, Boettiger AN. Kinetic organization of the genome revealed by ultra-resolution, multiscale live imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645817. [PMID: 40236138 PMCID: PMC11996339 DOI: 10.1101/2025.03.27.645817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
In the last decade, sequencing methods like Hi-C have made it clear the genome is intricately folded, and that this organization contributes significantly to the control of gene expression and thence cell fate and behavior. Single-cell DNA tracing microscopy and polymer physics-based simulations of genome folding have proposed these population-scale patterns arise from motor- driven, heterogeneous movement, rather than stable 3D genomic architecture, implying that motion, rather than structure, is key to understanding genome function. However, tools to directly observe this motion in vivo have been limited in coverage and resolution. Here we describe TRansposon Assisted Chromatin Kinetic Imaging Technology (TRACK-IT), which combines a suite of imaging and labeling improvements to achieve ultra-resolution in space and time, with self-mapping transposons to distribute labels across the chromosome, uncovering dynamic behaviors across four orders of magnitude of genomic separation. We find that sequences separated by sub-megabase distances, typically 200-500 nm of nanometers apart, can transition to close proximity in tens of seconds - faster than previously hypothesized. This rapid motion is dependent upon cohesin and is exhibited only within certain genomic domains. Domain borders act as kinetic impediments to this search process, substantially slowing the rate and frequency of the transition to proximity. The genomic separation-dependent scaling of the search time for cis-interactions within a domain violates predictions of diffusion, suggesting motor driven folding. This distinctive scaling is lost following cohesin depletion, replaced with a behavior consistent with diffusion. Finally, we found cohesin containing cells exhibited rare, processive movements, not seen in cohesin depleted cells. These processive trajectories exhibit extrusion rates of ∼2.7 kb/s across three distinct genomic intervals, faster than recent in vitro measurements and prior estimates from in vivo data. Taken together, these results reveal a genome in motion across multiple genomic and temporal scales, where motor-dependent extrusion divides the sequence, not into spatially separate domains, but into kinetically separated domains that experience accelerated local search.
Collapse
|
4
|
Kittle RH, Levo M. Exploring the interplay between enhancer-promoter interactions and transcription. Curr Opin Genet Dev 2025; 90:102303. [PMID: 39808848 DOI: 10.1016/j.gde.2024.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Enhancers in metazoan genomes are known to activate their target genes across both short and long genomic distances. Recent advances in chromosome conformation capture assays and single-cell imaging have shed light on the underlying chromatin contacts and dynamics. Yet the relationship between 3D physical enhancer-promoter (E-P) interactions and transcriptional activation remains unresolved. In this brief review, we discuss recent studies exploring this relationship across scales: from developmental stages to the minutes surrounding transcriptional activation and from the tissue level to single-allele subcellular dynamics. We discuss how seemingly contradictory observations might be reconciled and contribute to a refined causal relationship between E-P interactions and transcription, with mutual influences.
Collapse
Affiliation(s)
- Ryan H Kittle
- Department of Genetics and Development, Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michal Levo
- Department of Biochemistry and Molecular Biophysics, Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
5
|
Davie JR, Sattarifard H, Sudhakar SRN, Roberts CT, Beacon TH, Muker I, Shahib AK, Rastegar M. Basic Epigenetic Mechanisms. Subcell Biochem 2025; 108:1-49. [PMID: 39820859 DOI: 10.1007/978-3-031-75980-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The human genome consists of 23 chromosome pairs (22 autosomes and one pair of sex chromosomes), with 46 chromosomes in a normal cell. In the interphase nucleus, the 2 m long nuclear DNA is assembled with proteins forming chromatin. The typical mammalian cell nucleus has a diameter between 5 and 15 μm in which the DNA is packaged into an assortment of chromatin assemblies. The human brain has over 3000 cell types, including neurons, glial cells, oligodendrocytes, microglial, and many others. Epigenetic processes are involved in directing the organization and function of the genome of each one of the 3000 brain cell types. We refer to epigenetics as the study of changes in gene function that do not involve changes in DNA sequence. These epigenetic processes include histone modifications, DNA modifications, nuclear RNA, and transcription factors. In the interphase nucleus, the nuclear DNA is organized into different structures that are permissive or a hindrance to gene expression. In this chapter, we will review the epigenetic mechanisms that give rise to cell type-specific gene expression patterns.
Collapse
Affiliation(s)
- James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Hedieh Sattarifard
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sadhana R N Sudhakar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chris-Tiann Roberts
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tasnim H Beacon
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ishdeep Muker
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ashraf K Shahib
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Lucas T, Wang LI, Glass-Klaiber J, Quiroz E, Patra S, Molotkova N, Kohwi M. Gene mobility elements mediate cell type specific genome organization and radial gene movement in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.30.626181. [PMID: 39651303 PMCID: PMC11623685 DOI: 10.1101/2024.11.30.626181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Understanding the level of genome organization that governs gene regulation remains a challenge despite advancements in chromatin profiling techniques. Cell type specific chromatin architectures may be obscured by averaging heterogeneous cell populations. Here we took a reductionist perspective, starting with the relocation of the hunchback gene to the nuclear lamina in Drosophila neuroblasts. We previously found that this event terminates competence to produce early-born neurons and is mediated by an intronic 250 base-pair element, which we term gene mobility element (GME). Here we found over 800 putative GMEs globally that are chromatin accessible and are Polycomb (PcG) target sites. GMEs appear to be distinct from PcG response elements, however, which are largely chromatin inaccessible in neuroblasts. Performing in situ Hi-C of purified neuroblasts, we found that GMEs form megabase-scale chromatin interactions, spanning multiple topologically associated domain borders, preferentially contacting other GMEs. These interactions are cell type and stage-specific. Notably, GMEs undergo developmentally- timed mobilization to/from the neuroblast nuclear lamina, and domain swapping a GFP reporter transgene intron with a GME relocates the transgene to the nuclear lamina in embryos. We propose that GMEs constitute a genome organizational framework and mediate gene-to-lamina mobilization during progenitor competence state transitions in vivo .
Collapse
|
7
|
Dekker J, Mirny LA. The chromosome folding problem and how cells solve it. Cell 2024; 187:6424-6450. [PMID: 39547207 PMCID: PMC11569382 DOI: 10.1016/j.cell.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Every cell must solve the problem of how to fold its genome. We describe how the folded state of chromosomes is the result of the combined activity of multiple conserved mechanisms. Homotypic affinity-driven interactions lead to spatial partitioning of active and inactive loci. Molecular motors fold chromosomes through loop extrusion. Topological features such as supercoiling and entanglements contribute to chromosome folding and its dynamics, and tethering loci to sub-nuclear structures adds additional constraints. Dramatically diverse chromosome conformations observed throughout the cell cycle and across the tree of life can be explained through differential regulation and implementation of these basic mechanisms. We propose that the first functions of chromosome folding are to mediate genome replication, compaction, and segregation and that mechanisms of folding have subsequently been co-opted for other roles, including long-range gene regulation, in different conditions, cell types, and species.
Collapse
Affiliation(s)
- Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Leonid A Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
Whitney PH, Lionnet T. The method in the madness: Transcriptional control from stochastic action at the single-molecule scale. Curr Opin Struct Biol 2024; 87:102873. [PMID: 38954990 PMCID: PMC11373363 DOI: 10.1016/j.sbi.2024.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
Cell states result from the ordered activation of gene expression by transcription factors. Transcription factors face opposing design constraints: they need to be dynamic to trigger rapid cell state transitions, but also stable enough to maintain terminal cell identities indefinitely. Recent progress in live-cell single-molecule microscopy has helped define the biophysical principles underlying this paradox. Beyond transcription factor activity, single-molecule experiments have revealed that at nearly every level of transcription regulation, control emerges from multiple short-lived stochastic interactions, rather than deterministic, stable interactions typical of other biochemical pathways. This architecture generates consistent outcomes that can be rapidly choreographed. Here, we highlight recent results that demonstrate how order in transcription regulation emerges from the apparent molecular-scale chaos and discuss remaining conceptual challenges.
Collapse
Affiliation(s)
- Peter H Whitney
- Institute for Systems Genetics, New York University School of Medicine, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Timothée Lionnet
- Institute for Systems Genetics, New York University School of Medicine, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA.
| |
Collapse
|
9
|
Le DJ, Hafner A, Gaddam S, Wang KC, Boettiger AN. Super-enhancer interactomes from single cells link clustering and transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593251. [PMID: 38766104 PMCID: PMC11100725 DOI: 10.1101/2024.05.08.593251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Regulation of gene expression hinges on the interplay between enhancers and promoters, traditionally explored through pairwise analyses. Recent advancements in mapping genome folding, like GAM, SPRITE, and multi-contact Hi-C, have uncovered multi-way interactions among super-enhancers (SEs), spanning megabases, yet have not measured their frequency in single cells or the relationship between clustering and transcription. To close this gap, here we used multiplexed imaging to map the 3D positions of 376 SEs across thousands of mammalian nuclei. Notably, our single-cell images reveal that while SE-SE contacts are rare, SEs often form looser associations we termed "communities". These communities, averaging 4-5 SEs, assemble cooperatively under the combined effects of genomic tethers, Pol2 clustering, and nuclear compartmentalization. Larger communities are associated with more frequent and larger transcriptional bursts. Our work provides insights about the SE interactome in single cells that challenge existing hypotheses on SE clustering in the context of transcriptional regulation.
Collapse
Affiliation(s)
- Derek J. Le
- Department of Developmental Biology, Stanford University, Stanford, CA, United States
- Cancer Biology Program, Stanford University, Stanford, CA, United States
- Department of Dermatology, Stanford University, Stanford, CA, United States
- These authors contributed equally
| | - Antonina Hafner
- Department of Developmental Biology, Stanford University, Stanford, CA, United States
- These authors contributed equally
| | - Sadhana Gaddam
- Department of Dermatology, Stanford University, Stanford, CA, United States
| | - Kevin C. Wang
- Department of Dermatology, Stanford University, Stanford, CA, United States
| | - Alistair N. Boettiger
- Department of Developmental Biology, Stanford University, Stanford, CA, United States
- Lead contact
| |
Collapse
|
10
|
Melnikova L, Molodina V, Georgiev P, Golovnin A. Development of a New Model System to Study Long-Distance Interactions Supported by Architectural Proteins. Int J Mol Sci 2024; 25:4617. [PMID: 38731837 PMCID: PMC11083095 DOI: 10.3390/ijms25094617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Chromatin architecture is critical for the temporal and tissue-specific activation of genes that determine eukaryotic development. The functional interaction between enhancers and promoters is controlled by insulators and tethering elements that support specific long-distance interactions. However, the mechanisms of the formation and maintenance of long-range interactions between genome regulatory elements remain poorly understood, primarily due to the lack of convenient model systems. Drosophila became the first model organism in which architectural proteins that determine the activity of insulators were described. In Drosophila, one of the best-studied DNA-binding architectural proteins, Su(Hw), forms a complex with Mod(mdg4)-67.2 and CP190 proteins. Using a combination of CRISPR/Cas9 genome editing and attP-dependent integration technologies, we created a model system in which the promoters and enhancers of two reporter genes are separated by 28 kb. In this case, enhancers effectively stimulate reporter gene promoters in cis and trans only in the presence of artificial Su(Hw) binding sites (SBS), in both constructs. The expression of the mutant Su(Hw) protein, which cannot interact with CP190, and the mutation inactivating Mod(mdg4)-67.2, lead to the complete loss or significant weakening of enhancer-promoter interactions, respectively. The results indicate that the new model system effectively identifies the role of individual subunits of architectural protein complexes in forming and maintaining specific long-distance interactions in the D. melanogaster model.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia;
| | - Varvara Molodina
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia;
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia;
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia;
| |
Collapse
|
11
|
Chen Z, Snetkova V, Bower G, Jacinto S, Clock B, Dizehchi A, Barozzi I, Mannion BJ, Alcaina-Caro A, Lopez-Rios J, Dickel DE, Visel A, Pennacchio LA, Kvon EZ. Increased enhancer-promoter interactions during developmental enhancer activation in mammals. Nat Genet 2024; 56:675-685. [PMID: 38509385 PMCID: PMC11203181 DOI: 10.1038/s41588-024-01681-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/06/2024] [Indexed: 03/22/2024]
Abstract
Remote enhancers are thought to interact with their target promoters via physical proximity, yet the importance of this proximity for enhancer function remains unclear. Here we investigate the three-dimensional (3D) conformation of enhancers during mammalian development by generating high-resolution tissue-resolved contact maps for nearly a thousand enhancers with characterized in vivo activities in ten murine embryonic tissues. Sixty-one percent of developmental enhancers bypass their neighboring genes, which are often marked by promoter CpG methylation. The majority of enhancers display tissue-specific 3D conformations, and both enhancer-promoter and enhancer-enhancer interactions are moderately but consistently increased upon enhancer activation in vivo. Less than 14% of enhancer-promoter interactions form stably across tissues; however, these invariant interactions form in the absence of the enhancer and are likely mediated by adjacent CTCF binding. Our results highlight the general importance of enhancer-promoter physical proximity for developmental gene activation in mammals.
Collapse
Affiliation(s)
- Zhuoxin Chen
- Department of Developmental and Cell Biology, School of the Biological Sciences, University of California, Irvine, CA, USA
| | - Valentina Snetkova
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Grace Bower
- Department of Developmental and Cell Biology, School of the Biological Sciences, University of California, Irvine, CA, USA
| | - Sandra Jacinto
- Department of Developmental and Cell Biology, School of the Biological Sciences, University of California, Irvine, CA, USA
| | - Benjamin Clock
- Department of Developmental and Cell Biology, School of the Biological Sciences, University of California, Irvine, CA, USA
| | - Atrin Dizehchi
- Department of Developmental and Cell Biology, School of the Biological Sciences, University of California, Irvine, CA, USA
| | - Iros Barozzi
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Brandon J Mannion
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, USA
| | - Ana Alcaina-Caro
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Seville, Spain
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Seville, Spain
- School of Health Sciences, Universidad Loyola Andalucía, Seville, Spain
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Octant, Inc, Emeryville, CA, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
- School of Natural Sciences, University of California, Merced, CA, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, USA
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Evgeny Z Kvon
- Department of Developmental and Cell Biology, School of the Biological Sciences, University of California, Irvine, CA, USA.
| |
Collapse
|
12
|
Du M, Stitzinger SH, Spille JH, Cho WK, Lee C, Hijaz M, Quintana A, Cissé II. Direct observation of a condensate effect on super-enhancer controlled gene bursting. Cell 2024; 187:331-344.e17. [PMID: 38194964 DOI: 10.1016/j.cell.2023.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/29/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Enhancers are distal DNA elements believed to loop and contact promoters to control gene expression. Recently, we found diffraction-sized transcriptional condensates at genes controlled by clusters of enhancers (super-enhancers). However, a direct function of endogenous condensates in controlling gene expression remains elusive. Here, we develop live-cell super-resolution and multi-color 3D-imaging approaches to investigate putative roles of endogenous condensates in the regulation of super-enhancer controlled gene Sox2. In contrast to enhancer distance, we find instead that the condensate's positional dynamics are a better predictor of gene expression. A basal gene bursting occurs when the condensate is far (>1 μm), but burst size and frequency are enhanced when the condensate moves in proximity (<1 μm). Perturbations of cohesin and local DNA elements do not prevent basal bursting but affect the condensate and its burst enhancement. We propose a three-way kissing model whereby the condensate interacts transiently with gene locus and regulatory DNA elements to control gene bursting.
Collapse
Affiliation(s)
- Manyu Du
- Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Baden-Württemberg 79108, Germany
| | - Simon Hendrik Stitzinger
- Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Baden-Württemberg 79108, Germany
| | - Jan-Hendrik Spille
- Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Baden-Württemberg 79108, Germany
| | - Won-Ki Cho
- Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Baden-Württemberg 79108, Germany
| | - Choongman Lee
- Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Baden-Württemberg 79108, Germany
| | - Mohammed Hijaz
- Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Baden-Württemberg 79108, Germany
| | - Andrea Quintana
- Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Baden-Württemberg 79108, Germany
| | - Ibrahim I Cissé
- Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Baden-Württemberg 79108, Germany.
| |
Collapse
|
13
|
Ahmad K, Brahma S, Henikoff S. Epigenetic pioneering by SWI/SNF family remodelers. Mol Cell 2024; 84:194-201. [PMID: 38016477 PMCID: PMC10842064 DOI: 10.1016/j.molcel.2023.10.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/20/2023] [Accepted: 10/31/2023] [Indexed: 11/30/2023]
Abstract
In eukaryotic genomes, transcriptional machinery and nucleosomes compete for binding to DNA sequences; thus, a crucial aspect of gene regulatory element function is to modulate chromatin accessibility for transcription factor (TF) and RNA polymerase binding. Recent structural studies have revealed multiple modes of TF engagement with nucleosomes, but how initial "pioneering" results in steady-state DNA accessibility for further TF binding and RNA polymerase II (RNAPII) engagement has been unclear. Even less well understood is how distant sites of open chromatin interact with one another, such as when developmental enhancers activate promoters to release RNAPII for productive elongation. Here, we review evidence for the centrality of the conserved SWI/SNF family of nucleosome remodeling complexes, both in pioneering and in mediating enhancer-promoter contacts. Consideration of the nucleosome unwrapping and ATP hydrolysis activities of SWI/SNF complexes, together with their architectural features, may reconcile steady-state TF occupancy with rapid TF dynamics observed by live imaging.
Collapse
Affiliation(s)
- Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sandipan Brahma
- University of Nebraska Medical Center, Department of Genetics, Cell Biology & Anatomy, Omaha, NE, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
14
|
Della Chiara G, Jiménez C, Virdi M, Crosetto N, Bienko M. Enhancers dysfunction in the 3D genome of cancer cells. Front Cell Dev Biol 2023; 11:1303862. [PMID: 38020908 PMCID: PMC10657884 DOI: 10.3389/fcell.2023.1303862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Eukaryotic genomes are spatially organized inside the cell nucleus, forming a threedimensional (3D) architecture that allows for spatial separation of nuclear processes and for controlled expression of genes required for cell identity specification and tissue homeostasis. Hence, it is of no surprise that mis-regulation of genome architecture through rearrangements of the linear genome sequence or epigenetic perturbations are often linked to aberrant gene expression programs in tumor cells. Increasing research efforts have shed light into the causes and consequences of alterations of 3D genome organization. In this review, we summarize the current knowledge on how 3D genome architecture is dysregulated in cancer, with a focus on enhancer highjacking events and their contribution to tumorigenesis. Studying the functional effects of genome architecture perturbations on gene expression in cancer offers a unique opportunity for a deeper understanding of tumor biology and sets the basis for the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Nicola Crosetto
- Human Technopole, Milan, Italy
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- Science for Life Laboratory, Solna, Sweden
| | - Magda Bienko
- Human Technopole, Milan, Italy
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- Science for Life Laboratory, Solna, Sweden
| |
Collapse
|
15
|
Kassouf M, Ford S, Blayney J, Higgs D. Understanding fundamental principles of enhancer biology at a model locus: Analysing the structure and function of an enhancer cluster at the α-globin locus. Bioessays 2023; 45:e2300047. [PMID: 37404089 PMCID: PMC11414744 DOI: 10.1002/bies.202300047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 07/06/2023]
Abstract
Despite ever-increasing accumulation of genomic data, the fundamental question of how individual genes are switched on during development, lineage-specification and differentiation is not fully answered. It is widely accepted that this involves the interaction between at least three fundamental regulatory elements: enhancers, promoters and insulators. Enhancers contain transcription factor binding sites which are bound by transcription factors (TFs) and co-factors expressed during cell fate decisions and maintain imposed patterns of activation, at least in part, via their epigenetic modification. This information is transferred from enhancers to their cognate promoters often by coming into close physical proximity to form a 'transcriptional hub' containing a high concentration of TFs and co-factors. The mechanisms underlying these stages of transcriptional activation are not fully explained. This review focuses on how enhancers and promoters are activated during differentiation and how multiple enhancers work together to regulate gene expression. We illustrate the currently understood principles of how mammalian enhancers work and how they may be perturbed in enhanceropathies using expression of the α-globin gene cluster during erythropoiesis, as a model.
Collapse
Affiliation(s)
- Mira Kassouf
- Laboratory of Gene RegulationMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Seren Ford
- Laboratory of Gene RegulationMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Joseph Blayney
- Laboratory of Gene RegulationMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Doug Higgs
- Laboratory of Gene RegulationMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|