1
|
Clerc J, Huso M, Schirmacher M, Whitby M, Hein C. Ultrasonic deterrents provide no additional benefit over curtailment in reducing bat fatalities at an Ohio wind energy facility. PLoS One 2025; 20:e0318451. [PMID: 40338865 PMCID: PMC12061157 DOI: 10.1371/journal.pone.0318451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/15/2025] [Indexed: 05/10/2025] Open
Abstract
Wind energy is important for achieving net-zero greenhouse gas emissions but also contributes to global bat mortality. Current strategies to minimize bat mortality due to collision with wind-turbine blades fall broadly into two categories: curtailment (limiting turbine operation during high-risk periods) and deterrence (discouraging bat activity near turbines). Recently, there has been interest in combining these strategies to achieve greater reductions in bat fatalities than either strategy might achieve in isolation. To investigate the effectiveness of combining curtailment with ultrasonic deterrent minimization strategies, we deployed six ultrasonic deterrents at nacelle height on 16 experimental turbines at Avangrid Renewables' Blue Creek Wind Energy Facility. We rotated between four conditions (normal operations, curtailment only, deterrent only, curtailment and deterrent) randomly assigned to four wind turbines each night between 15 June and 3 October 2017. We found that bat mortality at wind turbines was independent of wind speed. The effectiveness of ultrasonic acoustic deterrents varied between high-frequency-calling species (eastern red bats) and low-frequency-calling species (hoary bats, silver-haired bats, and big brown bats). When deterrents were active, mortality was twice as high for eastern red bats compared to the control. Conversely, deterrents had a weak dampening effect on bat mortality for low-frequency species. We found no additive effects on mortality reduction for turbines operating both curtailment and deterrents compared to either approach in isolation. Our findings suggest that ultrasonic acoustic deterrents may not be effective for both high and low frequency echolocating bats. The increase in fatalities of eastern red bats is alarming and underscores the importance of considering site- and species-specific effects of minimization solutions.
Collapse
Affiliation(s)
- Jeff Clerc
- National Renewable Energy Laboratory, Golden, Colorado, United States of America
| | - Manuela Huso
- United States Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon, United States of America
| | - Michael Schirmacher
- Copperhead Environmental Consulting, Inc., Paint Lick, Kentucky, United States of America
| | - Michael Whitby
- Bat Conservation International, Austin, Texas, United States of America
| | - Cris Hein
- National Renewable Energy Laboratory, Golden, Colorado, United States of America
| |
Collapse
|
2
|
Crane M, Silva I, Grainger MJ, Gale GA. Predicting risk to bat species from wind turbine collision in Southeast Asia. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14452. [PMID: 40033836 DOI: 10.1111/cobi.14452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 03/05/2025]
Abstract
Wind farms can pose significant risks to bat populations through collisions with turbines, habitat loss, and effects on behavior. With its rich bat diversity and expanding wind power industry, Southeast Asia lacks sufficient data to assess the risks posed to bat species from wind turbine collisions. We aimed to develop a predictive framework for assessing wind turbine risk to bats in Southeast Asia based on global bat fatality data and trait-based assessments. We conducted a review of the literature to compile data on global bat fatalities related to wind turbines. We developed a risk assessment framework comprising 3 components-potential fatality detection index (pDI), potential spatial exposure risk index (pSE), and conservation status-to assess species vulnerability to wind turbines and to generate a conservation prioritization score for Southeast Asian bat species. Our predictive models incorporated wing morphology traits to estimate fatality probabilities for bat species. Global wing morphology data provided some predictive power for bat collision risk. Our models correctly identified bat species with known fatality data but less successfully identified species with low risk of fatality. However, uncertainty arose from knowledge gaps and a lack of transferability of information to Southeast Asian species. Our framework offers a starting point for assessing bat collision risk in Southeast Asia, but it underscores the critical need for region-specific data and continued refinement of predictive models. Establishing comprehensive bat collision monitoring programs in the region is essential for informing evidence-based management decisions and ultimately minimizing the impacts of wind energy development on Southeast Asian bat populations.
Collapse
Affiliation(s)
- Matt Crane
- Conservation Ecology Program, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Inês Silva
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Görlitz, Germany
| | | | - George A Gale
- Conservation Ecology Program, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
3
|
Huang TK, Feng X, Derbridge JJ, Libby K, Diffendorfer JE, Thogmartin WE, McCracken G, Medellin R, López-Hoffman L. Potential for spatial coexistence of a transboundary migratory species and wind energy development. Sci Rep 2024; 14:17050. [PMID: 39048593 PMCID: PMC11269593 DOI: 10.1038/s41598-024-66490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
Global expansion in wind energy development is a notable achievement of the international community's effort to reduce carbon emissions during energy production. However, the increasing number of wind turbines have unintended consequences for migratory birds and bats. Wind turbine curtailment and other mitigation strategies can reduce fatalities, but improved spatial and temporal data are needed to identify the most effective way for wind energy development and volant migratory species to coexist. Mexican free-tailed bats (Tadarida brasiliensis mexicana) account for a large proportion of known bat fatalities at wind facilities in the southwestern US. We examined the geographic concordance between existing wind energy generation facilities, areas of high wind potential amenable for future deployment of wind facilities, and seasonally suitable habitat for these bats. We used ecological niche modeling to determine species distribution during each of 4 seasons. We used a multi-criteria GIS-based approach to produce a wind turbine siting suitability map. We identified seasonal locations with highest and lowest potential for the species' probability of occurrence, providing a potential explanation for the higher observed fatalities during fall migration. Thirty percent of 33,606 wind turbines within the southwestern US occurred in highly suitable areas for Mexican free-tailed bats, primarily in west Texas. There is also broad spatial overlap between areas of high wind potential and areas of suitable habitat for Mexican free-tailed bats. Because of this high degree of overlap, our results indicate that post-construction strategies, such as curtailing the timing of operations and deterrents, would be more effective for bat conservation than strategic siting of new wind energy installations.
Collapse
Affiliation(s)
- Ta-Ken Huang
- Department of Water Resources and Environmental Engineering, Tamkang University, No.151, Yingzhuan Rd., Tamsui Dist., New Taipei City, 251301, Taiwan
- School of Natural Resources and the Environment, The University of Arizona, 1064 East Lowell Street, Tucson, AZ, 85721, USA
| | - Xiao Feng
- Department of Geography, Florida State University, 113 Collegiate Loop, PO Box 3062190, Tallahassee, FL, USA
| | - Jonathan J Derbridge
- School of Natural Resources and the Environment, The University of Arizona, 1064 East Lowell Street, Tucson, AZ, 85721, USA
| | - Kaitlin Libby
- School of Natural Resources and the Environment, The University of Arizona, 1064 East Lowell Street, Tucson, AZ, 85721, USA
| | - Jay E Diffendorfer
- US Geological Survey, Geosciences and Environmental Change Science Center, P.O. Box 25046, DFC, MS980, Denver, CO, 80225, USA.
| | - Wayne E Thogmartin
- US Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI, 54603, USA
| | - Gary McCracken
- Ecology & Evolutionary Biology Department, The University of Tennessee, 569 Dabney Hall, 1416 Circle Dr, Knoxville, TN, 37996, USA
| | - Rodrigo Medellin
- Institute of Ecology, National Autonomous University of Mexico, University City, Coyoacán, 04510, Mexico City, CDMX, Mexico
| | - Laura López-Hoffman
- School of Natural Resources and the Environment, The University of Arizona, 1064 East Lowell Street, Tucson, AZ, 85721, USA
- Udall Center for Studies in Public Policy, The University of Arizona, 803 E 1St Street, Tucson, AZ, 85719, USA
| |
Collapse
|
4
|
Voigt CC, Bernard E, Huang JCC, Frick WF, Kerbiriou C, MacEwan K, Mathews F, Rodríguez-Durán A, Scholz C, Webala PW, Welbergen J, Whitby M. Toward solving the global green-green dilemma between wind energy production and bat conservation. Bioscience 2024; 74:240-252. [PMID: 38720909 PMCID: PMC11075649 DOI: 10.1093/biosci/biae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 05/12/2024] Open
Abstract
Wind energy production is growing rapidly worldwide in an effort to reduce greenhouse gas emissions. However, wind energy production is not environmentally neutral. Negative impacts on volant animals, such as bats, include fatalities at turbines and habitat loss due to land-use change and displacement. Siting turbines away from ecologically sensitive areas and implementing measures to reduce fatalities are critical to protecting bat populations. Restricting turbine operations during periods of high bat activity is the most effective form of mitigation currently available to reduce fatalities. Compensating for habitat loss and offsetting mortality are not often practiced, because meaningful offsets are lacking. Legal frameworks to prevent or mitigate the negative impacts of wind energy on bats are absent in most countries, especially in emerging markets. Therefore, governments and lending institutions are key in reconciling wind energy production with biodiversity goals by requiring sufficient environmental standards for wind energy projects.
Collapse
Affiliation(s)
| | - Enrico Bernard
- Laboratório de Ciência Aplicada a Conservação da Biodiversidade, Universidade Federal de Pernambuco, Recife, Brazil
| | - Joe Chun-Chia Huang
- Department of Life Science at the National Taiwan Normal University, Taipei City, Taiwan
| | | | - Christian Kerbiriou
- Centre d'Ecologie et des Sciences de la Conservation at the Muséum national d'Histoire naturelle and the Centre National de la Recherche Scientifique at Sorbonne Université Station Marine, in Concarneau, France
| | - Kate MacEwan
- Western EcoSystems Technology, in Cheyenne, Wyoming, United States
| | - Fiona Mathews
- School of Life Sciences at the University of Sussex, Falmer, England, United Kingdom
| | | | - Carolin Scholz
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Paul W Webala
- Department of Forestry and Wildlife Management at Maasai Mara University, Narok, Kenya
| | - Justin Welbergen
- The Hawkesbury Institute for the Environment at Western Sydney University, Richmond, Victoria, Australia
| | - Michael Whitby
- Bat Conservation International, Austin, Texas, United States
| |
Collapse
|
5
|
Fritts SR, Guest EE, Weaver SP, Hale AM, Morton BP, Hein CD. Experimental trials of species-specific bat flight responses to an ultrasonic deterrent. PeerJ 2024; 12:e16718. [PMID: 38188150 PMCID: PMC10771094 DOI: 10.7717/peerj.16718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Unintended consequences of increasing wind energy production include bat mortalities from wind turbine blade strikes. Ultrasonic deterrents (UDs) have been developed to reduce bat mortalities at wind turbines. Our goal was to experimentally assess the species-specific effectiveness of three emission treatments from the UD developed by NRG Systems. We conducted trials in a flight cage measuring approximately 60 m × 10 m × 4.4 m (length × width × height) from July 2020 to May 2021 in San Marcos, Texas, USA. A single UD was placed at either end of the flight cage, and we randomly selected one for each night of field trials. Trials focused on a red bat species group (Lasiurus borealis and Lasiurus blossevillii; n = 46) and four species: cave myotis (Myotis velifer; n = 57), Brazilian free-tailed bats (Tadarida brasiliensis; n = 73), evening bats (Nycteceius humeralis; n = 53), and tricolored bats (Perimyotis subflavus; n = 17). The trials occurred during three treatment emissions: low (emissions from subarrays at 20, 26, and 32 kHz), high (emissions from subarrays at 38, 44, and 50 kHz), and combined (all six emission frequencies). We placed one wild-captured bat into the flight cage for each trial, which consisted of an acclimation period, a control period with the UD powered off, and the three emission treatments (order randomly selected), each interspersed with a control period. We tracked bat flight using four thermal cameras placed outside the flight cage. We quantified the effectiveness of each treatment by comparing the distances each bat flew from the UD during each treatment vs. the control period using quantile regression. Additionally, we conducted an exploratory analysis of differences between sex and season and sex within season using analysis of variance. Broadly, UDs were effective at altering the bats' flight paths as they flew farther from the UD during treatments than during controls; however, results varied by species, sex, season, and sex within season. For the red bat group, bats flew farther from the UD during all treatments than during the control period at all percentiles (p < 0.001), and treatments were comparable in effectiveness. For cave myotis, all percentile distances were farther from the UD during each of the treatments than during the control, except the 90th percentile distance during high, and low was most effective. For evening bats and Brazilian free-tailed bats, results were inconsistent, but high and low were most effective, respectively. For tricolored bats, combined and low were significant at the 10th-75th percentiles, high was significant at all percentiles, and combined was most effective. Results suggest UDs may be an effective means of reducing bat mortalities due to wind turbine blade strikes. We recommend that continued research on UDs focus on low emission treatments, which have decreased sound attenuation and demonstrated effectiveness across the bat species evaluated in this study.
Collapse
Affiliation(s)
| | - Emma Elizabeth Guest
- Department of Biology, Texas State University, San Marcos, Texas, United States
- Bowman, San Marcos, Texas, United States
| | | | - Amanda Marie Hale
- Department of Biology, Texas Christian University, Fort Worth, Texas, United States
- Western EcoSystems Technology, Inc., Cheyenne, Wyoming, United States
| | | | - Cris Daniel Hein
- National Renewable Energy Laboratory, Arvada, Colorado, United States
| |
Collapse
|
6
|
LiCari ST, Hale AM, Weaver SP, Fritts S, Katzner T, Nelson DM, Williams DA. Understanding fatality patterns and sex ratios of Brazilian free-tailed bats ( Tadarida brasiliensis) at wind energy facilities in western California and Texas. PeerJ 2023; 11:e16580. [PMID: 38084143 PMCID: PMC10710772 DOI: 10.7717/peerj.16580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Background Operation of wind turbines has resulted in collision fatalities for several bat species, and one proven method to reduce these fatalities is to limit wind turbine blade rotation (i.e., curtail turbines) when fatalities are expected to be highest. Implementation of curtailment can potentially be optimized by targeting times when females are most at risk, as the proportion of females limits the growth and stability of many bat populations. The Brazilian free-tailed bat (Tadarida brasiliensis) is the most common bat fatality at wind energy facilities in California and Texas, and yet there are few available data on the sex ratios of the carcasses that are found. Understanding the sex ratios of fatalities in California and Texas could aid in planning population conservation strategies such as informed curtailment. Methods We used PCR to determine the sex of bat carcasses collected from wind energy facilities during post-construction monitoring (PCM) studies in California and Texas. In California, we received samples from two locations within the Altamont Pass Wind Resource Area in Alameda County: Golden Hills (GH) (n = 212) and Golden Hills North (GHN) (n = 312). In Texas, we received samples from three wind energy facilities: Los Mirasoles (LM) (Hidalgo County and Starr County) (n = 252), Los Vientos (LV) (Starr County) (n = 568), and Wind Farm A (WFA) (San Patricio County and Bee County) (n = 393). Results In California, the sex ratios of fatalities did not differ from 50:50, and the sex ratio remained stable over the survey years, but the seasonal timing of peak fatalities was inconsistent. In 2017 and 2018, fatalities peaked between September and October, whereas in 2019 and 2020 fatalities peaked between May and June. In Texas, sex ratios of fatalities varied between locations, with Los Vientos being female-skewed and Wind Farm A being male-skewed. The sex ratio of fatalities was also inconsistent over time. Lastly, for each location in Texas with multiple years studied, we observed a decrease in the proportion of female fatalities over time. Discussion We observed unexpected variation in the seasonal timing of peak fatalities in California and differences in the sex ratio of fatalities across time and facility location in Texas. In Texas, proximity to different roost types (bridge or cave) likely influenced the sex ratio of fatalities at wind energy facilities. Due to the inconsistencies in the timing of peak female fatalities, we were unable to determine an optimum curtailment period; however, there may be location-specific trends that warrant future investigation. More research should be done over the entirety of the bat active season to better understand these trends in Texas. In addition, standardization of PCM studies could assist future research efforts, enhance current monitoring efforts, and facilitate research on post-construction monitoring studies.
Collapse
Affiliation(s)
- Sarah T. LiCari
- Department of Biology, Texas Christian University, Fort Worth, Texas, United States
| | - Amanda M. Hale
- Department of Biology, Texas Christian University, Fort Worth, Texas, United States
- Western EcoSystems Technology, Inc, Cheyenne, Wyoming, United States
| | - Sara P. Weaver
- Bowman Consulting Group, San Marcos, Texas, United States
| | - Sarah Fritts
- Department of Biology, Texas State University, San Marcos, Texas, United States
| | - Todd Katzner
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, Idaho, United States
| | - David M. Nelson
- University of Maryland Center for Environmental Science, Appalachian Laboratory, Frostburg, Maryland, United States
| | - Dean A. Williams
- Department of Biology, Texas Christian University, Fort Worth, Texas, United States
| |
Collapse
|
7
|
Rnjak D, Janeš M, Križan J, Antonić O. Reducing bat mortality at wind farms using site-specific mitigation measures: a case study in the Mediterranean region, Croatia. MAMMALIA 2023. [DOI: 10.1515/mammalia-2022-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Abstract
A 4-year monitoring of bat fauna at Rudine wind farm in Croatia aimed to produce mitigation measures to minimize both the number of bat fatalities and power loss in energy production. During the first 2 years, a high number of carcasses was found from mid-July to the end of October, indicating the need for some mitigation strategy. Based on the results of carcass searches, meteorological data and bat activity monitored at a weather mast and four wind turbine nacelles, mitigation measures were proposed. During the next 2 years, wind turbine curtailment was implemented in the high collision risk period based on critical wind speed thresholds varying from 5.0 to 6.5 ms−1. Estimation of a total number of bat fatalities was conducted with the GenEst software for each monitoring year. A 78% reduction in estimated number of fatalities was recorded indicating the effectiveness of implemented measures.
Collapse
Affiliation(s)
- Dina Rnjak
- Geonatura , Fallerovo šetalište 22, 10000 Zagreb , Croatia
| | | | - Josip Križan
- MultiOne , Andrije Ambriovića 9, 10000 Zagreb , Croatia
| | - Oleg Antonić
- Granum Salis Cooperative , Fallerovo šetalište 22, 10000 Zagreb , Croatia
- Department of Biology , University of Osijek , 31000 Osijek , Croatia
| |
Collapse
|
8
|
Aronson J. Current State of Knowledge of Wind Energy Impacts on Bats in South Africa. ACTA CHIROPTEROLOGICA 2022. [DOI: 10.3161/15081109acc2022.24.1.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jonathan Aronson
- Camissa Sustainability Consulting, Wenslauerstraat 4-3 1053BA Amsterdam, Netherlands
| |
Collapse
|
9
|
Good RE, Iskali G, Lombardi J, McDonald T, Dubridge K, Azeka M, Tredennick A. Curtailment and acoustic deterrents reduce bat mortality at wind farms. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rhett E. Good
- Western EcoSystems Technology 408 West 6th Street Bloomington IN 47404 USA
| | - Goniela Iskali
- Western EcoSystems Technology 408 West 6th Street Bloomington IN 47404 USA
| | - John Lombardi
- Western EcoSystems Technology 415 West 17th Street, Suite 200 Cheyenne WY 82001 USA
| | - Trent McDonald
- Western EcoSystems Technology 415 West 17th Street, Suite 200 Cheyenne WY 82001 USA
| | - Karl Dubridge
- Western EcoSystems Technology 408 West 6th Street Bloomington IN 47404 USA
| | - Michael Azeka
- EDF Renewables 15445 Innovation Drive San Diego CA 92128 USA
| | - Andrew Tredennick
- Western EcoSystems Technology 1610 Reynolds Street Laramie WY 82072 USA
| |
Collapse
|
10
|
Cohen EB, Buler JJ, Horton KG, Loss SR, Cabrera‐Cruz SA, Smolinsky JA, Marra PP. Using weather radar to help minimize wind energy impacts on nocturnally migrating birds. Conserv Lett 2022. [DOI: 10.1111/conl.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Emily B. Cohen
- Migratory Bird Center Smithsonian Conservation Biology Institute, National Zoological Park Washington District of Columbia USA
| | - Jeffrey J. Buler
- Department of Entomology and Wildlife Ecology University of Delaware Newark Delaware USA
| | - Kyle G. Horton
- Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado USA
| | - Scott R. Loss
- Department of Natural Resource Ecology and Management Oklahoma State University Stillwater Oklahoma USA
| | - Sergio A. Cabrera‐Cruz
- Department of Entomology and Wildlife Ecology University of Delaware Newark Delaware USA
| | - Jaclyn A. Smolinsky
- Department of Entomology and Wildlife Ecology University of Delaware Newark Delaware USA
| | - Peter P. Marra
- Migratory Bird Center Smithsonian Conservation Biology Institute, National Zoological Park Washington District of Columbia USA
| |
Collapse
|
11
|
Rabie PA, Welch-Acosta B, Nasman K, Schumacher S, Schueller S, Gruver J. Efficacy and cost of acoustic-informed and wind speed-only turbine curtailment to reduce bat fatalities at a wind energy facility in Wisconsin. PLoS One 2022; 17:e0266500. [PMID: 35395032 PMCID: PMC8992975 DOI: 10.1371/journal.pone.0266500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Current research estimates hundreds of thousands of turbine-related bat fatalities in North America annually. In an effort to reduce impacts of wind energy production on bat populations, many facilities implement operational curtailment strategies that limit turbine blade rotation during conditions when nighttime wind speeds are low. Incorporating real-time bat activity data into wind speed-only curtailment (WOC) strategies may increase operational flexibility by allowing turbines to operate normally when bats are not present near turbines. We evaluated costs and benefits of implementing the Turbine Integrated Mortality Reduction (TIMR) system, an approach that informs a curtailment-triggering algorithm based on wind speed and real-time bat acoustic data, compared to a WOC strategy in which turbines were curtailed below 4.5 meters per second (m/s) at a wind energy facility in Fond Du Lac County, Wisconsin. TIMR is a proprietary system and we had no access to the acoustic data or bat call analysis software. Operational parameters for the TIMR system were set to allow curtailment at all wind speeds below 8.0 m/s during the study period when bats were acoustically detected. Overall, the TIMR system reduced fatalities by 75% compared to control turbines, while the WOC strategy reduced fatalities by 47%. An earlier analysis of the same TIMR data neglected to account for carcasses occurring outside the plot boundary and estimated an 84.5% fatality reduction due to the TIMR system. Over the study period, bat activity led to curtailment of TIMR turbines during 39.4% of nighttime hours compared to 31.0% of nighttime hours for WOC turbines, and revenue losses were approximately 280% as great for TIMR turbines as for turbines operated under the WOC strategy. The large cost difference between WOC and TIMR was driven by the 4.5 m/s versus 8.0 m/s wind speed thresholds for curtailment, but our study site has a relatively low average wind speed, which may also have contributed; other wind operators considering the TIMR system will need to consider their ability to absorb production losses in relation to their need to reduce bat fatality rates.
Collapse
Affiliation(s)
- Paul A. Rabie
- Western EcoSystems Technology, Inc., Laramie, Wyoming, United States of America
- * E-mail:
| | - Brandi Welch-Acosta
- Western EcoSystems Technology, Inc., Cheyenne, Wyoming, United States of America
| | - Kristen Nasman
- Western EcoSystems Technology, Inc., Fort Collins, Colorado, United States of America
| | | | | | - Jeffery Gruver
- Rocky Mountain Bat Conservancy, Laramie, Wyoming, United States of America
| |
Collapse
|
12
|
Cornman RS, Cryan PM. Positively selected genes in the hoary bat ( Lasiurus cinereus) lineage: prominence of thymus expression, immune and metabolic function, and regions of ancient synteny. PeerJ 2022; 10:e13130. [PMID: 35317076 PMCID: PMC8934532 DOI: 10.7717/peerj.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/25/2022] [Indexed: 01/12/2023] Open
Abstract
Background Bats of the genus Lasiurus occur throughout the Americas and have diversified into at least 20 species among three subgenera. The hoary bat (Lasiurus cinereus) is highly migratory and ranges farther across North America than any other wild mammal. Despite the ecological importance of this species as a major insect predator, and the particular susceptibility of lasiurine bats to wind turbine strikes, our understanding of hoary bat ecology, physiology, and behavior remains poor. Methods To better understand adaptive evolution in this lineage, we used whole-genome sequencing to identify protein-coding sequence and explore signatures of positive selection. Gene models were predicted with Maker and compared to seven well-annotated and phylogenetically representative species. Evolutionary rate analysis was performed with PAML. Results Of 9,447 single-copy orthologous groups that met evaluation criteria, 150 genes had a significant excess of nonsynonymous substitutions along the L. cinereus branch (P < 0.001 after manual review of alignments). Selected genes as a group had biased expression, most strongly in thymus tissue. We identified 23 selected genes with reported immune functions as well as a divergent paralog of Steep1 within suborder Yangochiroptera. Seventeen genes had roles in lipid and glucose metabolic pathways, partially overlapping with 15 mitochondrion-associated genes; these adaptations may reflect the metabolic challenges of hibernation, long-distance migration, and seasonal variation in prey abundance. The genomic distribution of positively selected genes differed significantly from background expectation by discrete Kolmogorov-Smirnov test (P < 0.001). Remarkably, the top three physical clusters all coincided with islands of conserved synteny predating Mammalia, the largest of which shares synteny with the human cat-eye critical region (CECR) on 22q11. This observation coupled with the expansion of a novel Tbx1-like gene family may indicate evolutionary innovation during pharyngeal arch development: both the CECR and Tbx1 cause dosage-dependent congenital abnormalities in thymus, heart, and head, and craniodysmorphy is associated with human orthologs of other positively selected genes as well.
Collapse
|
13
|
An Updated Review of Hypotheses Regarding Bat Attraction to Wind Turbines. Animals (Basel) 2022; 12:ani12030343. [PMID: 35158666 PMCID: PMC8833423 DOI: 10.3390/ani12030343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Patterns of bat activity and mortalities at wind energy facilities suggest that bats are attracted to wind turbines based on bat behavioral responses to wind turbines. For example, current monitoring efforts suggest that bat activity increases post-wind turbine construction, with bats making multiple passes near wind turbines. We separated the attraction hypothesis into five previously proposed explanations of bat interactions at or near wind turbines, including attraction based on noise, roost sites, foraging and water, mating behavior, and lights, and one new hypothesis regarding olfaction, and provide a state of the knowledge in 2022. Our review indicates that future research should prioritize attraction based on social behaviors, such as mating and scent-marking, as this aspect of the attraction hypothesis has many postulates and remains the most unclear. Relatively more data regarding attraction to wind turbines based on lighting and noise emission exist, and these data indicate that these are unlikely attractants. Analyzing attraction at the species-level should be prioritized because of differences in foraging, flight, and social behavior among bat species. Lastly, research assessing bat attraction at various scales, such as the turbine or facility scale, is lacking, which could provide important insights for both wind turbine siting decisions and bat mortality minimization strategies. Identifying the causes of bat interactions with wind turbines is critical for developing effective impact minimization strategies.
Collapse
|
14
|
Cryan PM, Gorresen PM, Straw BR, Thao S(S, DeGeorge E. Influencing Activity of Bats by Dimly Lighting Wind Turbine Surfaces with Ultraviolet Light. Animals (Basel) 2021; 12:ani12010009. [PMID: 35011115 PMCID: PMC8744972 DOI: 10.3390/ani12010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Bats often fly near wind turbines. The fatalities associated with this behavior continue to be an issue for wind energy development and wildlife conservation. We tested an experimental method intended to reduce bat fatalities at the wind turbines. We assumed that bats navigate over long distances at night by dim-light vision and might be dissuaded from approaching artificially lit structures. For over a year, we experimentally lit wind turbines at night with dim, flickering ultraviolet (UV) light while measuring the presence and activity of bats, birds, and insects with thermal-imaging cameras. We detected no statistical differences in the activity of the bats, insects, or birds at a test turbine when lit with UV light compared with that of unlit nights. Additional experiments to test this or other possible bat-deterrence methods may benefit from considering subtle measures of animal response that can provide useful information on the possible behavioral effects of fatality-reduction experiments. Abstract Wind energy producers need deployable devices for wind turbines that prevent bat fatalities. Based on the speculation that bats approach turbines after visually mistaking them for trees, we tested a potential light-based deterrence method. It is likely that the affected bats see ultraviolet (UV) light at low intensities. Here, we present the results of a multi-month experiment to cast dim, flickering UV light across wind turbine surfaces at night. Our objectives were to refine and test a practical system for dimly UV-illuminating turbines while testing whether the experimental UV treatment influenced the activity of bats, birds, and insects. We mounted upward-facing UV light arrays on turbines and used thermal-imaging cameras to quantify the presence and activity of night-flying animals. The results demonstrated that the turbines can be lit to the highest reaches of the blades with “invisible” UV light, and the animal responses to such experimental treatment can be concurrently monitored. The UV treatment did not significantly change nighttime bat, insect, or bird activity at the wind turbine. Our findings show how observing flying animals with thermal cameras at night can help test emerging technologies intended to variably affect their behaviors around wind turbines.
Collapse
Affiliation(s)
- Paul M. Cryan
- U.S. Geological Survey (USGS), Fort Collins Science Center, Fort Collins, CO 80526, USA;
- Correspondence:
| | - Paulo M. Gorresen
- Hawaii Cooperative Studies Unit, University of Hawaii at Hilo, Hilo, HI 96720, USA;
- USGS Pacific Island Ecosystems Science Center, Hawaii Volcanoes National Park, Hilo, HI 96718, USA
| | - Bethany R. Straw
- U.S. Geological Survey (USGS), Fort Collins Science Center, Fort Collins, CO 80526, USA;
| | - Syhoune (Simon) Thao
- U.S. Department of Energy, National Renewable Energy Laboratory, National Wind Technology Center, Boulder, CO 80007, USA; (S.T.); (E.D.)
| | - Elise DeGeorge
- U.S. Department of Energy, National Renewable Energy Laboratory, National Wind Technology Center, Boulder, CO 80007, USA; (S.T.); (E.D.)
| |
Collapse
|
15
|
Happ C, Sutor A, Hochradel K. Methodology for the Automated Visual Detection of Bird and Bat Collision Fatalities at Onshore Wind Turbines. J Imaging 2021; 7:jimaging7120272. [PMID: 34940738 PMCID: PMC8704095 DOI: 10.3390/jimaging7120272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
The number of collision fatalities is one of the main quantification measures for research concerning wind power impacts on birds and bats. Despite being integral in ongoing investigations as well as regulatory approvals, the state-of-the-art method for the detection of fatalities remains a manual search by humans or dogs. This is expensive, time consuming and the efficiency varies greatly among different studies. Therefore, we developed a methodology for the automatic detection using visual/near-infrared cameras for daytime and thermal cameras for nighttime. The cameras can be installed in the nacelle of wind turbines and monitor the area below. The methodology is centered around software that analyzes the images in real time using pixel-wise and region-based methods. We found that the structural similarity is the most important measure for the decision about a detection. Phantom drop tests in the actual wind test field with the system installed on 75 m above the ground resulted in a sensitivity of 75.6% for the nighttime detection and 84.3% for the daylight detection. The night camera detected 2.47 false positives per hour using a time window designed for our phantom drop tests. However, in real applications this time window can be extended to eliminate false positives caused by nightly active animals. Excluding these from our data reduced the false positive rate to 0.05. The daylight camera detected 0.20 false positives per hour. Our proposed method has the advantages of being more consistent, more objective, less time consuming, and less expensive than manual search methods.
Collapse
|
16
|
Monitoring and Modeling Tree Bat (Genera: Lasiurus, Lasionycteris) Occurrence Using Acoustics on Structures off the Mid-Atlantic Coast-Implications for Offshore Wind Development. Animals (Basel) 2021; 11:ani11113146. [PMID: 34827878 PMCID: PMC8614452 DOI: 10.3390/ani11113146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary “Tree bats” are North American bats that day-roost in trees year-round and undertake seasonal migration in lieu of hibernation. These bats have been shown to be highly susceptible to collisions with wind energy turbines and are known to fly offshore during migration. Therefore, as offshore wind energy expands off the eastern U.S. coast, there is some concern about potential impacts. We monitored bats in coastal Virginia, USA, using acoustic monitors—devices that collect the unique echolocation call signatures of bat species. We found that nightly tree bat visitation offshore or on barrier islands was associated with wind speed, temperature, visibility, and seasonality. Using statistical modeling, we developed a predictive tool to assess occurrence probabilities at varying levels of wind speed, temperature, and seasonality. Probability of occurrence and therefore assumed risk to collision is highest on high temperature and visibility nights, low wind speed nights, and during the spring and fall seasons. We suggest a similar modeling regime could be used to predict the occurrence of bats at offshore wind sites to inform potential mitigation efforts. Abstract In eastern North America, “tree bats” (Genera: Lasiurus and Lasionycteris) are highly susceptible to collisions with wind energy turbines and are known to fly offshore during migration. This raises concern about ongoing expansion of offshore wind-energy development off the Atlantic Coast. Season, atmospheric conditions, and site-level characteristics such as local habitat (e.g., forest coverage) have been shown to influence wind turbine collision rates by bats onshore, and therefore may be related to risk offshore. Therefore, to assess the factors affecting coastal presence of bats, we continuously gathered tree bat occurrence data using stationary acoustic recorders on five structures (four lighthouses on barrier islands and one light tower offshore) off the coast of Virginia, USA, across all seasons, 2012–2019. We used generalized additive models to describe tree bat occurrence on a nightly basis. We found that sites either indicated maternity or migratory seasonal occurrence patterns associated with local roosting resources, i.e., presence of trees. Across all sites, nightly occurrence was negatively related to wind speed and positively related to temperature and visibility. Using predictive performance metrics, we concluded that our model was highly predictive for the Virginia coast. Our findings were consistent with other studies—tree bat occurrence probability and presumed mortality risk to offshore wind-energy collisions is highest on low wind speed nights, high temperature and visibility nights, and during spring and fall. The high predictive model performance we observed provides a basis for which managers, using a similar monitoring and modeling regime, could develop an effective curtailment-based mitigation strategy.
Collapse
|
17
|
Solick DI, Newman CM. Oceanic records of North American bats and implications for offshore wind energy development in the United States. Ecol Evol 2021; 11:14433-14447. [PMID: 34765117 PMCID: PMC8571582 DOI: 10.1002/ece3.8175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022] Open
Abstract
Offshore wind energy is a growing industry in the United States, and renewable energy from offshore wind is estimated to double the country's total electricity generation. There is growing concern that land-based wind development in North America is negatively impacting bat populations, primarily long-distance migrating bats, but the impacts to bats from offshore wind energy are unknown. Bats are associated with the terrestrial environment, but have been observed over the ocean. In this review, we synthesize historic and contemporary accounts of bats observed and acoustically recorded in the North American marine environment to ascertain the spatial and temporal distribution of bats flying offshore. We incorporate studies of offshore bats in Europe and of bat behavior at land-based wind energy studies to examine how offshore wind development could impact North American bat populations. We find that most offshore bat records are of long-distance migrating bats and records occur during autumn migration, the period of highest fatality rates for long-distance migrating bats at land-based wind facilities in North America. We summarize evidence that bats may be attracted to offshore turbines, potentially increasing their exposure to risk of collision. However, higher wind speeds offshore can potentially reduce the amount of time that bats are exposed to risk. We identify knowledge gaps and hypothesize that a combination of operational minimization strategies may be the most effective approach for reducing impacts to bats and maximizing offshore energy production.
Collapse
|
18
|
Gilmour LRV, Holderied MW, Pickering SPC, Jones G. Acoustic deterrents influence foraging activity, flight and echolocation behaviour of free-flying bats. J Exp Biol 2021; 224:jeb242715. [PMID: 34605893 PMCID: PMC8601711 DOI: 10.1242/jeb.242715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022]
Abstract
Acoustic deterrents have shown potential as a viable mitigation measure to reduce human impacts on bats; however, the mechanisms underpinning acoustic deterrence of bats have yet to be explored. Bats avoid ambient ultrasound in their environment and alter their echolocation calls in response to masking noise. Using stereo thermal videogrammetry and acoustic methods, we tested predictions that: (i) bats would avoid acoustic deterrents and forage and social call less in a 'treated airspace'; (ii) deterrents would cause bats to fly with more direct flight paths akin to commuting behaviour and in line with a reduction in foraging activity, resulting in increased flight speed and decreased flight tortuosity; and (iii) bats would alter their echolocation call structure in response to the masking deterrent sound. As predicted, overall bat activity was reduced by 30% and we recorded a significant reduction in counts of Pipistrellus pygmaeus (27%), Myotis spp. (probably M. daubentonii) (26%), and Nyctalus spp. and Eptesicus spp. (68%) passes. Pipistrellus pygmaeus feeding buzzes were also reduced by the deterrent in relation to general activity (by 38%); however, social calls were not (only 23% reduction). Bats also increased their flight speed and reduced the tortuosity of their flight paths, and P. pygmaeus reduced echolocation call bandwidth and start frequency of calls in response to deterrent playback, probably owing to the masking effect of the sound. Deterrence could therefore be used to remove bats from areas where they forage, for example wind turbines and roads, where they may be under threat from direct mortality.
Collapse
Affiliation(s)
- Lia R. V. Gilmour
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| | - Marc W. Holderied
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
19
|
Effects of Environmental Clutter on Synthesized Chiropteran Echolocation Signals in an Anechoic Chamber. ACOUSTICS 2021. [DOI: 10.3390/acoustics3020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ultrasonic bat detectors are useful for research and monitoring purposes to assess occupancy and relative activity of bat communities. Environmental “clutter” such as tree boles and foliage can affect the recording quality and identification of bat echolocation calls collected using ultrasonic detectors. It can also affect the transmission of calls and recognition by bats when using acoustic lure devices to attract bats to mist-nets. Bat detectors are often placed in forests, yet automatic identification programs are trained on call libraries using echolocation passes recorded largely from open spaces. Research indicates that using clutter-recorded calls can increase classification accuracy for some bat species and decrease accuracy for others, but a detailed understanding of how clutter impacts the recording and identification of echolocation calls remains elusive. To clarify this, we experimentally investigated how two measures of clutter (i.e., total basal area and number of stems of simulated woody growth, as well as recording angle) affected the recording and classification of a synthesized echolocation signal under controlled conditions in an anechoic chamber. Recording angle (i.e., receiver position relative to emitter) significantly influenced the probability of correct classification and differed significantly for many of the call parameters measured. The probability of recording echo pulses was also a function of clutter but only for the detector angle at 0° from the emitter that could receive deflected pulses. Overall, the two clutter metrics were overshadowed by proximity and angle of the receiver to the sound source but some deviations from the synthesized call in terms of maximum, minimum, and mean frequency parameters were observed. Results from our work may aid efforts to better understand underlying environmental conditions that produce false-positive and -negative identifications for bat species of interest and how this could be used to adjust survey accuracy estimates. Our results also help pave the way for future research into the development of acoustic lure technology by exploring the effects of environmental clutter on ultrasound transmission.
Collapse
|
20
|
Cornman RS, Fike JA, Oyler-McCance SJ, Cryan PM. Historical effective population size of North American hoary bat ( Lasiurus cinereus) and challenges to estimating trends in contemporary effective breeding population size from archived samples. PeerJ 2021; 9:e11285. [PMID: 33976981 PMCID: PMC8061578 DOI: 10.7717/peerj.11285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/25/2021] [Indexed: 11/20/2022] Open
Abstract
Background Hoary bats (Lasiurus cinereus) are among the bat species most commonly killed by wind turbine strikes in the midwestern United States. The impact of this mortality on species census size is not understood, due in part to the difficulty of estimating population size for this highly migratory and elusive species. Genetic effective population size (Ne) could provide an index of changing census population size if other factors affecting Ne are stable. Methods We used the NeEstimator package to derive effective breeding population size (Nb) estimates for two temporally spaced cohorts: 93 hoary bats collected in 2009-2010 and an additional 93 collected in 2017-2018. We sequenced restriction-site associated polymorphisms and generated a de novo genome assembly to guide the removal of sex-linked and multi-copy loci, as well as identify physically linked markers. Results Analysis of the reference genome with psmc suggested at least a doubling of Ne in the last 100,000 years, likely exceeding Ne = 10,000 in the Holocene. Allele and genotype frequency analyses confirmed that the two cohorts were comparable, although some samples had unusually high or low observed heterozygosities. Additionally, the older cohort had lower mean coverage and greater variability in coverage, and batch effects of sampling locality were observed that were consistent with sample degradation. We therefore excluded samples with low coverage or outlier heterozygosity, as well as loci with sequence coverage far from the mode value, from the final data set. Prior to excluding these outliers, contemporary Nb estimates were significantly higher in the more recent cohort, but this finding was driven by high values for the 2018 sample year and low values for all other years. In the reduced data set, Nb did not differ significantly between cohorts. We found base substitutions to be strongly biased toward cytosine to thymine or the complement, and further partitioning loci by substitution type had a strong effect on Nb estimates. Minor allele frequency and base quality bias thresholds also had strong effects on Nb estimates. Instability of Nb with respect to common data filtering parameters and empirically identified factors prevented robust comparison of the two cohorts. Given that confidence intervals frequently included infinity as the stringency of data filtering increased, contemporary trends in Nb of North American hoary bats may not be tractable with the linkage disequilibrium method, at least using the protocol employed here.
Collapse
Affiliation(s)
- Robert S Cornman
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, United States of America
| | - Jennifer A Fike
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, United States of America
| | - Sara J Oyler-McCance
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, United States of America
| | - Paul M Cryan
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, United States of America
| |
Collapse
|
21
|
Voigt CC, Russo D, Runkel V, Goerlitz HR. Limitations of acoustic monitoring at wind turbines to evaluate fatality risk of bats. Mamm Rev 2021. [DOI: 10.1111/mam.12248] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Christian C. Voigt
- Department of Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Alfred‐Kowalke‐Str. 1710315Berlin Germany
| | - Danilo Russo
- Wildlife Research Unit Dipartimento di Agraria Universita degli Studi di Napoli Federico II Portici Italy
- School of Biological Sciences University of Bristol Bristol Life Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
| | - Volker Runkel
- Bundesverband für Fledermauskunde Deutschland e.V. Schmidtstedter Str. 30a99084Erfurt Germany
| | - Holger R. Goerlitz
- Acoustic and Functional Ecology Max Planck Institute for Ornithology Eberhard‐Gwinner‐Strasse 82319Seewiesen Germany
| |
Collapse
|
22
|
Weaver SP, Jones AK, Hein CD, Castro-Arellano I. Estimating bat fatality at a Texas wind energy facility: implications transcending the United States–Mexico border. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Wind energy development causes bat fatalities. Despite emphasis on understanding and reducing these impacts, few data are available for the southwest region of the United States and northern Mexico. We monitored bat fatalities for a full year (March 2017–March 2018) at a wind energy facility in south Texas near the United States–Mexico border. We established search plots of 100-m radius at eight randomly selected turbines (of 255) and searched the roads and pads at an additional 92 turbines. We conducted weekly searches from spring through fall and bimonthly during winter. We used GenEst (Generalized Mortality Estimator) to estimate bat fatalities corrected for searcher efficiency, carcass removal, and density-weighted proportion of area searched. We found 205 bats during standardized searches, the majority of which were Brazilian free-tailed bats (Tadarida brasiliensis, 76%). The corrected fatality estimates were 16 bats/megawatt/year (95% confidence interval [CI]: 12 – 30 bats/megawatt/year) across all species. Species composition at our site is similar to that of northern Mexico, an area of expanding wind energy development with no published studies.
Collapse
Affiliation(s)
- Sara P Weaver
- Bowman Consulting Group, Ltd, San Marcos, TX, USA
- Biology Department, Texas State University, San Marcos, TX, USA
| | | | - Cris D Hein
- National Renewable Energy Laboratory, Golden, CO, USA
| | | |
Collapse
|
23
|
Chipps AS, Hale AM, Weaver SP, Williams DA. Genetic diversity, population structure, and effective population size in two yellow bat species in south Texas. PeerJ 2020; 8:e10348. [PMID: 33240657 PMCID: PMC7680031 DOI: 10.7717/peerj.10348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/21/2020] [Indexed: 11/29/2022] Open
Abstract
There are increasing concerns regarding bat mortality at wind energy facilities, especially as installed capacity continues to grow. In North America, wind energy development has recently expanded into the Lower Rio Grande Valley in south Texas where bat species had not previously been exposed to wind turbines. Our study sought to characterize genetic diversity, population structure, and effective population size in Dasypterus ega and D. intermedius, two tree-roosting yellow bats native to this region and for which little is known about their population biology and seasonal movements. There was no evidence of population substructure in either species. Genetic diversity at mitochondrial and microsatellite loci was lower in these yellow bat taxa than in previously studied migratory tree bat species in North America, which may be due to the non-migratory nature of these species at our study site, the fact that our study site is located at a geographic range end for both taxa, and possibly weak ascertainment bias at microsatellite loci. Historical effective population size (NEF) was large for both species, while current estimates of Ne had upper 95% confidence limits that encompassed infinity. We found evidence of strong mitochondrial differentiation between the two putative subspecies of D. intermedius (D. i. floridanus and D. i. intermedius) which are sympatric in this region of Texas, yet little differentiation using microsatellite loci. We suggest this pattern is due to secondary contact and hybridization and possibly incomplete lineage sorting at microsatellite loci. We also found evidence of some hybridization between D. ega and D. intermedius in this region of Texas. We recommend that our data serve as a starting point for the long-term genetic monitoring of these species in order to better understand the impacts of wind-related mortality on these populations over time.
Collapse
Affiliation(s)
- Austin S. Chipps
- Department of Biology, Texas Christian University, Fort Worth, TX, United States of America
| | - Amanda M. Hale
- Department of Biology, Texas Christian University, Fort Worth, TX, United States of America
| | - Sara P. Weaver
- Biology Department, Texas State University, San Marcos, TX, United States of America
- Bowman Consulting Group, San Marcos, TX, United States of America
| | - Dean A. Williams
- Department of Biology, Texas Christian University, Fort Worth, TX, United States of America
| |
Collapse
|
24
|
Genetic Approaches Are Necessary to Accurately Understand Bat-Wind Turbine Impacts. DIVERSITY 2020. [DOI: 10.3390/d12060236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bats are killed at wind energy facilities worldwide and we must improve our understanding of why this is happening and implement effective strategies to minimize impacts. To this end, we need accurate assessments of which individuals from which bat species are being killed at individual wind projects and at regional and range-wide scales. Traditional fatality searches have relied on physical characteristics to ascertain species and sex of bat carcasses collected at wind turbines; however, the resulting data can be incomplete and inaccurate. In contrast, the use of readily available and low-cost molecular methods improves both the quality and quantity of available data. We applied such methods to a bat fatality dataset (n = 439 bats) from far-south Texas, USA. Using DNA barcoding, we increased accurate species identification from 83% to 97%, and discovered the presence of 2 bat species outside of their known geographic ranges. Using a PCR-based approach to determine sex, the number of carcasses with correct sex assignment increased from 35% to 94%, and we documented a female-biased sex ratio for all species combined and for Dasypterus ega. We recommend that molecular methods be used during future survey efforts to accurately assess the impacts of wind energy on bats.
Collapse
|