1
|
Du Y, Wang X, Ashraf S, Tu W, Xi Y, Cui R, Chen S, Yu J, Han L, Gu S, Qu Y, Liu X. Climate match is key to predict range expansion of the world's worst invasive terrestrial vertebrates. GLOBAL CHANGE BIOLOGY 2024; 30:e17137. [PMID: 38273500 DOI: 10.1111/gcb.17137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024]
Abstract
Understanding the determinants of the range expansion of invasive alien species is crucial for developing effective prevention and control strategies. Nevertheless, we still lack a global picture of the potential factors influencing the invaded range expansion across taxonomic groups, especially for the world's worst invaders with high ecological and economic impacts. Here, by extensively collecting data on 363 distributional ranges of 19 of world's worst invasive terrestrial vertebrates across 135 invaded administrative jurisdictions, we observed remarkable variations in the range expansion across species and taxonomic groups. After controlling for taxonomic and geographic pseudoreplicates, model averaging analyses based on generalized additive mixed-effect models showed that species in invaded regions having climates more similar to those of their native ranges tended to undergo a larger range expansion. In addition, as proxies of propagule pressure and human-assisted transportation, the number of introduction events and the road network density were also important predictors facilitating the range expansion. Further variance partitioning analyses validated the predominant role of climate match in explaining the range expansion. Our study demonstrated that regions with similar climates to their native ranges could still be prioritized to prevent the spread of invasive species under the sustained global change.
Collapse
Affiliation(s)
- Yuanbao Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xuyu Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Ecology, Lanzhou University, Lanzhou, Gansu Province, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Sadia Ashraf
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weishan Tu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Yonghong Xi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shengnan Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan Province, China
| | - Jiajie Yu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lixia Han
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Shimin Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Clarke E, Heugten KAV, Tollefson TN, Ridgley FN, Smith D, Brown JL, Scott H, Minter LJ. Comparison of Corticosterone Concentrations in Dermal Secretions and Urine in Free-Ranging Marine Toads ( Rhinella marina) in Human Care. Vet Med Int 2023; 2023:1467549. [PMID: 37766874 PMCID: PMC10522434 DOI: 10.1155/2023/1467549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Corticosterone concentrations have been measured in amphibians by collecting blood or urine samples. However, blood sampling is invasive, and urine can be difficult to collect. A novel method of swabbing the skin of an amphibian has been utilized in numerous species but has not been verified in marine toads (Rhinella marina). This pilot study tested dermal swabs as a noninvasive method for collecting and measuring dermal corticosterone secretions. Swabs were used to collect dermal secretion samples from sixty-six free-ranging marine toads collected on Zoo Miami grounds. The subsequent day the toads were shipped to the North Carolina Zoo where dermal samples were collected again. Additional dermal and urine samples were collected on days 9, 15, 32, and 62 under human care to measure corticosterone concentrations. There was no significant correlation (P ≥ 0.05) noted between corticosterone concentrations reported in dermal swabs and those in urine samples at all four of the euthanasia time points or between the corticosterone concentrations reported in either urine or dermal swabs and the weight of the toads. Dermal swab concentrations (ng/mL) were significantly higher (P ≤ 0.05) on the day of capture (0.64 ± 0.03) and the day of arrival (0.67 ± 0.03) than on day 15 (0.47 ± 0.03). The urine corticosterone concentrations decreased while the toads were in human care with a significant decrease (P ≤ 0.05) between days 9 (0.45 ± 0.07) and 32 (0.21 ± 0.06). This study demonstrated that dermal swabs can be used to collect marine toad corticosterone concentration samples.
Collapse
Affiliation(s)
- Emma Clarke
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Dr., Raleigh, NC 27607, USA
| | - Kimberly Ange-van Heugten
- Department of Animal Science, North Carolina State University, 120 W. Broughton Dr., Raleigh, NC 27695, USA
- Environment Medicine Consortium, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27607, USA
| | - Troy N. Tollefson
- Mazuri® Exotic Animal Nutrition, PMI Nutrition, 4001 Lexington Ave. North, Arden Hills, MN 55126, USA
| | - Frank N. Ridgley
- The Conservation and Research Department, Zoo Miami, 12400 SW 152nd St., Miami, FL 33177, USA
| | - Dustin Smith
- North Carolina Zoo, 4401 Zoo Pkwy, Asheboro, NC 27205, USA
| | - Janine L. Brown
- Smithsonian Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA 22630, USA
| | - Heather Scott
- North Carolina Zoo, 4401 Zoo Pkwy, Asheboro, NC 27205, USA
| | - Larry J. Minter
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Dr., Raleigh, NC 27607, USA
- Environment Medicine Consortium, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27607, USA
- North Carolina Zoo, 4401 Zoo Pkwy, Asheboro, NC 27205, USA
| |
Collapse
|
3
|
Backström T, Winkelmann C. Invasive round goby shows higher sensitivity to salinization than native European perch. NEOBIOTA 2022. [DOI: 10.3897/neobiota.75.86528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Salinity is an influential abiotic environmental factor in aquatic species, specifically in freshwater, where salinization causes ecosystem degradation. Secondary salinization, that is increases in salinity due to anthropogenic activities, can affect both osmoregulation and behaviour in freshwater fishes. It is generally believed that invasive species handle climatic change and environmental degradation better than native species, which is one reason for their invasion success. However, how invasive and native species cope with salinity changes remains little understood. Therefore, we investigated how low (500 µS/cm) and high salinity (2000 µS/cm) conditions affected oxygen consumption and behaviour in the invasive round goby (Neogobius melanostomus) and the native European perch (Perca fluviatilis). Our results showed that in round goby oxygen consumption increased and swimming and non-swimming movements changed in response to salinity increments, whereas European perch was not affected by salinity. Thus, it seems as if the invasive round goby is more sensitive to changes in salinity than the native European perch. Our results fit with the minority of studies indicating invasive species being less tolerant than some native species to environmental changes. This finding could be explained by the adaptation of round goby to low salinity due to its long establishment in River Rhine. Further, our results are also confirming that the effect of salinity is species-specific. In addition, European perch and round goby show diametrically different behavioural response to disturbance which could be an effect of holding different ecological niches as well as their anatomical differences.
Collapse
|
4
|
Ludwig A, Schemberger MO, Gazolla CB, de Moura Gama J, Duarte I, Lopes ALK, Mathias C, Petters-Vandresen DAL, Zattera ML, Bruschi DP. Transposable elements expression in Rhinella marina (cane toad) specimens submitted to immune and stress challenge. Genetica 2021; 149:335-342. [PMID: 34383169 DOI: 10.1007/s10709-021-00130-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022]
Abstract
Transposable elements (TEs) are important components of eukaryotic genomes and compose around 30% of the genome of Rhinella marina, an invasive toad species. Considering the possible role of TEs in the adaptation of populations, we have analyzed the expression of TEs in publicly available spleen tissue transcriptomic data generated for this species after immune and stress challenge. By analyzing the transcriptome assembly, we detected a high number of TE segments. Moreover, some distinct TE families were differentially expressed in some conditions. Our result shows that several TEs are capable of being transcribed in R. marina and they could help to generate a rapid response of specimens to the environment. Also, we can suggest that these TEs could be activated in the germinative cells as well producing variability to be selected and shaped by the evolutionary processes behind the success of this invasive species. Thus, the TEs are important targets for investigation in the context of R. marina adaptation.
Collapse
Affiliation(s)
- Adriana Ludwig
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde (LaCTAS), Instituto Carlos Chagas - Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Michelle Orane Schemberger
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
| | - Camilla Borges Gazolla
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Joana de Moura Gama
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Iraine Duarte
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Ana Luisa Kalb Lopes
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde (LaCTAS), Instituto Carlos Chagas - Fiocruz-PR, Curitiba, Paraná, Brazil
- Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Carolina Mathias
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | | | - Michelle Louise Zattera
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Daniel Pacheco Bruschi
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
- Laboratório de Citogenética Evolutiva e Conservação Animal (LabCECA), Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
| |
Collapse
|