1
|
Yu T, Han T, Feng Q, Chen W, Zhao C, Li H, Liu J. Divergent response to abiotic factor determines the decoupling of water and carbon fluxes over an artificial C4 shrub in desert. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118416. [PMID: 37331315 DOI: 10.1016/j.jenvman.2023.118416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Knowledge on relationship and determinants of water and carbon dioxide (CO2) exchange is crucial to land managers and policy makers especially for the desertified land restoration. However, there remains highly uncertain in terms of water use and carbon sequestration for artificial plantation in desert. Here, continuous water and carbon fluxes were measured using eddy covariance (EC) in conjunction with hydrometeorological measurements over an artificial C4 shrub, Haloxylon ammodendron (C. A. Mey.) Bunge, from July 2020 to 2021 in Tengger Desert, China. Throughout 2021, evapotranspiration (ET) was 189.5 mm, of which 85% (150 mm) occurred during growing season, that was comparable with the summation of precipitation (132.2 mm), dew (33.5 mm) and potential other sources (e.g. deep subsoil water). This ecosystem was a strong carbon sink with net ecosystem production (NEP) up to 446.4 g C m-2 yr-1, much higher than surrounding sites. Gross primary production (GPP, 598.7 g C m-2 yr-1) in this shrubland was comparable with that of other shrublands, whereas ecosystem respiration (Re, 152.3 g C m-2 yr-1) was lower. Random Forest showed that environmental factors can explain 71.56% and 80.07% variation of GPP and ET, respectively. Interestingly, environmental factors have divergent effect on water and carbon exchange, i.e., soil hydrothermic factors (soil moisture content and soil temperature) determine the magnitude and seasonal pattern of ET and Re, while aerodynamics factors (net radiation, atmospheric temperature and wind speed) determine GPP and NEP. As such, divergent response of abiotic factors resulted in the decoupling of water and carbon exchange. Our results suggest that H. ammodendron is a suitable species for large-scale afforestation in dryland given its low water use but high carbon sequestration. Therefore, we infer that artificial planting H. ammodendron in dryland could provide an opportunity for climate change mitigation, and the long-term time series data is needed to confirm its sustainable role of carbon sequestration in the future.
Collapse
Affiliation(s)
- Tengfei Yu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Alxa Desert Eco-hydrology Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Tuo Han
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Alxa Desert Eco-hydrology Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qi Feng
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Alxa Desert Eco-hydrology Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Weiyu Chen
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Alxa Desert Eco-hydrology Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Chenguang Zhao
- Alxa Institute of Forestry and Grassland, Inner Mongolia, Alxa, 750306, China
| | - Huiying Li
- Alxa Institute of Forestry and Grassland, Inner Mongolia, Alxa, 750306, China
| | - Junliang Liu
- Alxa Forestry and Grassland Protection Station, Inner Mongolia, Alxa, 750306, China
| |
Collapse
|
2
|
Wang M, Zhang L, Tong S, Jiang D, Fu Z. Chromosome-level genome assembly of a xerophytic plant, Haloxylon ammodendron. DNA Res 2022; 29:dsac006. [PMID: 35266513 PMCID: PMC8946665 DOI: 10.1093/dnares/dsac006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/09/2022] [Indexed: 01/30/2023] Open
Abstract
Haloxylon ammodendron is a xerophytic perennial shrub or small tree that has a high ecological value in anti-desertification due to its high tolerance to drought and salt stress. Here, we report a high-quality, chromosome-level genome assembly of H. ammodendron by integrating PacBio's high-fidelity sequencing and Hi-C technology. The assembled genome size was 685.4 Mb, of which 99.6% was assigned to nine pseudochromosomes with a contig N50 value of 23.6 Mb. Evolutionary analysis showed that both the recent substantial amplification of long terminal repeat retrotransposons and tandem gene duplication may have contributed to its genome size expansion and arid adaptation. An ample amount of low-GC genes was closely related to functions that may contribute to the desert adaptation of H. ammodendron. Gene family clustering together with gene expression analysis identified differentially expressed genes that may play important roles in the direct response of H. ammodendron to water-deficit stress. We also identified several genes possibly related to the degraded scaly leaves and well-developed root system of H. ammodendron. The reference-level genome assembly presented here will provide a valuable genomic resource for studying the genome evolution of xerophytic plants, as well as for further genetic breeding studies of H. ammodendron.
Collapse
Affiliation(s)
- Mingcheng Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Lei Zhang
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People’s Republic of China, College of Biological Science & Engineering, North Minzu University, Yinchuan 750001, China
| | - Shaofei Tong
- MOE Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu 610105, China
| | - Dechun Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhixi Fu
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| |
Collapse
|
3
|
Variability in Soil Macronutrient Stocks across a Chronosequence of Masson Pine Plantations. FORESTS 2021. [DOI: 10.3390/f13010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plantations play a vital role in the global nutrient cycle because they have large stocks of soil macronutrients. However, the impacts of plantations on soil macronutrient stocks combined with stand age and soil physicochemical properties have not been well quantified. We compared soil macronutrient stocks at soil depths of 0−20 and 20−40 cm across a 7-, 14-, 25-, and 30-year chronosequence of Masson pine (Pinus massoniana Lamb.) plantations. The results showed that the nitrogen (N), phosphorus (P), and potassium (K) stocks first increased and then decreased with stand age. The highest N and P stocks were observed in the 14-year-old plantation, and the 25-year-old plantation displayed the highest K stock. The C, N, and P stocks declined with increasing soil depth across all sites, whereas the reverse trend was found in the K stock. Carbon stocks were highest for all plantations, followed by the K, N, and P stocks. Plantation soils exhibited a higher C:P ratio and a lower P:K ratio at various soil depths. The dominant controlling factors for the soil macronutrient stocks varied significantly at different stand ages and soil depths according to statistical analysis. For the total soil system, the C stock was affected by the available nutrients, organic matter, and stoichiometry; the available nutrients and organic matter were the determinant factors of the N and P stocks. Aggregate stability could be the primary parameter affecting the K stock. Organic matter explained most of the variation in soil macronutrient stocks, followed by the P:K ratio and available K. Collectively, our results suggest that the response of soil macronutrient stocks to stand age and soil depth will be dependent on different soil physicochemical properties, and P and K may be important limiting factors in Masson pine plantation ecosystems.
Collapse
|