1
|
Ren B, Ma X, Li D, Bai L, Li J, Yu J, Meng M, Li H. Nitrogen-cycling microbial communities respond differently to nitrogen addition under two contrasting grassland soil types. Front Microbiol 2024; 15:1290248. [PMID: 38873145 PMCID: PMC11169941 DOI: 10.3389/fmicb.2024.1290248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction The impact of nitrogen (N) deposition on the soil N-transforming process in grasslands necessitates further investigation into how N input influences the structural composition and diversity of soil N-cycling microbial communities across different grassland types. Methods In this study, we selected two types of grassland soils in northwest Liaoning, temperate steppe and warm-temperate shrub, and conducted short-term N addition experiments using organic N, ammonium N, and nitrate N as sources with three concentration gradients to simulate N deposition. Illumina MiSeq sequencing technology was employed to sequence genes associated with N-cycling microbes including N-fixing, ammonia-oxidizing and denitrifying bacteria, and ammonia-oxidizing archaea. Results and discussion The results revealed significant alterations in the structural composition and diversity of the N-cycling microbial community due to N addition, but the response of soil microorganisms varied inconsistent among different grassland types. Ammonium transformation rates had a greater impact on soils from temperate steppes while nitrification rates were more influential for soils from warm-temperate shrubs. Furthermore, the influence of the type of N source on soil N-cycling microorganisms outweighed that of its quantity applied. The ammonium type of nitrogen source is considered the most influential driving factor affecting changes in the structure of the microbial community involved in nitrogen transformation, while the amount of low nitrogen applied primarily determines the composition of soil bacterial communities engaged in nitrogen fixation and nitrification. Different groups of N-cycling microorganisms exhibited distinct responses to varying levels of nitrogen addition with a positive correlation observed between their composition, diversity, and environmental factors examined. Overall findings suggest that short-term nitrogen deposition may sustain dominant processes such as soil-N fixation within grasslands over an extended period without causing significant negative effects on northwestern Liaoning's grassland ecosystems within the next decade.
Collapse
|
2
|
Shi H, Shi Q, Li H, Zhou X, Dai Y, Kahaer Y, Wan Y, Peng L. The combined effect of surface water and groundwater on environmental heterogeneity reveals the basis of beta diversity pattern in desert oasis communities. PLoS One 2022; 17:e0279704. [PMID: 36574442 PMCID: PMC9794059 DOI: 10.1371/journal.pone.0279704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Beta diversity indicates the species turnover with respect to a particular environmental gradient. It is crucial for understanding biodiversity maintenance mechanisms and for prescribing conservation measures. In this study, we aimed to reveal the drivers of beta diversity patterns in desert hinterland oasis communities by establishing three types of surface water disturbance and groundwater depth gradients. The results indicated that the dominant factor driving the beta diversity pattern within the same gradient shifted from soil organic matter to pH, as groundwater depth became shallower and surface water disturbance increased. Among the different gradients, surface water disturbance can have important effects on communities where original water resource conditions are extremely scarce. Under the premise that all habitats are disturbed by low surface water, differences in groundwater depth dominated the shifts in the community species composition. However, when groundwater depth in each habitat was shallow, surface water disturbance had little effect on the change in species composition. For the two components of beta diversity, the main drivers of species turnover pattern was the unique effects of surface water disturbance and soil environmental differences, and the main driver of species nestedness pattern was the common effect of multiple environmental pressures. The results of this study suggest that increasing the disturbance of surface water in dry areas with the help of river flooding will help in promoting vegetation restoration and alleviating the degradation of oases. They also confirm that surface water and groundwater mutually drive the establishment of desert oasis communities. Equal focus on both factors can contribute to the rational ecological recovery of dryland oases and prevent biodiversity loss.
Collapse
Affiliation(s)
- Haobo Shi
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, 830046, China
| | - Qingdong Shi
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, 830046, China
- * E-mail:
| | - Hao Li
- Provost’s Office and Academic Affairs, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
| | - Xiaolong Zhou
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, 830046, China
| | - Yue Dai
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi, 830046, China
| | - Yasenjiang Kahaer
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, 830046, China
| | - Yanbo Wan
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, 830046, China
| | - Lei Peng
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
3
|
Zhang X, Song X, Wang T, Huang L, Ma H, Wang M, Tan D. The responses to long-term nitrogen addition of soil bacterial, fungal, and archaeal communities in a desert ecosystem. Front Microbiol 2022; 13:1015588. [PMID: 36312972 PMCID: PMC9606763 DOI: 10.3389/fmicb.2022.1015588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/26/2022] [Indexed: 10/29/2023] Open
Abstract
Nitrogen (N) deposition is a worldwide issue caused by human activity. Long-term deposition of N strongly influences plant productivity and community composition. However, it is still unclear how the microbial community responds to long-term N addition in a desert ecosystem. Therefore, a long-term experiment was conducted in the Gurbantonggut Desert in northwestern China in 2015. Four N addition rates, 0 (CK), 5 (N1), 20 (N2), and 80 (N3) kg N ha-1 yr.-1, were tested and the soil was sampled after 6 years of N addition. High-throughput sequencing (HTS) was used to analyze the soil microbial composition. The HTS results showed that N addition had no significant effect on the bacterial α-diversity and β-diversity (p > 0.05) but significantly reduced the archaeal β-diversity (p < 0.05). The fungal Chao1 and ACE indexes in the N2 treatment increased by 24.10 and 26.07%, respectively. In addition, N addition affected the bacterial and fungal community structures. For example, compared to CK, the relative abundance of Actinobacteria increased by 17.80%, and the relative abundance of Bacteroidetes was reduced by 44.46% under N3 treatment. Additionally, N addition also changed the bacterial and fungal community functions. The N3 treatment showed increased relative abundance of nitrate-reducing bacteria (27.06% higher than CK). The relative abundance of symbiotrophic fungi was increased in the N1 treatment (253.11% higher than CK). SOC and NH4 +-N could explain 62% of the changes in the fungal community function. N addition can directly affect the bacterial community function or indirectly through NO3 --N. These results suggest that different microbial groups may have various responses to N addition. Compared with bacteria and fungi, the effect of N addition was less on the archaeal community. Meanwhile, N-mediated changes of the soil properties play an essential role in changes in the microbial community. The results in the present study provided a reliable basis for an understanding of how the microbial community in a desert ecosystem adapts to long-term N deposition.
Collapse
Affiliation(s)
- Xuan Zhang
- College of Life Sciences, Xinjiang Agricultural University, Ürümqi, China
| | - Xin Song
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, College of Ecology, Lanzhou University, Lanzhou, China
| | - Taotao Wang
- College of Life Sciences, Xinjiang Agricultural University, Ürümqi, China
| | - Lei Huang
- College of Life Sciences, Xinjiang Agricultural University, Ürümqi, China
| | - Haiyang Ma
- College of Life Sciences, Xinjiang Agricultural University, Ürümqi, China
| | - Mao Wang
- College of Life Sciences, Xinjiang Agricultural University, Ürümqi, China
| | - Dunyan Tan
- College of Life Sciences, Xinjiang Agricultural University, Ürümqi, China
| |
Collapse
|
4
|
Wang J, Wang Y, Qu M, Li J. Dispersal limitation dominates the community assembly of abundant and rare fungi in dryland montane forests. Front Microbiol 2022; 13:929772. [PMID: 36238586 PMCID: PMC9551450 DOI: 10.3389/fmicb.2022.929772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The assembly mechanisms and drivers of abundant and rare fungi in dryland montane forest soils remain underexplored. Therefore, in this study, we compared the distribution patterns of abundant and rare fungi and explored the factors determining their assembly processes in a dryland montane forest in China. Stronger distance-decay relationships (DDRs) were found in abundant sub-communities than in rare sub-communities. In addition, abundant fungi exhibited greater presence and wider habitat niche breadth than rare fungi. Both the null model and variation partitioning analysis indicated that dispersal limitation and environmental selection work together to govern both abundant and rare fungal assembly, while dispersal limitation plays a dominant role. Meanwhile, the relative influence of dispersal limitation and environmental selection varied between abundant and rare sub-communities, where dispersal limitation showed greater dominance in abundant fungal assembly. Mantel tests demonstrated that soil pH and phosphorus played critical roles in mediating abundant and rare fungi assembly processes, respectively. Our findings highlight that the distinct biogeographic patterns of abundant and rare fungi are driven by different assembly mechanisms, and the assembly processes of abundant and rare fungi are determined by diverse ecological drivers in dryland montane forest soils.
Collapse
Affiliation(s)
- Jianming Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yin Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Mengjun Qu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jingwen Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- *Correspondence: Jingwen Li,
| |
Collapse
|
5
|
Wang J, Li M, Li J. Soil pH and moisture govern the assembly processes of abundant and rare bacterial communities in a dryland montane forest. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:862-870. [PMID: 34438472 DOI: 10.1111/1758-2229.13002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The assembly mechanisms and ecological drivers of abundant and rare bacterial subcommunities in dryland montane forest ecosystems remain unclear. Here, we compared the biogeographic patterns of rare and abundant bacterial subcommunities and examined the ecological drivers governing their assembly processes in a dryland montane forest of China. Our results showed that a stronger relationship existed between phylogenetic turnover and spatial distance in rare subcommunities compared with that in abundant subcommunities. Null model analysis indicated that abundant subcommunities were predominantly controlled by dispersal limitation, whereas variable selection controlled rare bacterial assembly. More importantly, the balance between deterministic and stochastic processes for abundant and rare subcommunities was regulated by soil pH and soil moisture content, respectively, rather than aridity. Increasing soil moisture decreased the importance of deterministic processes for rare bacterial assembly. In abundant subcommunities, the dominance of stochastic processes was higher in neutral pH soils. Our findings suggested that divergent assembly mechanisms underlying distinct biogeographic patterns in rare and abundant bacterial subcommunities in dryland montane forests, and the assembly mechanisms of abundant and rare bacterial subcommunities were mediated by differentiated environmental factors. Our study provides a new understanding of the generation and maintenance of soil biodiversity in dryland ecosystems.
Collapse
Affiliation(s)
- Jianming Wang
- School of Ecology Nature Conservation, Beijing Forestry University, Beijing, China
| | - Mingxu Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jingwen Li
- School of Ecology Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|