1
|
Erdős L, Ónodi G, Ho KV, Tanács E, Akinyi RQ, Török P, Tölgyesi C, Bátori Z, Kröel‐Dulay G. Between-year weather differences and long-term environmental trends both contribute to observed vegetation changes in a plot resurvey study. Ecol Evol 2024; 14:e70244. [PMID: 39224162 PMCID: PMC11368499 DOI: 10.1002/ece3.70244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Repeated surveys of vegetation plots offer a viable tool to detect fine-scale responses of vegetation to environmental changes. In this study, our aim was to explore how the species composition and species richness of dry grasslands changed over a period of 17 years, how these changes relate to environmental changes and how the presence of spring ephemerals, which may react to short-term weather fluctuations rather than long-term climatic trends, may influence the results. A total of 95 plots was surveyed in 2005 and resurveyed in 2022 in dry grasslands of the Kiskunság Sand Ridge (Hungary, Eastern Central Europe), where there has been a significant increase in mean annual temperature during the last decades, while no trends in precipitation can be identified. Db-RDA was performed to reveal compositional changes. The changes in environmental conditions and naturalness state were assessed using ecological and naturalness indicator values. We also compared per-plot richness of all species, native species and non-native species of the old and the new relevés. All analyses were repeated after removing all spring ephemerals. We found clear temporal changes in species composition. Mean temperature indicator values increased, while mean soil moisture indicator values decreased during the 17 years. Also, decreasing per-plot richness was detected both for all species and for native species, while mean naturalness increased. After the removal of spring ephemerals, the compositional changes were less obvious although still significant. The increase in the temperature indicator values remained significant even without the spring ephemerals. However, the decrease in the moisture indicator values, the decrease in the number of all species and native species, as well as the increase in naturalness indicator values disappeared when spring ephemerals were excluded from the analyses. Our study demonstrates that between-year weather differences and long-term environmental trends both contribute to observed vegetation changes.
Collapse
Affiliation(s)
- László Erdős
- HUN‐REN Centre for Ecological ResearchInstitute of Ecology and BotanyVácrátótHungary
- HUN‐REN‐DE Functional and Restoration Ecology Research GroupDebrecenHungary
- Department of EcologyUniversity of DebrecenDebrcenHungary
| | - Gábor Ónodi
- HUN‐REN Centre for Ecological ResearchInstitute of Ecology and BotanyVácrátótHungary
| | - Khanh Vu Ho
- Doctoral School of Environmental SciencesUniversity of SzegedSzegedHungary
- Faculty of Natural Resources‐EnvironmentKien Giang UniversityKien GiangVietnam
| | - Eszter Tanács
- HUN‐REN Centre for Ecological ResearchInstitute of Ecology and BotanyVácrátótHungary
- Department of Plant Systematics, Ecology and Theoretical BiologyEötvös Loránd UniversityBudapestHungary
| | - Rabuogi Quinter Akinyi
- Center for Environmental Science, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | - Péter Török
- HUN‐REN‐DE Functional and Restoration Ecology Research GroupDebrecenHungary
- Department of EcologyUniversity of DebrecenDebrcenHungary
- Polish Academy of SciencesBotanical Garden–Center for Biological Diversity Conservation in PowsinWarszawaPoland
| | - Csaba Tölgyesi
- MTA‐SZTE ‘Momentum’ Applied Ecology Research GroupUniversity of SzegedSzegedHungary
| | - Zoltán Bátori
- MTA‐SZTE ‘Momentum’ Applied Ecology Research GroupUniversity of SzegedSzegedHungary
- Department of EcologyUniversity of SzegedSzegedHungary
| | - György Kröel‐Dulay
- HUN‐REN Centre for Ecological ResearchInstitute of Ecology and BotanyVácrátótHungary
- National Laboratory for Health SecurityHUN‐REN Centre for Ecological ResearchBudapestHungary
| |
Collapse
|
2
|
Duniway MC, Finger-Higgens R, Geiger EL, Hoover DL, Pfennigwerth AA, Knight AC, Van Scoyoc M, Miller M, Belnap J. Ecosystem resilience to invasion and drought: Insights after 24 years in a rare never-grazed grassland. GLOBAL CHANGE BIOLOGY 2023; 29:5866-5880. [PMID: 37489280 DOI: 10.1111/gcb.16882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Understanding the resilience of ecosystems globally is hampered by the complex and interacting drivers of change characteristic of the Anthropocene. This is true for drylands of the western US, where widespread alteration of disturbance regimes and spread of invasive non-native species occurred with westward expansion during the 1800s, including the introduction of domestic livestock and spread of Bromus tectorum, an invasive non-native annual grass. In addition, this region has experienced a multi-decadal drought not seen for at least 1200 years with potentially large and interacting impacts on native plant communities. Here, we present 24 years of twice-annual plant cover monitoring (1997-2021) from a semiarid grassland never grazed by domestic livestock but subject to a patchy invasion of B. tectorum beginning in ~1994, compare our findings to surveys done in 1967, and examine potential climate drivers of plant community changes. We found a significant warming trend in the study area, with more than 75% of study year temperatures being warmer than average (1966-2021). We observed a native perennial grass community with high resilience to climate forcings with cover values like those in 1967. In invaded patches, B. tectorum cover was greatest in the early years of this study (1997-2001; ~20%-40%) but was subsequently constrained by climate and subtle variation in soils, with limited evidence of long-term impacts to native vegetation, contradicting earlier studies. Our ability to predict year-to-year variation in functional group and species cover with climate metrics varied, with a 12-month integrated index and fall and winter patterns appearing most important. However, declines to near zero live cover in recent years in response to regional drought intensification leave questions regarding the resiliency of intact grasslands to ongoing aridification and whether the vegetation observations reported here may be a leading indicator of impending change in this protected ecosystem.
Collapse
Affiliation(s)
- Michael C Duniway
- U.S. Geological Survey, Southwest Biological Science Center, Moab, Utah, USA
| | | | - Erika L Geiger
- U.S. Geological Survey, Southwest Biological Science Center, Moab, Utah, USA
| | - David L Hoover
- Rangeland Resources & Systems Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Alix A Pfennigwerth
- U.S. Geological Survey, Southwest Biological Science Center, Moab, Utah, USA
| | - Anna C Knight
- U.S. Geological Survey, Southwest Biological Science Center, Moab, Utah, USA
| | | | - Mark Miller
- National Park Service, Southeast Utah Group Parks, Moab, Utah, USA
- National Park Service, Wrangell-St. Elias National Park and Preserve, Copper Center, Alaska, USA
| | - Jayne Belnap
- U.S. Geological Survey, Southwest Biological Science Center, Moab, Utah, USA
| |
Collapse
|
3
|
Liu Y, Li W, Sui X, Li A, Li K, Gong Y. An exotic plant successfully invaded as a passenger driven by light availability. FRONTIERS IN PLANT SCIENCE 2022; 13:1047670. [PMID: 36570959 PMCID: PMC9767969 DOI: 10.3389/fpls.2022.1047670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Invasive exotic plant species (IEPs) are widely distributed across the globe, but whether IEPs are drivers or passengers of habitat change in the invaded spaces remains unclear. Here, we carried out a vegetation and soil survey in 2018 and two independent field experiments (Pedicularis kansuensis removal in 2014 and 2015, and fertilization experiment since 2012) and found that the invasive annual P. kansuensis was at a disadvantage in light competition compared with perennial native grasses, but the successful invasion of P. kansuensis was due to the sufficient light resources provided by the reduced coverage of the native species. Conversely, nitrogen enrichment can effectively inhibit P. kansuensis invasion by increasing the photocompetitive advantage of the native species. sP. kansuensis invasion did not reduce species richness, but did increase plant community coverage, productivity and soil nutrients. Furthermore, the removal of P. kansuensis had little effect on the plant community structure and soil properties. Our results suggest that the passenger model perfectly explains the benign invasive mechanism of P. kansuensis. The invasion "ticket" of P. kansuensis is a spare ecological niche for light resources released by overgrazing.
Collapse
Affiliation(s)
- Yanyan Liu
- Bayinbuluk Grassland Ecosystem Research Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Chinese Academy of Sciences (CAS) Research Center for Ecology and Environment of Central Asia, Urumqi, China
| | - Wenjun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xiaolin Sui
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Chinese Academy of Sciences, Kunming, China
| | - Airong Li
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Chinese Academy of Sciences, Kunming, China
| | - Kaihui Li
- Bayinbuluk Grassland Ecosystem Research Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Chinese Academy of Sciences (CAS) Research Center for Ecology and Environment of Central Asia, Urumqi, China
| | - Yanming Gong
- Bayinbuluk Grassland Ecosystem Research Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Chinese Academy of Sciences (CAS) Research Center for Ecology and Environment of Central Asia, Urumqi, China
| |
Collapse
|