1
|
WANG JIAHUI, GE HONGCHENG, YU ZHENGYUAN, WU LINGZHI. Non-coding RNAs as potential mediators of resistance to lung cancer immunotherapy and chemotherapy. Oncol Res 2025; 33:1033-1054. [PMID: 40296912 PMCID: PMC12034021 DOI: 10.32604/or.2024.058256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/18/2024] [Indexed: 04/30/2025] Open
Abstract
Lung cancer is a common cause of cancer-related death globally. The majority of lung cancer patients initially benefit from chemotherapy and immunotherapy. However, as the treatment cycle progresses and the disease evolves, the emergence of acquired resistance leads to treatment failure. Many researches have shown that non-coding RNAs (ncRNAs) not only influence lung cancer progression but also act as potential mediators of immunotherapy and chemotherapy resistance in lung cancer, mediating drug resistance by regulating multiple targets and pathways. In addition, the regulation of immune response by ncRNAs is dualistic, forming a microenvironment for inhibits/promotes immune escape through changes in the expression of immune checkpoints. The aim of this review is to understand the effects of ncRNAs on the occurrence and development of lung cancer, focusing on the role of ncRNAs in regulating drug resistance of lung cancer.
Collapse
Affiliation(s)
- JIAHUI WANG
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - HONGCHENG GE
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310018, China
| | - ZHENGYUAN YU
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - LINGZHI WU
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| |
Collapse
|
2
|
Mehra L, Bhowmik S, Makharia GK, Das P. Intestinal stem cell niche: An upcoming area of immense importance in gastrointestinal disorders. Indian J Gastroenterol 2025; 44:8-23. [PMID: 39514159 DOI: 10.1007/s12664-024-01699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/29/2024] [Indexed: 11/16/2024]
Abstract
The intestinal stem cell (ISC) niche is vital for maintaining the integrity and function of the intestinal epithelium. ISC populations, characterized by their high proliferation and multipotency, reside within a specialized microenvironment at the base of crypts. Crypt base columnar (CBC) cells at the deepest part of crypts serve as replicating ISCs, while position 4 label-retaining cells (LRCs) located higher up in the crypts are also important for ISC maintenance during experiments. The interplay between CBCs, position 4 LRCs, transient amplifying (TA) cells and other niche components, including the pericrypt stromal cells, ensures a continuous supply of differentiated epithelial cells. Recent advancements in ISC biomarker studies have provided valuable insights into their molecular signatures, regulatory pathways and roles in the pathogenesis of intestinal disorders. Understanding the ISC niche has significant therapeutic implications, as manipulating ISC behaviors and regenerating damaged or diseased intestinal tissue show promise for novel therapeutic approaches. ISC organoids have also provided a platform for studying intestinal diseases and testing personalized therapies. This comprehensive review covers the anatomical composition, physiological regulation, ISC biomarker studies, contribution to intestinal disorder pathogenesis and potential therapeutic implications of the ISC niche.
Collapse
Affiliation(s)
- Lalita Mehra
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Subham Bhowmik
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutritions, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India.
| |
Collapse
|
3
|
Chen Z, Gao Y, Zhang P, Liu Y, Wei B, Chen L, Xi H. Identification of gastric cancer stem cells with CD44 and Lgr5 double labelling and their initial roles on gastric cancer malignancy and chemotherapy resistance. Cell Biol Toxicol 2024; 41:12. [PMID: 39707072 PMCID: PMC11662044 DOI: 10.1007/s10565-024-09960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Accumulating evidences have indicated that cancer stem cells (CSCs) can initiate tumor progression and cause recurrence after therapy. However, specific markers of gastric CSCs (GCSCs) from different origins have not been comprehensively revealed. Here, we further detected whether cell populations labelled with CD44 and Lgr5, well-recognized stem markers for gastric cancer (GC), can better emphasize cancer initiation, therapeutic resistance and recurrence. Flow cytometry was utilized to sort the CD44 + Lgr5 + and CD44 + Lgr5- cells from GC cell line HGC-27 and primary GC cells. The influences of CD44 and Lgr5 GCSCs on the malignant behaviors and their potential mechanisms was investigated, respectively. In our study, we reported the identification and validation of CD44 + Lgr5 + cells that presented stronger stemness characteristics, as evidenced by increase of sphere forming ability, elevation of stem cell transcriptional activity. Additionally, CD44 + Lgr5 + double positive cells have lower apoptosis, greater chemotherapy resistance, and higher EMT capacity and LC3 density compared with CD44 + Lgr5- cells. Tumor xenograft experiments also verified the faster carcinogenesis of CD44 + Lgr5 + GCSCs. Furthermore, a series of key proteins in the Wnt, Hedgehog, Notch, and TGF-β pathways were elevated in the CD44 + Lgr5 + double positive subpopulation, except for Notch 1 and Smad 1. In conclusion, the binding of CD44 and Lgr5 can serve as a precise GCSCs marker that initiate malignant progression and chemotherapy resistance in GC by activating Wnt, Hedgehog, Notch, TGF-β pathways. Those evidences raise the needs to target both markers simultaneously as a potential approach for the GC treatment.
Collapse
Affiliation(s)
- Zhida Chen
- Department of General Surgery, First Medical Center of Chinese, PLA General Hospital, Haidian District, No.28 Fuxing Road, Beijing, 100853, China
- PLA School of Medicine, Beijing, 100853, China
| | - Yunhe Gao
- Department of General Surgery, First Medical Center of Chinese, PLA General Hospital, Haidian District, No.28 Fuxing Road, Beijing, 100853, China
| | - Pengfei Zhang
- PLA School of Medicine, Beijing, 100853, China
- Department of Oncology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yi Liu
- Department of General Surgery, First Medical Center of Chinese, PLA General Hospital, Haidian District, No.28 Fuxing Road, Beijing, 100853, China
- PLA School of Medicine, Beijing, 100853, China
| | - Bo Wei
- Department of General Surgery, First Medical Center of Chinese, PLA General Hospital, Haidian District, No.28 Fuxing Road, Beijing, 100853, China
| | - Lin Chen
- Department of General Surgery, First Medical Center of Chinese, PLA General Hospital, Haidian District, No.28 Fuxing Road, Beijing, 100853, China.
| | - Hongqing Xi
- Department of General Surgery, First Medical Center of Chinese, PLA General Hospital, Haidian District, No.28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
4
|
Xiao L, Li Q, Chen S, Huang Y, Ma L, Wang Y, Chen J, Zhang J, Liu A, Yuan X, Liu Y, Liu B. ADAMTS16 drives epithelial-mesenchymal transition and metastasis through a feedback loop upon TGF-β1 activation in lung adenocarcinoma. Cell Death Dis 2024; 15:837. [PMID: 39551781 PMCID: PMC11570625 DOI: 10.1038/s41419-024-07226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Lung adenocarcinoma (LUAD) is the major subtype of lung cancer. The poor prognosis of LUAD patients is attributed primarily to metastasis. ADAMTS16 is a crucial member of the ADAMTS family and is involved in tumor progression. However, its role and regulatory mechanism in LUAD remain unexplored. In this study, ADAMTS16 was identified as a crucial oncogene and survival predictor in LUAD via analyses of public datasets. Clinical specimens and tissue microarrays confirmed the differential expression and prognostic value of ADAMTS16 in LUAD patients. Transcriptome data and in vitro experiments demonstrated that ADAMTS16 was positively associated with epithelial-mesenchymal transition (EMT) and the migration abilities of LUAD cells. Knockdown of ADAMTS16 attenuated lung and pleural metastasis in an animal model. Mechanistically, the results of the enzyme-linked immunosorbent assay (ELISA) and western blot (WB) suggested that ADAMTS16 activated the TGF-β signaling pathway by facilitating the conversion of LAP-TGF-β1 to active TGF-β1. Co-Immunoprecipitation (co-IP) indicated an interaction between ADAMTS16 and LAP-TGF-β1. Inhibition of ADAMTS16 impaired EMT and aggressiveness of LUAD cells, while treatment with recombinant TGF-β1 reversed this inhibition. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays indicated that SOX4 acted as a transcriptional activator of ADAMTS16 and that TGF-β1 regulated the expression of ADAMTS16 by increasing the binding of SOX4 to the promoter of ADAMTS16. Suppressing the TGF-β signaling pathway inhibited ADAMTS16 expression, EMT, and lung metastasis, whereas overexpressing SOX4 reversed this inhibition. Therefore, ADAMTS16 forms a positive feedback loop with the TGF-β1/SOX4 axis to regulate EMT and metastasis, and disruption of this feedback loop inhibits tumor progression. These findings underscore the potential of ADAMTS16 as a prognostic biomarker and therapeutic target in LUAD and offer novel insight into the mechanism of EMT and metastasis.
Collapse
Affiliation(s)
- Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuaijun Chen
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Ma
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andong Liu
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Li Y, Lin C, Chu Y, Wei Z, Ding Q, Gu S, Deng H, Liao Q, Shen Z. Characterization of Cancer Stem Cells in Laryngeal Squamous Cell Carcinoma by Single-cell RNA Sequencing. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae056. [PMID: 39107908 PMCID: PMC11522873 DOI: 10.1093/gpbjnl/qzae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/03/2024] [Accepted: 07/23/2024] [Indexed: 11/01/2024]
Abstract
Cancer stem cells (CSCs) constitute a pivotal element within the tumor microenvironment (TME), driving the initiation and progression of cancer. However, the identification of CSCs and their underlying molecular mechanisms in laryngeal squamous cell carcinoma (LSCC) remains a formidable challenge. Here, we employed single-cell RNA sequencing of matched primary tumor tissues, paracancerous tissues, and local lymph nodes from three LSCC patients to comprehensively characterize the CSCs in LSCC. Two distinct clusters of stem cells originating from epithelial populations were delineated and verified as CSCs and normal stem cells (NSCs), respectively. CSCs were abundant in the paracancerous tissues compared to those in the tumor tissues. CSCs showed high expression of stem cell marker genes such as PROM1, ALDH1A1, and SOX4, and increased the activity of tumor-related hypoxia, Wnt/β-catenin, and Notch signaling pathways. We then explored the intricate crosstalk between CSCs and the TME cells and identified targets within the TME that related with CSCs. We also found eight marker genes of CSCs that were correlated significantly with the prognosis of LSCC patients. Furthermore, bioinformatics analyses showed that drugs such as erlotinib, OSI-027, and ibrutinib selectively targeted the CSC-specifically expressed genes. In conclusion, our results represent the first comprehensive characterization of CSC properties in LSCC at the single-cell level.
Collapse
Affiliation(s)
- Yanguo Li
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315211, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Chen Lin
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315211, China
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yidian Chu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315211, China
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zhengyu Wei
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315211, China
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Qi Ding
- The Ningbo Diagnostic Pathology Center, Ningbo 315021, China
| | - Shanshan Gu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315211, China
| | - Hongxia Deng
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315211, China
| | - Qi Liao
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zhisen Shen
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315211, China
| |
Collapse
|
6
|
Zhai Y, Zhang F, Zhou J, Qiao C, Jin Z, Zhang J, Wu C, Shi R, Huang J, Gao Y, Guo S, Wang H, Chai K, Zhang X, Wang T, Sheng X, Liu X, Wu J. Mechanism of norcantharidin intervention in gastric cancer: analysis based on antitumor proprietary Chinese medicine database, network pharmacology, and transcriptomics. Chin Med 2024; 19:129. [PMID: 39289763 PMCID: PMC11406961 DOI: 10.1186/s13020-024-01000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Combining antitumor proprietary Chinese medicine (pCm) with radiotherapy and chemotherapy can effectively improve tumor cure rates and enhance patients' quality of life. Gastric cancer (GC) severely endangers public health. Despite satisfactory therapeutic effects achieved by using antitumor pCm to treat GC, its underlying mechanism remains unclear. OBJECTIVE To integrate existing research data, construct a database of antitumor pCm, and study the intervention mechanisms in GC by focusing on their monomer components. METHODS We constructed an antitumor pCm database based on China's medical insurance catalog, and employed network pharmacology, molecular docking methods, cell experiments, transcriptomics, and bioinformatics to investigate the intervention mechanisms of effective pCm components for GC. RESULTS The study built an antitumor pCm database including 55 pCms, 171 Chinese herbal medicines, 1955 chemical components, 2104 targets, and 32 disease information. Network pharmacology and molecular docking technology identified norcantharidin as an effective component of antitumor pCm. In vitro experiments showed that norcantharidin effectively inhibited GC cell proliferation, migration, and invasion; blocked the G2/M cell cycle phase; and induced GC cell apoptosis. Transcriptomic results revealed that norcantharidin affected biological processes, such as cell adhesion, migration, and inflammatory responses by influencing PI3K-AKT, NF-κB, JAK-STAT, TNF-α signaling pathways, and EMT-related pathways. Core molecules of norcantharidin involved in GC intervention include SERPINE1, SHOX2, SOX4, PRDM1, TGFR3, TOX, PAX9, IL2RB, LAG3, and IL15RA. Additionally, the key target SERPINE1 was identified using bioinformatics methods. CONCLUSION Norcantharidin, as an effective component of anti-tumor pCm, exerts its therapeutic effects on GC by influencing biological processes such as cell adhesion, migration, and inflammation. This study provides a foundation and research strategy for the post-marketing re-evaluation of antitumor pCms.
Collapse
Affiliation(s)
- Yiyan Zhai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fanqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiying Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chuanqi Qiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhengsen Jin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiaqi Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yifei Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Siyu Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Haojia Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Keyan Chai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaomeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoguang Sheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xinkui Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| | - Jiarui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
7
|
Zhang W, Wang M, Ji C, Liu X, Gu B, Dong T. Macrophage polarization in the tumor microenvironment: Emerging roles and therapeutic potentials. Biomed Pharmacother 2024; 177:116930. [PMID: 38878638 DOI: 10.1016/j.biopha.2024.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) is a combination of tumor cells and indigenous host stroma, which consists of tumor-infiltrating immune cells, endothelial cells, fibroblasts, pericytes, and non-cellular elements. Tumor-associated macrophages (TAMs) represent the major tumor-infiltrating immune cell type and are generally polarized into two functionally contradictory subtypes, namely classical activated M1 macrophages and alternatively activated M2 macrophages. Macrophage polarization refers to how macrophages are activated at a given time and space. The interplay between the TME and macrophage polarization can influence tumor initiation and progression, making TAM a potential target for cancer therapy. Here, we review the latest investigations on factors orchestrating macrophage polarization in the TME, how macrophage polarization affects tumor progression, and the perspectives in modulating macrophage polarization for cancer immunotherapy.
Collapse
Affiliation(s)
- Wenru Zhang
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Mengmeng Wang
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Chonghao Ji
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaohui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, China
| | - Bowen Gu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, United States.
| | - Ting Dong
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
8
|
Ai C, Huang Z, Rong T, Shen W, Yang F, Li Q, Bi L, Li W. The impact of SOX4-activated CTHRC1 transcriptional activity regulating DNA damage repair on cisplatin resistance in lung adenocarcinoma. Electrophoresis 2024; 45:1408-1417. [PMID: 38629299 DOI: 10.1002/elps.202300255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 03/02/2024] [Indexed: 08/22/2024]
Abstract
Lung adenocarcinoma (LUAD) is the predominant subtype within the spectrum of lung malignancies. CTHRC1 has a pro-oncogenic role in various cancers. Here, we observed the upregulation of CTHRC1 in LUAD, but its role in cisplatin resistance in LUAD remains unclear. Bioinformatics analysis was employed to detect CTHRC1 and SRY-related HMG-box 4 (SOX4) expression in LUAD. Gene Set Enrichment Analysis predicted the enriched pathways related to CTHRC1. JASPAR and MotifMap databases predicted upstream transcription factors of CTHRC1. Pearson analysis was conducted to analyze the correlation between genes of interest. The interaction and binding relationship between CTHRC1 and SOX4 were validated through dual-luciferase and chromatin immunoprecipitation assays. Quantitative real-time polymerase chain reaction determined the expression of CTHRC1 and SOX4 genes. CCK-8 was performed to assess cell viability and calculate IC50 value. Flow cytometry examined the cell cycle. Comet assay and western blot assessed DNA damage. CTHRC1 and SOX4 were upregulated in LUAD. CTHRC1 exhibited higher expression in cisplatin-resistant A549 cells compared to cisplatin-sensitive A549 cells. Knockdown of CTHRC1 enhanced DNA damage during cisplatin treatment and increased the sensitivity of LUAD cells to cisplatin. Additionally, SOX4 modulated DNA damage repair (DDR) by activating CTHRC1 transcriptional activity, promoting cisplatin resistance in LUAD cells. SOX4 regulated DDR by activating CTHRC1, thereby enhancing cisplatin resistance in LUAD cells. The finding provides a novel approach to address clinical cisplatin resistance in LUAD, with CTHRC1 possibly serving as a candidate for targeted therapies in addressing cisplatin resistance within LUAD.
Collapse
Affiliation(s)
- Cheng Ai
- Department of Cardiothoracic Surgery, Bishan Hospital of Chongqing, Medical University, Chongqing, P. R. China
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The affiliated Hospital of Nanjing University Medical School, Nanjing, P. R. China
| | - Zhenhao Huang
- Department of Cardiothoracic Surgery, Bishan Hospital of Chongqing, Medical University, Chongqing, P. R. China
| | - Tenghao Rong
- Department of Cardiothoracic Surgery, Bishan Hospital of Chongqing, Medical University, Chongqing, P. R. China
| | - Wang Shen
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Fuyu Yang
- Department of Cardiothoracic Surgery, Bishan Hospital of Chongqing, Medical University, Chongqing, P. R. China
| | - Qiang Li
- Department of Cardiothoracic Surgery, Bishan Hospital of Chongqing, Medical University, Chongqing, P. R. China
| | - Lei Bi
- Department of Cardiothoracic Surgery, Bishan Hospital of Chongqing, Medical University, Chongqing, P. R. China
| | - Wen Li
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, P. R. China
| |
Collapse
|
9
|
Ning F, Du L, Li J, Wu T, Zhou J, Chen Z, Hu X, Zhang Y, Luan X, Xin H, Yuan C, Zhang X. The deubiquitinase USP5 promotes cholangiocarcinoma progression by stabilizing YBX1. Life Sci 2024; 348:122674. [PMID: 38692507 DOI: 10.1016/j.lfs.2024.122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
AIMS Ubiquitin specific peptidase 5 (USP5), a member of deubiquitinating enzymes, has garnered significant attention for its crucial role in cancer progression. This study aims to explore the role of USP5 and its potential molecular mechanisms in cholangiocarcinoma (CCA). MAIN METHODS To explore the effect of USP5 on CCA, gain-of-function and loss-of-function assays were conducted in human CCA cell lines RBE and HCCC9810. The CCK8, colony-forming assay, EDU, flow cytometry, transwell assay and xenografts were used to assess cell proliferation, migration and tumorigenesis. Western blot and immunohistochemistry were performed to measure the expression of related proteins. Immunoprecipitation and immunofluorescence were applied to identify the interaction between USP5 and Y box-binding protein 1 (YBX1). Ubiquitination assays and cycloheximide chase assays were carried out to confirm the effect of USP5 on YBX1. KEY FINDINGS We found USP5 is highly expressed in CCA tissues, and upregulated USP5 is required for the cancer progression. Knockdown of USP5 inhibited cell proliferation, migration and epithelial-mesenchymal transition (EMT) in vitro, along with suppressed xenograft tumor growth and metastasis in vivo. Mechanistically, USP5 could interact with YBX1 and stabilize YBX1 by deubiquitination in CCA cells. Additionally, silencing of USP5 hindered the phosphorylation of YBX1 at serine 102 and its subsequent translocation to the nucleus. Notably, the effect induced by USP5 overexpression in CCA cells was reversed by YBX1 silencing. SIGNIFICANCE Our findings reveal that USP5 is required for cell proliferation, migration and EMT in CCA by stabilizing YBX1, suggesting USP5-YBX1 axis as a promising therapeutic target for CCA.
Collapse
Affiliation(s)
- Fengling Ning
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Ling Du
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Jiayang Li
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Tiangang Wu
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Jiacheng Zhou
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Zihui Chen
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Xuetao Hu
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Yuai Zhang
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China.
| | - Chunyan Yuan
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China.
| |
Collapse
|
10
|
Zhang Y, Liu Y, Wu L, Chen T, Jiao H, Ruan Y, Zhou P, Zhang Y. Expression of SOX4 Significantly Predicts the Risk of Lymph Node Metastasis for Patients With Early-Stage Esophageal Squamous Cell Carcinoma. J Transl Med 2024; 104:102042. [PMID: 38431117 DOI: 10.1016/j.labinv.2024.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
Esophageal squamous cell carcinoma stands as a notably aggressive malignancy within the digestive system. In cases of early esophageal cancer without lymph node metastasis, endoscopic surgical resection offers a viable alternative, often resulting in improved patient quality of life. However, the paucity of methods to preoperatively ascertain lymph node involvement complicates surgical planning. SOX4 gene was previously found to be highly associated with invasive metastasis in our work through single-cell RNA sequencing on 5 paired tumor/peritumor tissues. This research included the collection of 124 tissue samples from 106 patients (106 tumor and 18 lymph node specimens). Samples were methodically arranged into a tissue microarray and treated with immunohistochemical staining. Statistical analysis was conducted to assess the relationship between them. In the univariate analysis, 3 factors were identified as statistically significant in relation to lymph node metastasis: T category (P = .014), vascular invasion (P < .001), and SOX4 intensity (P = .001). Additionally, when evaluating SOX4 intensity alongside other clinical indicators, SOX4 was shown to independently influence lymph node metastasis. Further, the multivariate analysis revealed that vascular invasion (P < .001) and SOX4 intensity (P = .003) were significantly associated with lymph node metastasis, exhibiting hazard ratios of 10.174 and 7.142, respectively. The results of our study indicate that both SOX4 expression and vascular invasion serve as predictors of lymph node metastasis in patients diagnosed with category T1 esophageal squamous cell carcinoma, underscoring the potential utility of SOX4 in prognostic evaluations.
Collapse
Affiliation(s)
- Yifei Zhang
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Yanbo Liu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Linfeng Wu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Tianyin Chen
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Heng Jiao
- Department of Thoracic Surgery, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pinghong Zhou
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China.
| | - Yiqun Zhang
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China.
| |
Collapse
|
11
|
Liang X, Zhou J, Li C, Wang H, Wan Y, Ling C, Pu L, Zhang W, Fan M, Hong J, Zhai Z. The roles and mechanisms of TGFB1 in acute myeloid leukemia chemoresistance. Cell Signal 2024; 116:111027. [PMID: 38171389 DOI: 10.1016/j.cellsig.2023.111027] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/06/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Relapsed or Refractory (R/R) Acute Myeloid Leukemia (AML) patients usually have very poor prognoses, and drug-resistance is one of the major limiting factors. In this study, we aimed to explore the functions of Transforming Growth Factor-β1 (TGFB1) in AML drug-resistance. First, TGFB1 levels in serum and bone marrow are higher in R/R patients compared with newly diagnosed patients, this phenomenon could be due to different sources of secreted TGFB1 according to immunohistochemistry of marrow biopsies. Similarly, TGFB1 expression in AML drug-resistant cell lines is higher than that in their parental cell lines, and blocking the TGFB signaling pathway by specific inhibitors decreased resistance to chemotherapeutic agents. On the other hand, exogenous TGFB1 can also promote AML parental cells senescence and chemotherapy resistance. Next, we found SOX4 level is upregulated in drug-resistant cells, and parental cells treated with exogenous TGFB1 induced upregulation of SOX4 levels. Interference of SOX4 expression by siRNA diminished the TGFB1-induced sensitivity to chemotherapeutic agents. Finally, we conduct metabolomic analysis and find Alanine, aspartate and glutamate metabolism pathway, and Glycerophospholipid metabolism pathway are decreased after inhibiting TGFB signaling pathway or interfering SOX4 expression. This study concludes that TGFB1 level in R/R AML patients and drug-resistant strains is significantly increased. Blocking the TGFB signaling pathway can enhance the chemosensitivity of drug-resistant cells by suppressing SOX4 expression and metabolic reprogramming.
Collapse
Affiliation(s)
- Xue Liang
- Hematologic Department/Hematologic Disease Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ji Zhou
- Department of Epidemiology and Health Statistics, Anhui Medical University, School of Public Health, Hefei, Anhui, China; School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Cong Li
- Hematologic Department/Hematologic Disease Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Huiping Wang
- Hematologic Department/Hematologic Disease Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Wan
- Hematologic Department/Hematologic Disease Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chun Ling
- Hematologic Department/Hematologic Disease Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lianfang Pu
- Hematologic Department/Hematologic Disease Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wanqiu Zhang
- Hematologic Department/Hematologic Disease Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengmeng Fan
- Hematologic Department/Hematologic Disease Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jingfang Hong
- Department of Epidemiology and Health Statistics, Anhui Medical University, School of Public Health, Hefei, Anhui, China; School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Zhimin Zhai
- Hematologic Department/Hematologic Disease Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
12
|
Dawoud MM, Elkady N, Abdelmoneum RA, Ghonaimy AS, Allam DM. The Role of P4HB and SOX4 in Prostatic Carcinoma and Their Clinical Significance. IRANIAN JOURNAL OF PATHOLOGY 2024; 19:225-235. [PMID: 39118797 PMCID: PMC11304455 DOI: 10.30699/ijp.2024.2017851.3227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/26/2024] [Indexed: 08/10/2024]
Abstract
Background & Objective Prostatic adenocarcinoma (PAC) is the second most prevalent cancer and the fifth leading cause of cancer death in men worldwide. Additionally, pathologists may face problems diagnosing it reliably and may need more than one marker. Thus, the search for new immunohistochemical biomarkers becomes mandatory. This study aims to investigate P4HB and SOX4 expression in prostatic carcinoma, their possible roles, and clinical significance. Methods This retrospective study included fifty-six cases of PAC and an equal number of nodular prostatic hyperplasia (NPH) that were immunohistochemically stained by P4HB and SOX4. The results of expression were compared between PAC and NPH cases, followed by correlations with available clinicopathological parameters. Results There was a highly significant difference between PAC and NPH regarding P4HB and SOX4 expressions in favor of PAC (both P<0.001). ROC curve analysis of the diagnostic power of P4HB showed 79% sensitivity, 76% specificity, and an area under the ROC curve of 0.845, while SOX4 showed (89%, 100%, and 0.946, respectively). P4HB and SOX4 expression showed a direct correlation (P<0.001). Moreover, the H-score of SOX4 expression showed a significant inverse relation with ERG expression (P=0.047). There was a significant correlation between P4HB and SOX4 and Gleason score (P<0.001). Moreover, P4HB expression was significantly associated with lymphovascular invasion (P=0.013), while SOX4 expression showed a significant association with perineural invasion (P=0.05). Conclusion SOX4 and P4HB seem to have diagnostic and prognostic value in PAC. While there was a direct correlation between SOX4 and P4HB, an inverse relationship between SOX4 and ERG was detected.
Collapse
Affiliation(s)
- Marwa Mohammed Dawoud
- Department of Pathology, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| | - Noha Elkady
- Department of Pathology, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| | - Rasha Adel Abdelmoneum
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| | - Ahmed S Ghonaimy
- Department of Urology, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| | - Dina Mohamed Allam
- Department of Pathology, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| |
Collapse
|
13
|
Matsuoka T, Yashiro M. Molecular Insight into Gastric Cancer Invasion-Current Status and Future Directions. Cancers (Basel) 2023; 16:54. [PMID: 38201481 PMCID: PMC10778111 DOI: 10.3390/cancers16010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. There has been no efficient therapy for stage IV GC patients due to this disease's heterogeneity and dissemination ability. Despite the rapid advancement of molecular targeted therapies, such as HER2 and immune checkpoint inhibitors, survival of GC patients is still unsatisfactory because the understanding of the mechanism of GC progression is still incomplete. Invasion is the most important feature of GC metastasis, which causes poor mortality in patients. Recently, genomic research has critically deepened our knowledge of which gene products are dysregulated in invasive GC. Furthermore, the study of the interaction of GC cells with the tumor microenvironment has emerged as a principal subject in driving invasion and metastasis. These results are expected to provide a profound knowledge of how biological molecules are implicated in GC development. This review summarizes the advances in our current understanding of the molecular mechanism of GC invasion. We also highlight the future directions of the invasion therapeutics of GC. Compared to conventional therapy using protease or molecular inhibitors alone, multi-therapy targeting invasion plasticity may seem to be an assuring direction for the progression of novel strategies.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|
14
|
Bin S, Xinyi F, Huan P, Xiaoqin Z, Jiming W, Yi H, Ziyue L, Xiaochun Z, Zhouqi L, Bangwei Z, Jing J, Shihui L, Jinlai G. SOX4 as a potential therapeutic target for pathological cardiac hypertrophy. Eur J Pharmacol 2023; 958:176071. [PMID: 37741429 DOI: 10.1016/j.ejphar.2023.176071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Pathological cardiac hypertrophy can lead to heart failure, making its prevention crucial. SOX4, a SOX transcription factor, regulates tissue growth and development, although its role in pathological cardiac hypertrophy is unclear. We found that the SOX4 expression was elevated in hypertrophic hearts and angiotensin II (Ang II)-treated neonatal rat cardiomyocytes (NRCMs), and knocking down the SOX4 expression in NRCMs and mouse hearts significantly reduced the hypertrophic response. Mechanistically, SOX4 can bind to the SIRT3 promoter, inhibit SIRT3 transcription and expression, and thus affect downstream MnSOD acetylation levels, leading to abnormal increases in ROS and oxidative stress levels and promoting the occurrence of cardiac hypertrophy. In conclusion, this study identified a new role for SOX4 in regulating cardiac hypertrophy, and decreasing SOX4 expression may be a potential treatment for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Shen Bin
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Feng Xinyi
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Pan Huan
- Department of Central Laboratory, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Zhang Xiaoqin
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Wu Jiming
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - He Yi
- Department of Central Laboratory, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China; Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Li Ziyue
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Zou Xiaochun
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Lu Zhouqi
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Zhou Bangwei
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Jin Jing
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China.
| | - Liu Shihui
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China.
| | - Gao Jinlai
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China.
| |
Collapse
|
15
|
Tan XY, Li YT, Li HH, Ma LX, Zeng CM, Zhang TT, Huang TX, Zhao XD, Fu L. WNT2-SOX4 positive feedback loop promotes chemoresistance and tumorigenesis by inducing stem-cell like properties in gastric cancer. Oncogene 2023; 42:3062-3074. [PMID: 37634009 DOI: 10.1038/s41388-023-02816-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Gastric cancer (GC) is characterized by its vigorous chemoresistance to current therapies, which is attributed to the highly heterogeneous and immature phenotype of cancer stem cells (CSCs) during tumor initiation and progression. The secretory WNT2 ligand regulates multiple cancer pathways and has been demonstrated to be a potential therapeutic target for gastrointestinal tumors; however, its role involved in gastric CSCs (GCSCs) remains unclear. Here, we found that overexpression of WNT2 enhanced stemness properties to promote chemoresistance and tumorigenicity in GCSCs. Mechanistically, WNT2 was positively regulated by its transcription factor SOX4, and in turn, SOX4 was upregulated by the canonical WNT2/FZD8/β-catenin signaling pathway to form an auto-regulatory positive feedback loop, resulting in the maintenance of GCSCs self-renewal and tumorigenicity. Furthermore, simultaneous overexpression of both WNT2 and SOX4 was correlated with poor survival and reduced responsiveness to chemotherapy in clinical GC specimens. Blocking WNT2 using a specific monoclonal antibody significantly disrupted the WNT2-SOX4 positive feedback loop in GCSCs and enhanced the chemotherapeutic efficacy when synergized with the chemo-drugs 5-fluorouracil and oxaliplatin in a GCSC-derived mouse xenograft model. Overall, this study identified a novel WNT2-SOX4 positive feedback loop as a mechanism for GCSCs-induced chemo-drugs resistance and suggested that the WNT2-SOX4 axis may be a potential therapeutic target for gastric cancer treatment.
Collapse
Affiliation(s)
- Xiang-Yu Tan
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Yu-Ting Li
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Hua-Hui Li
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Li-Xiang Ma
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Chui-Mian Zeng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Tian-Tian Zhang
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Tu-Xiong Huang
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Xiao-Di Zhao
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Li Fu
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
16
|
Wang XJ, Liu Y, Ke B, Zhang L, Liang H. RNA-binding protein CPSF6 regulates IBSP to affect pyroptosis in gastric cancer. World J Gastrointest Oncol 2023; 15:1531-1543. [PMID: 37746647 PMCID: PMC10514719 DOI: 10.4251/wjgo.v15.i9.1531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Extensive evidence has illustrated the promotive role of integrin binding sialoprotein (IBSP) in the progression of multiple cancers. However, little is known about the functions of IBSP in gastric cancer (GC) progression. AIM To investigate the mechanism underlying the regulatory effects of IBSP in GC progression, and the relationship between IBSP and cleavage and polyadenylation factor 6 (CPSF6) in this process. METHODS The mRNA and protein expression of relevant genes were assessed through real-time quantitative polymerase chain reaction and Western blot, respectively. Cell viability was evaluated by Cell Counting Kit-8 assay. Cell invasion and migration were evaluated by Transwell assay. Pyroptosis was measured by flow cytometry. The binding between CPSF6 and IBSP was confirmed by luciferase reporter and RNA immunoprecipitation (RIP) assays. RESULTS IBSP exhibited higher expression in GC tissues and cell lines than in normal tissues and cell lines. IBSP knockdown suppressed cell proliferation, migration, and invasion but facilitated pyroptosis. In the exploration of the regulatory mechanism of IBSP, potential RNA binding proteins for IBSP were screened with catRAPID omics v2.0. The RNA-binding protein CPSF6 was selected due to its higher expression in stomach adenocarcinoma. Luciferase reporter and RIP assays revealed that CPSF6 binds to the 3'-untranslated region of IBSP and regulates its expression. Knockdown of CPSF6 inhibited cell proliferation, migration, and invasion but boosted pyroptosis. Through rescue assays, it was uncovered that the retarded GC progression mediated by CPSF6 knockdown was reversed by IBSP overexpression. CONCLUSION Our study highlighted the vital role of the CPSF6/IBSP axis in GC, suggesting that IBSP might be an effective bio-target for GC treatment.
Collapse
Affiliation(s)
- Xue-Jun Wang
- Department of Gastric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Yong Liu
- Department of Gastric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Bin Ke
- Department of Gastric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Li Zhang
- Department of Gastric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Han Liang
- Department of Gastric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| |
Collapse
|
17
|
Davoodvandi A, Rafiyan M, Mansournia MA, Rajabpoor Nikoo N, Saati M, Samimi M, Asemi Z. MicroRNA and gynecological cancers: Focus on miR-195. Pathol Res Pract 2023; 249:154784. [PMID: 37639954 DOI: 10.1016/j.prp.2023.154784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Different cancer types have been shown to have down-regulated expression levels of miR-195 as an anti-tumor agent. MiR-195 family members can inhibit cancer cell proliferation, angiogenesis, epithelial-mesenchymal transition and metastases, immunosuppression, glycolysis, drug resistance, and cancer stem cell development by targeting the 3'-UTR of the mRNA of different pro-tumor genes. MiR-195 identified as a tumor suppressor miR in a variety of cancers, most notably gynecological malignancies such as cervical, endometrial, and ovarian carcinoma. As a result, restoring miR-195 expression should be regarded as a potential therapy for either prevention or treatment of gynecological cancers. This review will present the most recent data about miR-195-mediated anti-tumor effects in gynecological malignancies, emphasizing its downstream signaling pathways and target genes, as well as prospective treatment techniques.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Islamic Republic of Iran; Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Nesa Rajabpoor Nikoo
- Department of Gynecology and Obstetrics, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Maryam Saati
- Department of Nursing, Semnan Branch, Islamic Azad University, Semnan, Islamic Republic of Iran
| | - Mansooreh Samimi
- Department of Gynecology and Obstetrics, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
18
|
Ma N, Zhao S, Yang W, Wang Y. B-cell-specific Moloney murine leukemia virus integration site 1 knockdown impairs adriamycin resistance of gastric cancer cells. Arab J Gastroenterol 2023; 24:168-174. [PMID: 36878814 DOI: 10.1016/j.ajg.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/13/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND AND STUDY AIMS The B-cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) is associated with the progression of gastric cancer (GC). However, its role in drug resistance of gastric cancer stem cell (GCSC) remains unclear. This study aimed to explore the biological function of BMI-1 in GC cells and its role in drug resistance of GCSCs. PATIENTS AND METHODS We assessed BMI-1 expression in the GEPIA database and in our collected samples from patients with GC. We silenced BMI-1 using siRNA to study the cell proliferation and migration of GC cells. We also used Hoechst 33342 staining to verify the effect of adriamycin (ADR) on side population (SP) cells, and measured the effects of BMI-1 on the expression of N-cadherin, E-cadherin, and drug-resistance-related proteins (multidrug resistance mutation 1 and lung resistance-related protein). Finally, we analyzed BMI-1-related proteins uing the STRING and GEPIA databases. RESULTS BMI-1 mRNA was upregulated in GC tissues and cell lines, especially in MKN-45 and HGC-27 cells. Silencing BMI-1 reduced the proliferation and migration of GC cells. Knocking down BMI-1 significantly decreased epithelial-mesenchymal transition progression, expression levels of drug-resistant proteins, and the number of SP cells in ADR-treated GC cells. Bioinformatics analysis showed that EZH2, CBX8, CBX4, and SUZ12 were positively correlated with BMI-1 in GC tissues. CONCLUSION Our study demonstrates that BMI-1 affects the cellular activity, proliferation, migration, and invasion of GC cells. Silencing the BMI-1 gene significantly reduces the number of SP cells and the expression of drug-resistant proteins in ADR-treated GC cells. We speculate that inhibition of BMI-1 increases the drug resistance of GC cells by affecting GCSCs, and that EZH2, CBX8, CBX4, and SUZ12 may participate in BMI-1-induced enhancement of GCSC-like phenotype and viability.
Collapse
Affiliation(s)
- Ning Ma
- Department of General Surgery Ⅱ, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China.
| | - Sihui Zhao
- Department of General Surgery Ⅱ, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Wei Yang
- Department of General Surgery Ⅱ, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Yongfang Wang
- Department of General Surgery Ⅱ, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| |
Collapse
|
19
|
Jaiswal A, Kaushik N, Choi EH, Kaushik NK. Functional impact of non-coding RNAs in high-grade breast carcinoma: Moving from resistance to clinical applications: A comprehensive review. Biochim Biophys Acta Rev Cancer 2023; 1878:188915. [PMID: 37196783 DOI: 10.1016/j.bbcan.2023.188915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/08/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Despite the recent advances in cancer therapy, triple-negative breast cancers (TNBCs) are the most relapsing cancer sub-type. It is partly due to their propensity to develop resistance against the available therapies. An intricate network of regulatory molecules in cellular mechanisms leads to the development of resistance in tumors. Non-coding RNAs (ncRNAs) have gained widespread attention as critical regulators of cancer hallmarks. Existing research suggests that aberrant expression of ncRNAs modulates the oncogenic or tumor suppressive signaling. This can mitigate the responsiveness of efficacious anti-tumor interventions. This review presents a systematic overview of biogenesis and down streaming molecular mechanism of the subgroups of ncRNAs. Furthermore, it explains ncRNA-based strategies and challenges to target the chemo-, radio-, and immunoresistance in TNBCs from a clinical standpoint.
Collapse
Affiliation(s)
- Apurva Jaiswal
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Suwon 18323, Republic of Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
20
|
Huang X, Zhang W, Shen X, Ma S, Liu L. miR-2053 inhibits the growth of ovarian cancer cells by downregulating SOX4. Open Med (Wars) 2023; 18:20230667. [PMID: 37251541 PMCID: PMC10224632 DOI: 10.1515/med-2023-0667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 05/31/2023] Open
Abstract
Ovarian cancer is one of the major gynaecological malignancies and a leading cause of cancer-related deaths worldwide. Dysregulation of miR-2053 has been reported in numerous types of cancer; however, its function in ovarian cancer remains largely unknown. In our study, the roles of miR-2053 during the development of ovarian cancer were investigated. miR-2053 expression was examined in ovarian cancer specimens and cells. Furthermore, the detailed functions and downstream targets of miR-2053 were identified. Briefly, the levels of miR-2053 were assessed in ovarian cancer tissues and paired non-cancerous samples, as well as in ovarian cancer cells using reverse transcription-quantitative polymerase chain reaction. The proliferation of cells was determined by cell counting kit-8 kit, and the levels of PCNA were also examined using immunostaining. Cell migration and invasion were evaluated using Transwell assay, and E-cad expression was assessed by immunostaining. In addition, cell apoptosis was determined by flow cytometry, and the expression of cleaved caspase-3 was examined using western blotting. The results revealed the downregulation of miR-2053 in ovarian cancer tissues and cells. Moreover, miR-2053 mimics suppressed the proliferation, migration, and invasion of ovarian cancer cells, while cell apoptosis was promoted. In addition, SOX4 was a putative downstream molecule of miR-2053 in ovarian cancer. Furthermore, SOX4 is involved in miR-2053-regulated growth and metastasis of ovarian cancer cells. In summary, miR-2053 and its novel target SOX4 could serve essential roles during tumour development of ovarian cancer, more importantly, miR-2053/SOX4 axis may be novel candidate for targeted therapy for patients with ovarian cancer.
Collapse
Affiliation(s)
- Xin Huang
- Department of Obstetrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Wen Zhang
- Department of Obstetrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Xiumin Shen
- Department of Obstetrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Sai Ma
- Departments of Haematology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Lili Liu
- Department of Obstetrics, The First Affiliated Hospital of Jinzhou Medical University, 2 Renmin Street,
Guta, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
21
|
Zeng L, Zhu Y, Moreno CS, Wan Y. New insights into KLFs and SOXs in cancer pathogenesis, stemness, and therapy. Semin Cancer Biol 2023; 90:29-44. [PMID: 36806560 PMCID: PMC10023514 DOI: 10.1016/j.semcancer.2023.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/04/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Despite the development of cancer therapies, the success of most treatments has been impeded by drug resistance. The crucial role of tumor cell plasticity has emerged recently in cancer progression, cancer stemness and eventually drug resistance. Cell plasticity drives tumor cells to reversibly convert their cell identity, analogous to differentiation and dedifferentiation, to adapt to drug treatment. This phenotypical switch is driven by alteration of the transcriptome. Several pluripotent factors from the KLF and SOX families are closely associated with cancer pathogenesis and have been revealed to regulate tumor cell plasticity. In this review, we particularly summarize recent studies about KLF4, KLF5 and SOX factors in cancer development and evolution, focusing on their roles in cancer initiation, invasion, tumor hierarchy and heterogeneity, and lineage plasticity. In addition, we discuss the various regulation of these transcription factors and related cutting-edge drug development approaches that could be used to drug "undruggable" transcription factors, such as PROTAC and PPI targeting, for targeted cancer therapy. Advanced knowledge could pave the way for the development of novel drugs that target transcriptional regulation and could improve the outcome of cancer therapy.
Collapse
Affiliation(s)
- Lidan Zeng
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Yueming Zhu
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Department of Biomedical Informatics, Winship Cancer Institute, Emory University School of Medicine, USA.
| | - Yong Wan
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA.
| |
Collapse
|
22
|
Upregulation LncRNA MEG3 expression suppresses proliferation and metastasis in melanoma via miR-208/SOX4. Mol Cell Biochem 2023; 478:407-414. [PMID: 35838912 DOI: 10.1007/s11010-022-04515-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/24/2022] [Indexed: 02/02/2023]
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression and play a significant role in cancer progression. Previously, downregulation of lncRNA MEG3 was shown to associate with poor clinical outcomes in melanoma patients. The basis for this association has not been described and the aims of this study were to identify a role for lncRNA MEG3 in melanoma and to describe its regulatory mechanism of action. RT-qPCR was used to detect lncRNA MEG3 expression in melanoma cells and tissues. Luciferase reporter assays were used to identify lncRNA MEG3 downstream targets. Melanoma cells were transfected with various expression vectors and these transfected cells were assessed for; migration, colony formation, proliferation, in vivo tumorigenesis, and metastatic potential. Melanoma cell lines were found to be sensitive to lncRNA MEG3 expression levels and overexpression was found to inhibit melanoma cell proliferation and invasion, both in vitro and in vivo. Luciferase reporter assays identified miR-208 and SOX4 as downstream targets of lncRNA MEG3. Overexpression of miR-208 and silencing of SOX4 rescued invasion and proliferation by cells that overexpressed lncRNA MEG3. Moreover, lncRNA MEG3 inhibited cancer stem cell differentiation and suppressed melanoma progression and metastasis through inhibition of miR-208 by SOX4.
Collapse
|
23
|
Otálora-Otálora BA, López-Kleine L, Rojas A. Lung Cancer Gene Regulatory Network of Transcription Factors Related to the Hallmarks of Cancer. Curr Issues Mol Biol 2023; 45:434-464. [PMID: 36661515 PMCID: PMC9857713 DOI: 10.3390/cimb45010029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
The transcriptomic analysis of microarray and RNA-Seq datasets followed our own bioinformatic pipeline to identify a transcriptional regulatory network of lung cancer. Twenty-six transcription factors are dysregulated and co-expressed in most of the lung cancer and pulmonary arterial hypertension datasets, which makes them the most frequently dysregulated transcription factors. Co-expression, gene regulatory, coregulatory, and transcriptional regulatory networks, along with fibration symmetries, were constructed to identify common connection patterns, alignments, main regulators, and target genes in order to analyze transcription factor complex formation, as well as its synchronized co-expression patterns in every type of lung cancer. The regulatory function of the most frequently dysregulated transcription factors over lung cancer deregulated genes was validated with ChEA3 enrichment analysis. A Kaplan-Meier plotter analysis linked the dysregulation of the top transcription factors with lung cancer patients' survival. Our results indicate that lung cancer has unique and common deregulated genes and transcription factors with pulmonary arterial hypertension, co-expressed and regulated in a coordinated and cooperative manner by the transcriptional regulatory network that might be associated with critical biological processes and signaling pathways related to the acquisition of the hallmarks of cancer, making them potentially relevant tumor biomarkers for lung cancer early diagnosis and targets for the development of personalized therapies against lung cancer.
Collapse
Affiliation(s)
- Beatriz Andrea Otálora-Otálora
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110131, Colombia
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Liliana López-Kleine
- Departamento de Estadística, Universidad Nacional de Colombia, Bogotá 11001, Colombia
- Correspondence: (L.L.-K.); (A.R.)
| | - Adriana Rojas
- Facultad de Medicina, Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá 110211, Colombia
- Correspondence: (L.L.-K.); (A.R.)
| |
Collapse
|
24
|
Dai X, Thompson EW, Ostrikov K(K. Receptor-Mediated Redox Imbalance: An Emerging Clinical Avenue against Aggressive Cancers. Biomolecules 2022; 12:biom12121880. [PMID: 36551308 PMCID: PMC9775490 DOI: 10.3390/biom12121880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer cells are more vulnerable to abnormal redox fluctuations due to their imbalanced antioxidant system, where cell surface receptors sense stress and trigger intracellular signal relay. As canonical targets of many targeted therapies, cell receptors sensitize the cells to specific drugs. On the other hand, cell target mutations are commonly associated with drug resistance. Thus, exploring effective therapeutics targeting diverse cell receptors may open new clinical avenues against aggressive cancers. This paper uses focused case studies to reveal the intrinsic relationship between the cell receptors of different categories and the primary cancer hallmarks that are associated with the responses to external or internal redox perturbations. Cold atmospheric plasma (CAP) is examined as a promising redox modulation medium and highly selective anti-cancer therapeutic modality featuring dynamically varying receptor targets and minimized drug resistance against aggressive cancers.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Erik W. Thompson
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Kostya (Ken) Ostrikov
- School of Chemistry, Physics and Center for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
25
|
Ervin EH, French R, Chang CH, Pauklin S. Inside the stemness engine: Mechanistic links between deregulated transcription factors and stemness in cancer. Semin Cancer Biol 2022; 87:48-83. [PMID: 36347438 DOI: 10.1016/j.semcancer.2022.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/07/2022]
Abstract
Cell identity is largely determined by its transcriptional profile. In tumour, deregulation of transcription factor expression and/or activity enables cancer cell to acquire a stem-like state characterised by capacity to self-renew, differentiate and form tumours in vivo. These stem-like cancer cells are highly metastatic and therapy resistant, thus warranting a more complete understanding of the molecular mechanisms downstream of the transcription factors that mediate the establishment of stemness state. Here, we review recent research findings that provide a mechanistic link between the commonly deregulated transcription factors and stemness in cancer. In particular, we describe the role of master transcription factors (SOX, OCT4, NANOG, KLF, BRACHYURY, SALL, HOX, FOX and RUNX), signalling-regulated transcription factors (SMAD, β-catenin, YAP, TAZ, AP-1, NOTCH, STAT, GLI, ETS and NF-κB) and unclassified transcription factors (c-MYC, HIF, EMT transcription factors and P53) across diverse tumour types, thereby yielding a comprehensive overview identifying shared downstream targets, highlighting unique mechanisms and discussing complexities.
Collapse
Affiliation(s)
- Egle-Helene Ervin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Rhiannon French
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| |
Collapse
|
26
|
Abstract
Transforming growth factor-beta (TGF-β) is a double-edged sword in cancer treatment because of its pivotal yet complex and roles played during cancer initiation/development. Current anti-cancer strategies involving TGF-β largely view TGF-β as an onco-therapeutic target that not only substantially hinders its full utilisation for cancer control, but also considerably restricts innovations in this field. Thereby, how to take advantages of therapeutically favourable properties of TGF-β for cancer management represents an interesting and less investigated problem. Here, by categorising cancer hallmarks into four critical transition events and one enabling characteristic controlling cancer initiation and progression, and delineating TGF-β complexities according to these cancer traits, we identify the suppressive role of TGF-β in tumour initiation and early-stage progression and its promotive functionalities in cancer metastasis as well as other cancer hallmarks. We also propose the feasibility and possible scenarios of combining cold atmospheric plasma (CAP) with onco-therapeutics utilising TGF-β for cancer control given the intrinsic properties of CAP against cancer hallmarks.
Collapse
|
27
|
Pao SI, Lin LT, Chen YH, Chen CL, Chen JT. MicroRNA-4516 suppresses proliferative vitreoretinopathy development via negatively regulating OTX1. PLoS One 2022; 17:e0270526. [PMID: 35771766 PMCID: PMC9246108 DOI: 10.1371/journal.pone.0270526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) progression is associated with TGF-β2-induced epithelial–mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells. In cancer cells, miR-4516 downregulates orthodenticle homeobox 1 (OTX1)-mediated cell invasion. Moreover, OTX1 is shown to be involved in invasion and EMT. The purpose of this study was to assess whether microRNA (miR-4516) suppresses EMT in RPE cells. EMT features were assessed using Western blotting, immunocytochemical staining, scratch-wound healing, modified Boyden chamber assay, and collagen gel contraction assay. For in vivo testing, a rabbit model was used, which involved induction of PVR by injection of transfected spontaneously arising RPE (ARPE) cells into the vitreous chamber. The putative target of miR-4516 was identified by luciferase reporter assay. Results showed that TGF-β2-induced transdifferentiation and migration of RPE cells was inhibited by miR-4516 delivery. Overexpression of miR-4516 led to upregulation of zonula occludens-1, downregulation of α-smooth muscle actin and vimentin, and cell contractility—all EMT features—in the TGF-β2-treated ARPE-19 cells. MiR-4516 regulated OTX1 expression negatively by binding to its 3’-UTR. TGF-β2-induced phosphorylated ERK was inhibited in miR-4516-overexpressing ARPE-19 cells. MiR-4516 suppressed experimental PVR in vitro and in vivo. In conclusion, the overexpression of miR-4516 suppresses TGF-β2-induced EMT in a PVR model, and its role in PVR depends on OTX1/ERK. Further research is needed to develop a feasible treatment method to prevent and treat PVR.
Collapse
Affiliation(s)
- Shu-I Pao
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Le-Tien Lin
- Department of Ophthalmology, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Long Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Jiann-Torng Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
28
|
Maselli D, Garoffolo G, Cassanmagnago GA, Vono R, Ruiter MS, Thomas AC, Madeddu P, Pesce M, Spinetti G. Mechanical Strain Induces Transcriptomic Reprogramming of Saphenous Vein Progenitors. Front Cardiovasc Med 2022; 9:884031. [PMID: 35711359 PMCID: PMC9197233 DOI: 10.3389/fcvm.2022.884031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
Intimal hyperplasia is the leading cause of graft failure in aortocoronary bypass grafts performed using human saphenous vein (SV). The long-term consequences of the altered pulsatile stress on the cells that populate the vein wall remains elusive, particularly the effects on saphenous vein progenitors (SVPs), cells resident in the vein adventitia with a relatively wide differentiation capacity. In the present study, we performed global transcriptomic profiling of SVPs undergoing uniaxial cyclic strain in vitro. This type of mechanical stimulation is indeed involved in the pathology of the SV. Results showed a consistent stretch-dependent gene regulation in cyclically strained SVPs vs. controls, especially at 72 h. We also observed a robust mechanically related overexpression of Adhesion Molecule with Ig Like Domain 2 (AMIGO2), a cell surface type I transmembrane protein involved in cell adhesion. The overexpression of AMIGO2 in stretched SVPs was associated with the activation of the transforming growth factor β pathway and modulation of intercellular signaling, cell-cell, and cell-matrix interactions. Moreover, the increased number of cells expressing AMIGO2 detected in porcine SV adventitia using an in vivo arterialization model confirms the upregulation of AMIGO2 protein by the arterial-like environment. These results show that mechanical stress promotes SVPs' molecular phenotypic switching and increases their responsiveness to extracellular environment alterations, thus prompting the targeting of new molecular effectors to improve the outcome of bypass graft procedure.
Collapse
Affiliation(s)
- Davide Maselli
- IRCCS MultiMedica, Milan, Italy
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Gloria Garoffolo
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giada Andrea Cassanmagnago
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | | | - Matthijs S. Ruiter
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Anita C. Thomas
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Gaia Spinetti
- IRCCS MultiMedica, Milan, Italy
- *Correspondence: Gaia Spinetti
| |
Collapse
|
29
|
Li D, Wang D, Liu H, Jiang X. LEM domain containing 1 (LEMD1) transcriptionally activated by SRY-related high-mobility-group box 4 (SOX4) accelerates the progression of colon cancer by upregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. Bioengineered 2022; 13:8087-8100. [PMID: 35294319 PMCID: PMC9161920 DOI: 10.1080/21655979.2022.2047556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Colon cancer is a highly malignant tumor in the digestive system. LEM domain containing 1 (LEMD1) is supposed to be a survival marker of poor prognosis in colon cancer. We aimed to explore the role and mechanism of LEMD1 in colon cancer progression. GEPIA database analyzed LEMD1 expression in colon cancer tissues and prognosis of colon cancer patients. LEMD1 expression in tumor cells was tested by RT-qPCR and western blotting. Proliferation of colon cancer cells was estimated by CCK-8 and colony formation assays. Transwell and wound healing assays were used to appraise the cell invasion and migration. Meanwhile, tube formation assays were used to evaluate angiogenesis. The possible binding sites between SRY-related high-mobility-group box 4 (SOX4) and LEMD1 were predicted by JASPAR database. Besides, SOX4 expression in colon cancer tissues and the correlation between SOX4 and LEMD1 were examined using the GEPIA database. Luciferase reporter and ChIP assays were used to verify the interaction between SOX4 and LEMD1. The expression of proteins in PI3K/Akt signaling was evaluated by western blotting. LEMD1 was overexpressed in colon cancer tissues and cells and associated with poor prognosis. Functionally, LEMD1 deficiency impeded the proliferation, migration, invasion and angiogenesis of colon cancer cells. Additionally, SOX4 had a positive correlation with LEMD1 and could bind to LEMD1 promoter. Rescue assays validated that SOX4 elevation reversed the suppressive role of LEMD1 deletion in the development of colon cancer and the expression of p-PI3K and p-AKT. Collectively, LEMD1 induced by SOX4 drove the progression of colon cancer by activating PI3K/Akt signaling.
Collapse
Affiliation(s)
- Ding Li
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Nantong University, Nantong Cancer Hospital, Nantong City, Jiangsu Province, China
| | - Ding Wang
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Nantong University, Nantong Cancer Hospital, Nantong City, Jiangsu Province, China
| | - Haofeng Liu
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Nantong University, Nantong Cancer Hospital, Nantong City, Jiangsu Province, China
| | - Xiaohui Jiang
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Nantong University, Nantong Cancer Hospital, Nantong City, Jiangsu Province, China
| |
Collapse
|
30
|
Advance of SOX Transcription Factors in Hepatocellular Carcinoma: From Role, Tumor Immune Relevance to Targeted Therapy. Cancers (Basel) 2022; 14:cancers14051165. [PMID: 35267473 PMCID: PMC8909699 DOI: 10.3390/cancers14051165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the deadliest human health burdens worldwide. However, the molecular mechanism of HCC development is still not fully understood. Sex determining region Y-related high-mobility group box (SOX) transcription factors not only play pivotal roles in cell fate decisions during development but also participate in the initiation and progression of cancer. Given the significance of SOX factors in cancer and their ‘undruggable’ properties, we summarize the role and molecular mechanism of SOX family members in HCC and the regulatory effect of SOX factors in the tumor immune microenvironment (TIME) of various cancers. For the first time, we analyze the association between the levels of SOX factors and that of immune components in HCC, providing clues to the pivotal role of SOX factors in the TIME of HCC. We also discuss the opportunities and challenges of targeting SOX factors for cancer. Abstract Sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) factors belong to an evolutionarily conserved family of transcription factors that play essential roles in cell fate decisions involving numerous developmental processes. In recent years, the significance of SOX factors in the initiation and progression of cancers has been gradually revealed, and they act as potential therapeutic targets for cancer. However, the research involving SOX factors is still preliminary, given that their effects in some leading-edge fields such as tumor immune microenvironment (TIME) remain obscure. More importantly, as a class of ‘undruggable’ molecules, targeting SOX factors still face considerable challenges in achieving clinical translation. Here, we mainly focus on the roles and regulatory mechanisms of SOX family members in hepatocellular carcinoma (HCC), one of the fatal human health burdens worldwide. We then detail the role of SOX members in remodeling TIME and analyze the association between SOX members and immune components in HCC for the first time. In addition, we emphasize several alternative strategies involved in the translational advances of SOX members in cancer. Finally, we discuss the alternative strategies of targeting SOX family for cancer and propose the opportunities and challenges they face based on the current accumulated studies and our understanding.
Collapse
|
31
|
SYT-SSX1 enhances the invasiveness and maintains stem-like cell properties in synovial sarcoma via induction of TGF-β1/Smad signaling. BMC Cancer 2022; 22:166. [PMID: 35151264 PMCID: PMC8841078 DOI: 10.1186/s12885-022-09229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Background Synovial sarcoma (SS) is a type of soft tissue sarcoma (STS) of undetermined tissue origin, which is characterized by the recurrent pathognomonic chromosomal translocation t (X;18)(p11.2; q11.2). Studies have shown that SS is a malignant tumor originating from cancer stem cells or pluripotent mesenchymal stem cells and may be related to fusion genes. In addition, some studies have indicated that the induction of epithelial–mesenchymal transition (EMT) via the TGF-β1/Smad signaling pathway leads to SS metastasis. Methods We analyzed the effects of SYT-SSX1 on the stemness of SS cells via TGF-β1/Smad signaling in vitro. The SYT-SSX1 fusion gene high expression cell was constructed by lentiviral stable transfer technology. SYT-SSX1 and SW982 cells were cultured and tested for sphere-forming ability. The transwell migration assay and flow cytometry were used to assess the migration ability of the sphere cells as well as the expression of CSC-related markers. We treated SYT-SSX1 cells with rhTGF-β1 (a recombinant agent of the TGF-β1 signaling pathway) and SB431542 and observed morphological changes. A CCK-8 experiment and a western blot (WB) experiment were conducted to detect the expression of TGF-β1 signaling pathway- and EMT-related proteins after treatment. The SYT-SSX1 cells were then cultured and their ability to form spheres was tested. Flow cytometry, WB, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of CSC surface markers on SYT-SSX1 sphere cells. Results It was found that SYT-SSX1 has stronger sphere-forming ability, migration ability, and higher expression of CSC-related molecules than SW982 cells. Through treating SYT-SSX1 and SW982 cells with rhTGF-β1 and SB431542, we found that TGF-β1 enhanced the proliferation of cells, induced EMT, and that TGF-β1 enhanced the characteristics of tumor stem cells. Conclusions Our results suggest that SYT-SSX1 enhances invasiveness and maintains stemness in SS cells via TGF-β1/Smad signaling. These findings reveal an effective way to potentially improve the prognosis of patients with SS by eliminating the characteristics of cancer stem cells (CSCs) during treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09229-5.
Collapse
|
32
|
Wang F, Wang W, Wu X, Tang C, Du F, Lu Z, Zhang Z, Xu H, Cao X, Li PA. Downregulation of TRIM33 Promotes Survival and Epithelial-Mesenchymal Transition in Gastric Cancer. Technol Cancer Res Treat 2022; 21:15330338221114505. [PMID: 35929141 PMCID: PMC9358585 DOI: 10.1177/15330338221114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among all malignancies worldwide, gastric cancer is the fifth most common cancer with the third highest mortality rate. One of the main reasons for the low survival rate is the recurrence and metastasis that occurs in many patients after surgery. Numerous studies have shown that abnormal TRIM33 expression is associated with the progression of malignant tumors. TRIM33 can function either as a tumor suppressor or tumor promoter in different cancers. Our data showed that TRIM33 was highly expressed in stomach cancer, and in human gastric cancer tissues, low expression of TRIM33 was associated with poor prognosis in patients with gastric cancer. To clarify the function of TRIM33 in survival and epithelial–mesenchymal transition in gastric cancer cells, we investigated the effect of TRIM33 knockdown in several gastric cancer cell lines. Downregulation of TRIM33 in BGC-823 and SGC-7901 cells enhanced the proliferation, colony formation, and migratory ability of these gastric cancer cells. It also promoted epithelial–mesenchymal transition; transfection of cells with siRNA targeting TRIM33 led to the upregulation of vimentin and N-Cadherin expression, and downregulation of E-Cadherin expression. Meanwhile, the transforming growth factor beta pathway was activated: levels of transforming growth factor beta were elevated and the expressions of p-Smad2, Smad2, Smad3, and Smad4 were activated. To confirm the role of TRIM33 in vivo, a xenograft model was established in nude mice. Immunohistochemical analysis identified that the protein levels of TRIM33, p-Smad2, Smad2, Smad3, Smad4, vimentin, and N-Cadherin were increased, and E-Cadherin levels were decreased, in xenograft tumors from the si-TRIM33 group. Taken together, these results suggest that TRIM33 may be a potential marker for the diagnosis and prognosis of gastric cancer. Furthermore, it may also serve as a novel target for gastric cancer treatment.
Collapse
Affiliation(s)
- Fang Wang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wenjun Wang
- Department of Pathology, Basic Medical School, 105002Ningxia Medical University, Yinchuan, China
| | - Xiaoting Wu
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Cui Tang
- Department of Pathology, Basic Medical School, 105002Ningxia Medical University, Yinchuan, China
| | - Fang Du
- School of Information Engineering, 56693Ningxia University, Ningxia, China
| | - Zhiguo Lu
- Department of Pediatric Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhuoyang Zhang
- Department of Pathology, Basic Medical School, 105002Ningxia Medical University, Yinchuan, China
| | - Hui Xu
- Department of Pathology, Basic Medical School, 105002Ningxia Medical University, Yinchuan, China
| | - Xiangmei Cao
- Department of Pathology, Basic Medical School, 105002Ningxia Medical University, Yinchuan, China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| |
Collapse
|
33
|
Circ-DONSON Knockdown Inhibits Cell Proliferation and Radioresistance of Breast Cancer Cells via Regulating SOX4. JOURNAL OF ONCOLOGY 2021; 2021:8461740. [PMID: 34853591 PMCID: PMC8629618 DOI: 10.1155/2021/8461740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022]
Abstract
Background Circular RNAs have been validated as critical regulators in the development of breast cancer (BC). Circ-DONSON is involved in the progression of glioma and gastric cancer. However, the biological role of circ-DONSON in BC remains unclear, and the aim of this study was to explore the biological role of circ-DONSON in BC. Methods Human tissue samples and BC cell lines were collected in this study. siRNAs against circ-DONSON were transfected into BC cell lines for silencing of circ-DONSON. Quantitative real-time PCR was used to test the circ-DONSON expression. Cell counting kit-8 (CCK-8), 5-bromo-2' deoxyuridine enzyme-linked immunosorbent assay (BrdU-ELISA), colony formation, and caspase-3 activity assays were used to assess cell proliferation, cell survival, and cell viability. Western blotting analysis was used to detect the protein expression levels. Results Our findings showed that circ-DONSON showed high expression in BC tissues and cell lines. CCK-8 and BrdU-ELISA assays showed that circ-DONSON knockdown inhibited BC cell proliferation. Moreover, cell survival, cell viability, and caspase-3 activity assays showed that circ-DONSON knockdown reduced the radioresistance of BC cells. Mechanistically, circ-DONSON regulated BC cell proliferation and radioresistance via SRY-box transcription factor 4 (SOX4). SOX4 overexpression significantly rescued the effect of circ-DONSON knockdown on BC cell proliferation and radioresistance. Moreover, circ-DONSON activated the Wnt/β-catenin pathway in BC cells via SOX4. Conclusion Our study concluded that circ-DONSON knockdown hindered cell proliferation and radioresistance through the SOX4/Wnt/β-catenin pathway in BC.
Collapse
|
34
|
Wang Y, Gan Q, Cai X, Chen Z, Liu Q, Bai Y. GALNT14 promotes cancer stem cell-like characteristics and metastasis of nasopharyngeal carcinoma cells through upregulating SOX4. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Chen F, Xie Y, Lv Q, Zou W, Xiong L. Curcumin mediates repulsive guidance molecule B (RGMb) in the treatment mechanism of renal fibrosis induced by unilateral ureteral obstruction. Ren Fail 2021; 43:1496-1505. [PMID: 34751624 PMCID: PMC8583759 DOI: 10.1080/0886022x.2021.1997764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In this study, we explored the role and mechanism of repulsive guidance molecule B (RGMb, also known as Dragon) in the protective effects of curcumin against renal fibrosis and verified Dragon's effect on renal tubular epithelial cell apoptosis and cell programmability. Unilateral ureteral obstruction (UUO) was surgically induced in rats to establish a model of renal interstitial fibrosis (RIF). The rats were then treated with curcumin. Curcumin prominently decreased the serum creatinine (SCr) and blood urea nitrogen (BUN) levels, and also improved the tubular injury in the UUO-induced rats. Curcumin significantly downregulated the TGF-β1, P-Smad2/3, cleaved caspase-3, cleaved caspase-8 and Dragon levels. Dragon knockdown also markedly reduced the TGF-β1, P-Smad2/3, Smad2/3, cleaved caspase-3, cleaved caspase-8, fibronectin, collagen I, collagen IV, vimentin, and α-SMA expression levels. Conversely, Dragon overexpression caused higher expression levels of these proteins, and curcumin reversed this effect. Furthermore, Dragon knockdown increased the E-cadherin levels, whereas Dragon overexpression decreased these levels. Overexpressing Dragon significantly decreased the cell viability, and curcumin reversed this effect. In conclusion, curcumin acted on Dragon and attenuated RIF in UUO rat models. Curcumin downregulated the TGF-β1/Smad signaling pathway and inhibited Dragon and fibrogenic molecules in both rats and HK-2 cells.
Collapse
Affiliation(s)
- Fei Chen
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yu Xie
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Qin Lv
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wei Zou
- Nanchang University, Nanchang, China
| | - Liyan Xiong
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
36
|
ROS/TGF-β signal mediated accumulation of SOX4 in OA-FLS promotes cell senescence. Exp Gerontol 2021; 156:111616. [PMID: 34742854 DOI: 10.1016/j.exger.2021.111616] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is an age-related disease, which is mainly treated with oral, topical, and/or intra-articular options to relieve symptoms and lack of specific treatment measures. Fibroblasts (FLS) are crucial cells in joint inflammation and destruction. Cellular senescence plays an important role during OA pathogenesis and senescent cells exhibit cell-cycle arrest and senescence-associated secretory phenotype (SASP). SRY-related HMG-box 4 (SOX4) is a contributing factor during many developmental processes and is elevated in inflamed synovium than in noninflamed synovium from arthritis patients. This study was designed to investigate whether SOX4 participate in the pathogenesis of OA by affecting FLS senescence and explore the internal mechanism. Firstly, we found that FLS cells exhibited more cellular senescence in OA compared with control group. We also verified the role of reactive oxygen species (ROS)/TGF-β signal in the induction of OA-FLS senescence. During the exploration of SOX4 in cell senescence, the results indicated that SOX4 activation promotes cell senescence and SASP of OA-FLS. Apart from that, we also confirmed that SOX4, regulated by ROS/TGF-β signal, was critical transcription factor associated with OA-FLS senescence. Therefore, SOX4 is likely to be a novel therapeutic target and early diagnostic marker during OA pathogenesis.
Collapse
|
37
|
Epithelial Mesenchymal Transition and its transcription factors. Biosci Rep 2021; 42:230017. [PMID: 34708244 PMCID: PMC8703024 DOI: 10.1042/bsr20211754] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial–mesenchymal transition or EMT is an extremely dynamic process involved in conversion of epithelial cells into mesenchymal cells, stimulated by an ensemble of signaling pathways, leading to change in cellular morphology, suppression of epithelial characters and acquisition of properties such as enhanced cell motility and invasiveness, reduced cell death by apoptosis, resistance to chemotherapeutic drugs etc. Significantly, EMT has been found to play a crucial role during embryonic development, tissue fibrosis and would healing, as well as during cancer metastasis. Over the years, work from various laboratories have identified a rather large number of transcription factors (TFs) including the master regulators of EMT, with the ability to regulate the EMT process directly. In this review, we put together these EMT TFs and discussed their role in the process. We have also tried to focus on their mechanism of action, their interdependency, and the large regulatory network they form. Subsequently, it has become clear that the composition and structure of the transcriptional regulatory network behind EMT probably varies based upon various physiological and pathological contexts, or even in a cell/tissue type-dependent manner.
Collapse
|
38
|
Gao LF, Li W, Liu YG, Zhang C, Gao WN, Wang L. Inhibition of MIR4435-2HG on Invasion, Migration, and EMT of Gastric Carcinoma Cells by Mediating MiR-138-5p/Sox4 Axis. Front Oncol 2021; 11:661288. [PMID: 34532282 PMCID: PMC8438303 DOI: 10.3389/fonc.2021.661288] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background The previous investigations have identified that long non-coding RNA (lncRNAs) act as crucial regulators in gastric carcinoma. However, the function of lncRNA MIR4435-2HG in the modulation of gastric carcinoma remains elusive. Here, we aimed to explore the role of MIR4435-2HG in gastric carcinoma. Method The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were applied to select the differently expressed lncRNAs in gastric carcinoma. The qRT-PCR was applied to analyze MIR4435-2HG expression in carcinoma tissues and cell lines. The effect of MIR4435-2HG on proliferation, invasion, migration, and apoptosis of gastric carcinoma cells was detected by Cell Counting Kit-8 (CCK-8) assays, transwell assays, and flow cytometry in vitro. A subcutaneous tumor model was constructed to examine the tumor growth of gastric carcinoma cells after knocking out MIR4435-2HG. RNA immunoprecipitation and luciferase reporting assays were applied to evaluate the interaction of MIR4435-2HG, miR-138-5p, and Sox4. Results The bioinformatics analysis based on TCGA and GEO databases indicated that MIR4435-2HG was obviously elevated in gastric carcinoma samples. The qRT-PCR analysis revealed that MIR4435-2HG was upregulated in clinical gastric carcinoma tissues and cells. The high expression of MIR4435-2HG is associated with the poor survival rate of patients. The knockout of MIR4435-2HG could repress the proliferation, invasion, migration, and epithelial–mesenchymal transition (EMT) and accelerate the apoptosis of gastric carcinoma cells. Moreover, the deletion of MIR4435-2HG was able to attenuate the tumor growth in vivo. Mechanically, we identified that MIR4435-2HG enhanced Sox4 expression by directly interacting with miR-138-5p as a competitive endogenous RNA (ceRNA) in gastric carcinoma cells, in which Sox4 was targeted by miR-138-5p. Conclusion MIR4435-2HG is elevated in gastric carcinoma cells and contributes to the growth, metastasis, and EMT of gastric carcinoma cells by targeting miR-138-5p/Sox4 axis. MIR4435-2HG may be applied as a potential therapeutic target in gastric carcinoma.
Collapse
Affiliation(s)
- Li-Fei Gao
- The Third Department of General Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Wei Li
- The Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Ya-Gang Liu
- The Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Cui Zhang
- The Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Wei-Na Gao
- The Fourth Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, China
| | - Liang Wang
- The Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
39
|
Wang Q, Mao X, Luo F, Wang J. LINC00511 promotes gastric cancer progression by regulating SOX4 and epigenetically repressing PTEN to activate PI3K/AKT pathway. J Cell Mol Med 2021; 25:9112-9127. [PMID: 34427967 PMCID: PMC8500959 DOI: 10.1111/jcmm.16656] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 04/17/2021] [Accepted: 05/04/2021] [Indexed: 12/28/2022] Open
Abstract
Gastric cancer (GC) serves as a common malignancy. Long non-coding RNAs (lncRNAs) have been proven to regulate many cancers, including GC. Long intergenic non-protein-coding RNA 511 (LINC00511) has been poorly studied in GC, but its detailed regulatory mechanism has not been identified. Here, LINC00511 was detected to be highly expressed in GC cells. Functional assays were conducted and uncovered that LINC00511 boosted cell proliferation, migration, stemness and EMT process while inhibiting the apoptosis of GC cells. From a series of mechanism experiments, it was found that at the transcriptional level, LINC00511 recruited EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) to the promoter of PTEN (phosphatase and tensin homolog) and facilitated methylation of PTEN promoter. LINC00511 epigenetically repressed PTEN to activate the PI3K/AKT pathway. Moreover, SRY-box transcription factor 4 (SOX4) activated the transcription of LINC00511. At the post-transcriptional level, LINC00511 sponged miR-195-5p to elevate SOX4 expression in GC cells. On the whole, the present study disclosed that SOX4-induced LINC00511 activated SOX4 via competing endogenous RNA (ceRNA) pattern and epigenetically repressed PTEN to activate PI3K/AKT pathway by recruiting EZH2, thus facilitating GC cell proliferation, migration and stemness while inhibiting GC cell apoptosis.
Collapse
Affiliation(s)
- Qianwei Wang
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiang Mao
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Fen Luo
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jun Wang
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
40
|
Oliveira de Biagi CA, Nociti RP, Brotto DB, Funicheli BO, Cássia Ruy PD, Bianchi Ximenez JP, Alves Figueiredo DL, Araújo Silva W. CeTF: an R/Bioconductor package for transcription factor co-expression networks using regulatory impact factors (RIF) and partial correlation and information (PCIT) analysis. BMC Genomics 2021; 22:624. [PMID: 34416858 PMCID: PMC8379792 DOI: 10.1186/s12864-021-07918-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/30/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Finding meaningful gene-gene interaction and the main Transcription Factors (TFs) in co-expression networks is one of the most important challenges in gene expression data mining. RESULTS Here, we developed the R package "CeTF" that integrates the Partial Correlation with Information Theory (PCIT) and Regulatory Impact Factors (RIF) algorithms applied to gene expression data from microarray, RNA-seq, or single-cell RNA-seq platforms. This approach allows identifying the transcription factors most likely to regulate a given network in different biological systems - for example, regulation of gene pathways in tumor stromal cells and tumor cells of the same tumor. This pipeline can be easily integrated into the high-throughput analysis. To demonstrate the CeTF package application, we analyzed gastric cancer RNA-seq data obtained from TCGA (The Cancer Genome Atlas) and found the HOXB3 gene as the second most relevant TFs with a high regulatory impact (TFs-HRi) regulating gene pathways in the cell cycle. CONCLUSION This preliminary finding shows the potential of CeTF to list master regulators of gene networks. CeTF was designed as a user-friendly tool that provides many highly automated functions without requiring the user to perform many complicated processes. It is available on Bioconductor ( http://bioconductor.org/packages/CeTF ) and GitHub ( http://github.com/cbiagii/CeTF ).
Collapse
Affiliation(s)
- Carlos Alberto Oliveira de Biagi
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Institute for Cancer Research, IPEC, Guarapuava, Brazil
| | - Ricardo Perecin Nociti
- Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Laboratory of Molecular Morphophysiology and Development, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Danielle Barbosa Brotto
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Breno Osvaldo Funicheli
- Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Patrícia de Cássia Ruy
- Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Center for Medical Genomics, HCFMRP/USP, Ribeirão Preto, Brazil
| | - João Paulo Bianchi Ximenez
- Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil
| | - David Livingstone Alves Figueiredo
- Institute for Cancer Research, IPEC, Guarapuava, Brazil.,Department of Medicine, Midwest State University of Paraná-UNICENTRO, Guarapuava, Brazil
| | - Wilson Araújo Silva
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil. .,Institute for Cancer Research, IPEC, Guarapuava, Brazil. .,Center for Integrative Systems Biology (CISBi) - NAP/USP, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
41
|
Yang Y, Ye WL, Zhang RN, He XS, Wang JR, Liu YX, Wang Y, Yang XM, Zhang YJ, Gan WJ. The Role of TGF- β Signaling Pathways in Cancer and Its Potential as a Therapeutic Target. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6675208. [PMID: 34335834 PMCID: PMC8321733 DOI: 10.1155/2021/6675208] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway mediates various biological functions, and its dysregulation is closely related to the occurrence of malignant tumors. However, the role of TGF-β signaling in tumorigenesis and development is complex and contradictory. On the one hand, TGF-β signaling can exert antitumor effects by inhibiting proliferation or inducing apoptosis of cancer cells. On the other hand, TGF-β signaling may mediate oncogene effects by promoting metastasis, angiogenesis, and immune escape. This review summarizes the recent findings on molecular mechanisms of TGF-β signaling. Specifically, this review evaluates TGF-β's therapeutic potential as a target by the following perspectives: ligands, receptors, and downstream signaling. We hope this review can trigger new ideas to improve the current clinical strategies to treat tumors related to the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Yun Yang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Wen-Long Ye
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Ruo-Nan Zhang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Xiao-Shun He
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Jing-Ru Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Yu-Xuan Liu
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Yi Wang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Xue-Mei Yang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Yu-Juan Zhang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Wen-Juan Gan
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Soochow University, Suzhou 215124, China
| |
Collapse
|
42
|
He MQ, Wan JF, Zeng HF, Tang YY, He MQ. miR-133a-5p suppresses gastric cancer through TCF4 down-regulation. J Gastrointest Oncol 2021; 12:1007-1019. [PMID: 34295552 DOI: 10.21037/jgo-20-418] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Background The effect of microRNAs (miRNA) on cancer regulations has received a considerable amount of attention recently. MiR-133a-5p has been identified as an anti-tumor miRNA in several types of cancers. However, the effect of miR-133a-5p on gastric cancer (GC) have not been uncovered. In this study, we sought to evaluate the regulation of TCF4 expression by miR-133-5p and the role of the miR-25-3p/TCF4 axis in the progression of GC, with the aim of identifying a potential therapeutic target for GC. Methods TCGA (The Cancer Genome Atlas), GTEx (The Genotype-Tissue Expression) and GEO (Gene Expression Omnibus) database were used to analyze the expression and prognosis. We performed MTT and EdU assays to elucidate the effect on cell replication. Apoptotic cells were stained with annexin V-fluorescein isothiocyanate and propidium iodide to stain, and then analyzed by flow cytometry. The effect on cell metastasis was investigated in wound healing and transwell assays. A dual-luciferase reporter assay was used to check for the direct targeting of TCF4 by miR-133a-5p. Bioinformatic analysis of the relationship of TCF4 with tumor microenvironment and the signaling cascade of TCF4 was finally performed. Results We found that the level of miR-133a-5p was decreased in both tumor tissues and GC cell lines. MiR-133a-5p inhibited cell growth and metastasis, but promoted cell apoptosis. MiR-133a-5p directly targeted TCF4 and downregulated its expression. TCF4 was highly expressed in tumor and higher level of TCF4 indicated poorer prognosis. Moreover, TCF4 overexpression reversed the aforementioned anti-tumor activity of miR-133a-5p. The expression level of TCF4 was significantly correlated with tumor-infiltrating immune cells. Conclusions Our findings altogether reveal that miR-133a-5p can serve as a tumor suppressor in gastric cancer via the miR-133a-5p/TCF4 pathway.
Collapse
Affiliation(s)
- Mu-Qun He
- Department of Medical Oncology, FuJian Medical University Cancer Hospital, FuJian Cancer Hospital, Fuzhou, China
| | - Jian-Feng Wan
- Department of Medical Oncology, FuJian Medical University Cancer Hospital, FuJian Cancer Hospital, Fuzhou, China
| | - Hong-Fu Zeng
- Department of Medical Oncology, FuJian Medical University Cancer Hospital, FuJian Cancer Hospital, Fuzhou, China
| | - Ying-Yan Tang
- Department of Medical Oncology, FuJian Medical University Cancer Hospital, FuJian Cancer Hospital, Fuzhou, China
| | - Mu-Qing He
- Department of Medical Hematology and Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
43
|
Zhang X, Wu J. LINC00665 promotes cell proliferation, invasion, and metastasis by activating the TGF-β pathway in gastric cancer. Pathol Res Pract 2021; 224:153492. [PMID: 34091388 DOI: 10.1016/j.prp.2021.153492] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Accumulating studies have demonstrated that long noncoding RNA plays a vital role in cancer progression. A previous study reported that LINC00665 was overexpressed and acted as a key tumor promoter in lung cancer, but the role of LINC00665 in gastric cancer (GC) remained uncharacterized. Thus, this study aimed to explore the mechanism of LINC00665 in GC. METHODS LINC00665 expression was explored using the Cancer Genome Atlas (TCGA), and a meta-analysis was conducted to assess the expression and prognostic value of LINC00665 in GC from Gene Expression Omnibus databases and the TCGA dataset. Real-time polymerase chain reaction (RT-PCR) was then conducted to verify the LINC00665 expression in GC tissues and cell lines. The effects of LINC00665 on cell proliferation, invasion, metastasis, and cell cycle in GC were evaluated using the CCK-8, wound healing, Transwell, and flow cytometry assays. In vitro validation was also performed. RESULTS LINC00665 overexpression was found in GC, and LINC00665 upregulation was significantly related to poor overall survival and disease-free survival. LINC00665 expression was associated with tumor depth, lymph node metastasis, and TNM stage. Univariate and multivariate analyses proved that LINC00665 could be an independent prognostic biomarker in GC. LINC00665 knockdown subsequently inhibited cell proliferation, invasion, and metastasis in GC cell lines; promoted cell apoptosis; and arrested GC cell lines in the G0/G1 phase. Western blot analysis indicated that LINC00665 silencing inhibited epithelial-mesenchymal transition and decreased the expression levels of TGF-β1, Smad2, and α-SMA. CONCLUSION LINC00665 can be a potential diagnostic and prognostic biomarker for GC patients, and LINC00665 promotes GC cell proliferation, invasion, and metastasis by activating the TGF-β signal pathway.
Collapse
Affiliation(s)
- Xiaohu Zhang
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Jixiang Wu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
44
|
Cheng J, Ma H, Yan M, Xing W. THAP9-AS1/miR-133b/SOX4 positive feedback loop facilitates the progression of esophageal squamous cell carcinoma. Cell Death Dis 2021; 12:401. [PMID: 33854048 PMCID: PMC8046801 DOI: 10.1038/s41419-021-03690-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors in the digestive system with a high incidence and poor prognosis. Long non-coding RNAs (LncRNA) have been reported to be closely associated with the occurrence and development of various human cancers. Data from GSE89102 shows an increase of THAP9-AS1 expression in ESCC. However, its functions and mechanisms underlying ESCC progression remain to be investigated. In this study, we found that THAP9-AS1 was overexpressed in ESCC tissues and cells. High THAP9-AS1 expression was positively correlated with tumor size, TNM stage, lymph node metastasis, and worse prognosis. Functionally, depletion of THAP9-AS1 suppressed cell proliferation, migration, and invasion, while enhanced apoptosis in vitro. Consistently, knockdown of THAP9-AS1 inhibited xenograft tumor growth in vivo. Mechanistically, THAP9-AS1 could serve as a competing endogenous RNA (ceRNA) for miR-133b, resulting in the upregulation of SOX4. Reciprocally, SOX4 bound to the promoter region of THAP9-AS1 to activate its transcription. Moreover, the anti-tumor property induced by THAP9-AS1 knockdown was significantly impaired due to miR-133b downregulation or SOX4 overexpression. Taken together, our study reveals a positive feedback loop of THAP9-AS1/miR-133b/SOX4 to facilitate ESCC progression, providing a potential molecular target to fight against ESCC.
Collapse
Affiliation(s)
- Jiwei Cheng
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Haibo Ma
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Ming Yan
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Wenqun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 450008, Zhengzhou, China.
| |
Collapse
|
45
|
The role of SOX family transcription factors in gastric cancer. Int J Biol Macromol 2021; 180:608-624. [PMID: 33662423 DOI: 10.1016/j.ijbiomac.2021.02.202] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023]
Abstract
Gastric cancer (GC) is a leading cause of death worldwide. GC is the third-most common cause of cancer-related death after lung and colorectal cancer. It is also the fifth-most commonly diagnosed cancer. Accumulating evidence has revealed the role of signaling networks in GC progression. Identification of these molecular pathways can provide new insight into therapeutic approaches for GC. Several molecular factors involved in GC can play both onco-suppressor and oncogene roles. Sex-determining region Y (Sry)-box-containing (SOX) family members are transcription factors with a well-known role in cancer. SOX proteins can bind to DNA to regulate cellular pathways via a highly conserved domain known as high mobility group (HMG). In the present review, the roles of SOX proteins in the progression and/or inhibition of GC are discussed. The dual role of SOX proteins as tumor-promoting and tumor-suppressing factors is highlighted. SOX members can affect upstream mediators (microRNAs, long non-coding RNAs and NF-κB) and down-stream mediators (FAK, HIF-1α, CDX2 and PTEN) in GC. The possible role of anti-tumor compounds to target SOX pathway members in GC therapy is described. Moreover, SOX proteins may be used as diagnostic or prognostic biomarkers in GC.
Collapse
|
46
|
Jiao H, Fang F, Fang T, You Y, Feng M, Wang X, Yin Z, Zhao W. SOX13 regulates cancer stem-like properties and tumorigenicity in hepatocellular carcinoma cells. Am J Cancer Res 2021; 11:760-772. [PMID: 33791152 PMCID: PMC7994154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023] Open
Abstract
Sex-determining region Y (SRY)-related high mobility group (HMG) box (SOX) proteins are pivotal transcriptional factors that play essential roles in embryonic development, cell fate decisions and cancer development. The molecular mechanism of SOX13, a member of the SOX family, in hepatocellular carcinoma (HCC) remains largely unknown. In the current study, we found that HCC cells were able to form spheroids in serum-free suspension culture and that SOX13 expression was upregulated in spheroids enriched for cancer stem cells (CSCs). Inhibition of SOX13 in HCC-LM3 and MHCC-97H cells decreased the expression of stemness-related genes; attenuated spheroid formation, anchor-dependent and anchor-independent cell proliferation and tumorigenicity; and enhanced sensitivity to drug treatment. Furthermore, based on analysis of TCGA dataset, the results indicated that SOX13 expression was obviously upregulated and closely associated with poor prognosis in HCC patients. Moreover, SOX13 was correlated with TAZ and CD24 expression. These data strongly demonstrated that SOX13 is involved in maintaining cancer stem-like properties in HCC cells and plays a critical role in HCC development.
Collapse
Affiliation(s)
- Hui Jiao
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive Tumor, Zhongshan Hospital, Xiamen University Xiamen 361004, People's Republic of China
| | - Fei Fang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive Tumor, Zhongshan Hospital, Xiamen University Xiamen 361004, People's Republic of China
| | - Ting Fang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive Tumor, Zhongshan Hospital, Xiamen University Xiamen 361004, People's Republic of China
| | - Yuting You
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive Tumor, Zhongshan Hospital, Xiamen University Xiamen 361004, People's Republic of China
| | - Min Feng
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive Tumor, Zhongshan Hospital, Xiamen University Xiamen 361004, People's Republic of China
| | - Xiaomin Wang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive Tumor, Zhongshan Hospital, Xiamen University Xiamen 361004, People's Republic of China
| | - Zhenyu Yin
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive Tumor, Zhongshan Hospital, Xiamen University Xiamen 361004, People's Republic of China
| | - Wenxiu Zhao
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive Tumor, Zhongshan Hospital, Xiamen University Xiamen 361004, People's Republic of China
| |
Collapse
|
47
|
Liu J, Qiu J, Zhang Z, Zhou L, Li Y, Ding D, Zhang Y, Zou D, Wang D, Zhou Q, Lang T. SOX4 maintains the stemness of cancer cells via transcriptionally enhancing HDAC1 revealed by comparative proteomics study. Cell Biosci 2021; 11:23. [PMID: 33482915 PMCID: PMC7821488 DOI: 10.1186/s13578-021-00539-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
Background Cancer stem cells (CSCs) are the root of human cancer development and the major cause of treatment failure. Aberrant elevation of SOX4, a member of SOX (SRY-related HMG-box) family transcription factors, has been identified in many types of human cancer and promotes cancer development. However, the role of SOX4 in CSCs, especially at a proteome-wide level, has remained elusive. The aim of this study is to investigate the effect of SOX4 on the stemness of CSCs and reveal the underlying mechanisms by identification of SOX4-induced proteome changes through proteomics study. Results Overexpression of SOX4 promotes sphere formation and self-renewal of colorectal cancer cells in vitro and in vivo and elevates the expression levels of CSCs markers. Through iTRAQ-based quantitative proteomics analysis, 215 differentially expressed proteins (128 upregulated, 87 downregulated) in SOX4-overexpressing HCT-116 spheres were identified. The bioinformatic analysis highlighted the importance of HDAC1 as the fundamental roles of its impacted pathways in stem cell maintenance, including Wnt, Notch, cell cycle, and transcriptional misregulation in cancer. The mechanistic study showed that SOX4 directly binds to the promoter of HDAC1, promotes HDAC1 transcription, thereby supporting the stemness of colorectal cancer cells. HDAC1 hallmarks colorectal cancer stem cells and depletion of HDAC1 abolished the stimulatory effect of SOX4. Furthermore, SOX4-HDAC1 axis is conserved in multiple types of cancer. Conclusions The results of this study reveal SOX4-induced proteome changes in HCT-116 spheres and demonstrates that transcriptional activation of HDAC1 is the primary mechanism underlying SOX4 maintaining CSCs. This finding suggests that HDAC1 is a potential drug target for eradicating SOX4-driven human CSCs.
Collapse
Affiliation(s)
- Jingshu Liu
- College of Bioengineering, Chongqing University, 400044, Chongqing, People's Republic of China.,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, 400044, Chongqing, People's Republic of China
| | - Jiangfeng Qiu
- Department of Gastrointestinal Surgery, Renji Hospital Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, People's Republic of China
| | - Zhiqi Zhang
- Department of General Surgery, School of Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, 200081, Shanghai, People's Republic of China
| | - Lei Zhou
- Singapore Eye Research Institute, The academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Yunzhe Li
- College of Bioengineering, Chongqing University, 400044, Chongqing, People's Republic of China.,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China
| | - Dongyan Ding
- College of Bioengineering, Chongqing University, 400044, Chongqing, People's Republic of China.,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China
| | - Yang Zhang
- Laboratory Department, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China
| | - Dongling Zou
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China
| | - Dong Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China
| | - Qi Zhou
- College of Bioengineering, Chongqing University, 400044, Chongqing, People's Republic of China. .,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China. .,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China. .,Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, 400044, Chongqing, People's Republic of China.
| | - Tingyuan Lang
- College of Bioengineering, Chongqing University, 400044, Chongqing, People's Republic of China. .,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China. .,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China. .,Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, 400044, Chongqing, People's Republic of China.
| |
Collapse
|
48
|
Xing B, Qiao XF, Qiu YH, Li X. TMPO-AS1 Regulates the Aggressiveness-Associated Traits of Nasopharyngeal Carcinoma Cells Through Sponging miR-320a. Cancer Manag Res 2021; 13:415-425. [PMID: 33488123 PMCID: PMC7815083 DOI: 10.2147/cmar.s285113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background Previous evidence demonstrates that the long non-coding RNA (lncRNA) TMPO antisense RNA 1 (TMPO-AS1) is involved in the aggressiveness of several cancers. Nevertheless, its functions in nasopharyngeal carcinoma (NPC) are unclear. Methods qRT-PCR was used to evaluate the levels of TMPO-AS1 and miR-320a in NPC tissues. Furthermore, the growth and invasiveness of NPC cells were evaluated by colony formation and Transwell assays. The protein expression ofSRY-Box Transcription Factor 4 (SOX4) was observed by Western blotting and immunohistochemistry. Bioinformatic prediction and luciferase reporter assays were used to explore the interaction between miR-320a and TMPO-AS1. The transplanted model was employed to disclose the interference of TMPO-AS1 in the tumor growth of NPC cells in vivo. Results We found that TMPO-AS1 was distinctly upregulated in NPC. Downregulation of TMPO-AS1 restrained aggressiveness-associated traits in NPC cells. Nevertheless, upregulation of TMPO-AS1 yielded the opposite results. Further studies revealed that lncRNA TMPO-AS1 acts as a “sponge” for miR-320a, resulting in increased levels of SOX4 in NPC cells. Finally, TMPO-AS1 silencing suppressed tumor growth of NPC cells in vivo. Conclusion Collectively, these results reveal the presence of a novel TMPO-AS1/miR-320a/SOX4 pathway associated with NPC progression, suggesting that lncRNA TMPO-AS1 may be a potential therapeutic target for NPC.
Collapse
Affiliation(s)
- Biao Xing
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, Hebei, People's Republic of China
| | - Xiao-Feng Qiao
- Department of Otorhinolaryngology, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yan-Hua Qiu
- Department of Otolaryngology, The First People's Hospital of Linhai City, Linhai, Zhejiang, People's Republic of China
| | - Xin Li
- Department of Otorhinolaryngology, Beijing Tsinghua Changgung Hospital Affiliated to Tsinghua University, Beijing, People's Republic of China.,School of Clinical Medicine, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
49
|
Bagati A, Kumar S, Jiang P, Pyrdol J, Zou AE, Godicelj A, Mathewson ND, Cartwright ANR, Cejas P, Brown M, Giobbie-Hurder A, Dillon D, Agudo J, Mittendorf EA, Liu XS, Wucherpfennig KW. Integrin αvβ6-TGFβ-SOX4 Pathway Drives Immune Evasion in Triple-Negative Breast Cancer. Cancer Cell 2021; 39:54-67.e9. [PMID: 33385331 PMCID: PMC7855651 DOI: 10.1016/j.ccell.2020.12.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/18/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy shows limited efficacy against many solid tumors that originate from epithelial tissues, including triple-negative breast cancer (TNBC). We identify the SOX4 transcription factor as an important resistance mechanism to T cell-mediated cytotoxicity for TNBC cells. Mechanistic studies demonstrate that inactivation of SOX4 in tumor cells increases the expression of genes in a number of innate and adaptive immune pathways important for protective tumor immunity. Expression of SOX4 is regulated by the integrin αvβ6 receptor on the surface of tumor cells, which activates TGFβ from a latent precursor. An integrin αvβ6/8-blocking monoclonal antibody (mAb) inhibits SOX4 expression and sensitizes TNBC cells to cytotoxic T cells. This integrin mAb induces a substantial survival benefit in highly metastatic murine TNBC models poorly responsive to PD-1 blockade. Targeting of the integrin αvβ6-TGFβ-SOX4 pathway therefore provides therapeutic opportunities for TNBC and other highly aggressive human cancers of epithelial origin.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/pharmacology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Integrins/antagonists & inhibitors
- Integrins/genetics
- Integrins/metabolism
- Mice
- Neoplasm Transplantation
- SOXC Transcription Factors/genetics
- SOXC Transcription Factors/metabolism
- Sequence Analysis, RNA
- Signal Transduction/drug effects
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/metabolism
- Transforming Growth Factor beta/genetics
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/immunology
- Tumor Escape/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Archis Bagati
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Smith Building, Room 736, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02215, USA
| | - Sushil Kumar
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Smith Building, Room 736, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Peng Jiang
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jason Pyrdol
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Smith Building, Room 736, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Angela E Zou
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Smith Building, Room 736, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Anze Godicelj
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Smith Building, Room 736, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Nathan D Mathewson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Smith Building, Room 736, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Adam N R Cartwright
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Smith Building, Room 736, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anita Giobbie-Hurder
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Deborah Dillon
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Smith Building, Room 736, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Elizabeth A Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02215, USA; Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - X Shirley Liu
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Smith Building, Room 736, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA; Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
50
|
Fu T, Ji K, Jin L, Zhang J, Wu X, Ji X, Fan B, Jia Z, Wang A, Liu J, Bu Z, Ji J. ASB16-AS1 up-regulated and phosphorylated TRIM37 to activate NF-κB pathway and promote proliferation, stemness, and cisplatin resistance of gastric cancer. Gastric Cancer 2021; 24:45-59. [PMID: 32572790 DOI: 10.1007/s10120-020-01096-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long non-coding RNA (lncRNA) ASB16 antisense RNA 1 (ASB16-AS1) is recognized as an oncogene in several cancer types, but its relation to GC is unknown. Tripartite motif containing 37 (TRIM37) has been proven to accelerate the development of gastric cancer (GC), whereas the molecular mechanism assisted ASB16-AS1 and TRIM37 in regulating GC progression remains unclear. METHODS Differentially expressed lncRNAs in GC samples were analyzed based on Gene Expression Omnibus (GEO) data. CCK-8 and colony formation assays were applied to determine the proliferative ability of GC cells. Stem cell-like phenotype of GC cells was assessed by sphere formation assay and flow cytometry analysis. Luciferase reporter assay, RNA immunoprecipitation (RIP), pulldown, and co-immunoprecipitation (Co-IP) were performed to verify the interplay of RNA molecules. RESULTS ASB16-AS1 was upregulated in GC samples according to GEO data and qRT-PCR analysis. ASB16-AS1 strengthened the proliferative ability and stem cell-like characteristics in GC cells. More importantly, ASB16-AS1 encouraged GC cell growth in vivo. Mechanistically, ASB16-AS1 strengthened TRIM37 expression by sequestering miR-3918 and miR-4676-3p. ASB16-AS1 activated NF-kappa B (NF-κB) pathway by cooperating with ATM serine/threonine kinase (ATM) to induce TRIM37 phosphorylation. CONCLUSION In summary, ASB16-AS1 exerted oncogenic functions in GC through modulating TRIM37 expression at both mRNA and protein levels.
Collapse
Affiliation(s)
- Tao Fu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Ke Ji
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Li Jin
- Department of Radiotherapy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Ji Zhang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xiaojiang Wu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xin Ji
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Biao Fan
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Ziyu Jia
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Anqiang Wang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Jiaen Liu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zhaode Bu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|