1
|
Su Y, Ma Y, Wang Y, Xu P, Guo M, Cao H, Xin J, Wu X, Liu X, Chen S, Tao X, Yang H, Cheng C, Huang R, Pan R, Pan Y, Zhou B, Fang W, Liu Z. Downregulated CCND3 Is a Key Event Driving Lung Adenocarcinoma Metastasis during Acquired Cisplatin Resistance. Int J Biol Sci 2025; 21:708-724. [PMID: 39781469 PMCID: PMC11705650 DOI: 10.7150/ijbs.100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025] Open
Abstract
Cyclin D3 (CCND3), a member of the cyclin D family, is known to promote cell cycle transition. In this study, we found that CCND3 was downregulated in cisplatin-resistant (cis-diamminedichloroplatinum, DDP) lung adenocarcinoma (LUAD) cells. The loss of CCND3 indeed impeded cell cycle transition. Unexpectedly, its downregulation significantly triggered cytoskeleton remodeling and chemoresistance and accelerated LUAD metastasis in vivo and in vitro. Moreover, the clinical samples showed a significant negative correlation between CCND3 expression and lymphatic metastasis, as well as the unfavorable survival prognosis of patients with LUAD. Mechanistically, CCND3 downregulation in DDP-resistant LUAD cells was attributable to the transcriptional suppression of PI3K/Akt/c-Jun signaling. Reduced CCND3 expression diminished the recruitment of the E3 ubiquitin ligase PARK2 to ubiquitinate and degrade the vimentin protein, thus triggering epithelial-mesenchymal transition (EMT) to result in cytoskeleton remodeling-stimulated metastasis and chemotherapeutic resistance in LUAD. These results demonstrated that activated PI3K/Akt/c-Jun significantly suppressed CCND3 expression, thereby inhibiting vimentin degradation via PARK2-mediated ubiquitination in DDP-resistant LUAD cells. This, in turn, promoted EMT, facilitating cytoskeleton remodeling-stimulated metastasis and chemoresistance to DDP. Overall, these findings provided a new perspective on the role of CCND3 in LUAD progression and acquired cisplatin resistance.
Collapse
Affiliation(s)
- Yun Su
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuting Ma
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Yubing Wang
- Department of Cardiothoracic Vascular Surgery, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Ping Xu
- Department of Pulmonary and Critical Care Medicine Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Miaoling Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Haolin Cao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianyang Xin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Xi Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoyan Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Shan Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Xingyu Tao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Huiling Yang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Chao Cheng
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen 518172, China
| | - Rongquan Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Rongshuai Pan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuexin Pan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Beixian Zhou
- The People's Hospital of Gaozhou, Gaozhou 525200, China
| | - Weiyi Fang
- The People's Hospital of Gaozhou, Gaozhou 525200, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Zhen Liu
- The People's Hospital of Gaozhou, Gaozhou 525200, China
- Department of Pathology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
2
|
Chen H, Zhang L, Liu M, Li Y, Chi Y. Multi-Omics Research on Angina Pectoris: A Novel Perspective. Aging Dis 2024:AD.2024.1298. [PMID: 39751862 DOI: 10.14336/ad.2024.1298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Angina pectoris (AP), a clinical syndrome characterized by paroxysmal chest pain, is caused by insufficient blood supply to the coronary arteries and sudden temporary myocardial ischemia and hypoxia. Long-term AP typically induces other cardiovascular events, including myocardial infarction and heart failure, posing a serious threat to patient safety. However, AP's complex pathological mechanisms and developmental processes introduce significant challenges in the rapid diagnosis and accurate treatment of its different subtypes, including stable angina pectoris (SAP), unstable angina pectoris (UAP), and variant angina pectoris (VAP). Omics research has contributed significantly to revealing the pathological mechanisms of various diseases with the rapid development of high-throughput sequencing approaches. The application of multi-omics approaches effectively interprets systematic information on diseases from the perspective of genes, RNAs, proteins, and metabolites. Integrating multi-omics research introduces novel avenues for identifying biomarkers to distinguish different AP subtypes. This study reviewed articles related to multi-omics and AP to elaborate on the research progress in multi-omics approaches (including genomics, transcriptomics, proteomics, and metabolomics), summarized their applications in screening biomarkers employed to discriminate multiple AP subtypes, and delineated integration methods for multi-omics approaches. Finally, we discussed the advantages and disadvantages of applying a single-omics approach in distinguishing diverse AP subtypes. Our review demonstrated that the integration of multi-omics technologies is preferable for quick and precise diagnosis of the three AP types, namely SAP, UAP, and VAP.
Collapse
Affiliation(s)
- Haiyang Chen
- Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lijun Zhang
- Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Meiyan Liu
- Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yanwei Li
- Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Yunpeng Chi
- Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Zhao P, Ren X, Zhang Z, Duan Z, Yang X, Jin J, Hu J. Blocking METTL3-mediated lncRNA FENDRR silence reverses cisplatin resistance of lung adenocarcinoma through activating TFRC-mediated ferroptosis pathway. J Mol Histol 2024; 56:21. [PMID: 39627631 DOI: 10.1007/s10735-024-10276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/09/2024] [Indexed: 02/07/2025]
Abstract
Targeting ferroptosis pathway becomes a new solution for cisplatin (DDP) resistance in lung adenocarcinoma (LUAD), and further research is required to explore the molecular mechanisms underlying ferroptosis and DDP resistance, providing biotargets for LUAD treatment. In this study, DDP-sensitive A549 cells and DDP-resistant A549/DDP cells were treated with DDP, DDP sensitivity was detected through using CCK-8 method and colony formation assay, ferroptosis-related markers were determined through commercial kits, and the molecular regulatory mechanism was analyzed through methylated RNA immunoprecipitation, RNA pull-down, dual luciferase assay, quantitative real-time polymerase chain reaction and western blotting assay. Results showed that compared to A549 cells, FENDRR was downregulated in A549/DDP cells, and FENDRR increased iron content, labile iron pool, lipid peroxidation, LDH release and ROS levels, accelerating ferroptosis to promote DDP sensitivity. Interestingly, we found that METTL3-mediated N6-methyladenosine modification YTHDF2 dependently resulted in FENDRR degradation, and FENDRR overexpression elevated TFRC expression through sponging miR-761. Mechanistically, METTL3 inhibited the FENDRR/TFRC axis to alleviate DDP-induced ferroptosis, promoting DDP resistance in LUAD cells. Collectively, our findings identify a novel molecular regulatory mechanism in DDP resistance of LUAD, and suggest that FENDRR might be an attractive target for addressing DDP resistance.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Hebei Engineering University, No. 81 Congtai Road, Congtai District, Handan, 056000, Hebei, China
| | - Xiaoguo Ren
- Oncology Department, Shexian Hospital, Handan, 056400, China
| | - Zhenchao Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Hebei Engineering University, No. 81 Congtai Road, Congtai District, Handan, 056000, Hebei, China
| | - Zhentao Duan
- Department of Thoracic Surgery, Affiliated Hospital of Hebei Engineering University, No. 81 Congtai Road, Congtai District, Handan, 056000, Hebei, China
| | - Xiaogang Yang
- Department of Cardiac Surgery, Affiliated Hospital of Hebei Engineering University, Handan, 056000, China
| | - Jiatai Jin
- Department of Thoracic Surgery, Affiliated Hospital of Hebei Engineering University, No. 81 Congtai Road, Congtai District, Handan, 056000, Hebei, China
| | - Jigang Hu
- Department of Thoracic Surgery, Affiliated Hospital of Hebei Engineering University, No. 81 Congtai Road, Congtai District, Handan, 056000, Hebei, China.
| |
Collapse
|
4
|
Chen X, Xu C, Yang Y, Li L, Hong R. STRAP Knockdown Inhibits Migration and Growth of Non-Small Cell Lung Cancer. Bull Exp Biol Med 2024; 177:780-786. [PMID: 39455498 DOI: 10.1007/s10517-024-06267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 10/28/2024]
Abstract
Serine-threonine kinase receptor-associated protein (STRAP) regulates cell proliferation and apoptosis by binding to many target proteins and plays an important regulatory role in tumor development. We studied the effects of STRAP on non-small cell lung cancer (NSCLC) in vivo and in vitro in order to elucidate possible mechanisms underlying the regulatory effects of this protein. The levels of STRAP in NSCLC tissues and cells were determined by quantitative reverse transcription PCR, immunohistochemical staining, and Western blotting. In in vitro experiments, A549 and HCC827 cells were transfected with small interfering RNA (siRNA) to knockdown STRAP (si-STRAP) or with negative control sequence; cell migration and invasion were detected by scratch and Transwell assays, respectively. The expression levels of X-linked inhibitor of apoptosis protein (XIAP), caspase-3, and caspase-9 were determined by Western blotting. In addition, we analyzed changes of tumor volume in a nude mouse NSCLC model. STRAP was highly expressed in NSCLC tissues and cells, but its expression was significantly suppressed in A549 and HCC827 cells transfected with si-STRAP. STRAP knockdown resulted in a significant inhibition of migration and invasion of A549 and HCC827 cells. It also significantly reduced the expression of XIAP and elevated expression of caspase-3 and caspase-9. In nude mice with tumor originated from transplanted A549 cells, inhibition of STRAP expression retarded the tumor growth. Overall, these findings indicate that STRAP is overexpressed in NSCLC, while knockdown of STRAP gene inhibits the growth of NSCLC.
Collapse
Affiliation(s)
- X Chen
- Department of Respiratory, the Second People's Hospital of Lanzhou, Lanzhou, China
| | - C Xu
- Department of Respiratory, the Second People's Hospital of Lanzhou, Lanzhou, China
| | - Y Yang
- Department of Respiratory, the Second People's Hospital of Lanzhou, Lanzhou, China
| | - L Li
- Department of Respiratory, the Second People's Hospital of Lanzhou, Lanzhou, China
| | - R Hong
- Department of Infectious, the Second People's Hospital of Lanzhou, Lanzhou, China.
| |
Collapse
|
5
|
Cheng J, Xu Z, Tan W, He J, Pan B, Zhang Y, Deng Y. METTL16 promotes osteosarcoma progression by downregulating VPS33B in an m 6 A-dependent manner. J Cell Physiol 2024; 239:e31068. [PMID: 37357526 DOI: 10.1002/jcp.31068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
N6-methyladenosine (m6 A) is one of the main epitranscriptomic modifications that accelerates the progression of malignant tumors by modifying RNA. Methyltransferase-like 16 (METTL16) is a newly identified methyltransferase that has been found to play an important oncogenic role in a few malignancies; however, its function in osteosarcoma (OS) remains unclear. In this study, METTL16 was found to be upregulated in OS tissues, and associated with poor prognosis in OS patients. Functionally, METTL16 substantially promoted OS cell proliferation, migration, and invasion in vitro and OS growth in vivo. Mechanistically, vacuolar protein sorting protein 33b (VPS33B) was identified as the downstream target of METTL16, which induced m6 A modification of VPS33B and impaired the stability of the VPS33B transcript, thereby degrading VPS33B. In addition, VPS33B was found to be downregulated in OS tissues, VPS33B knockdown markedly attenuated shMETTL16-mediated inhibition on OS progression. Finally, METTL16/VPS33B might facilitate OS progression through PI3K/AKT pathway. In summary, this study revealed an important role for the METTL16-mediated m6 A modification in OS progression, implying it as a promising target for OS treatment.
Collapse
Affiliation(s)
- Jun Cheng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhihao Xu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinpeng He
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Boyu Pan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Wang Y, Zhang T, Du H, Yang M, Xie G, Liu T, Deng S, Yuan W, He S, Wu D, Xu Y. Dipeptidase‑2 is a prognostic marker in lung adenocarcinoma that is correlated with its sensitivity to cisplatin. Oncol Rep 2023; 50:161. [PMID: 37449493 PMCID: PMC10360146 DOI: 10.3892/or.2023.8598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Lung cancer accounts for the highest percentage of cancer morbidity and mortality worldwide, and lung adenocarcinoma (LUAD) is the most prevalent subtype. Although numerous therapies have been developed for lung cancer, patient prognosis is limited by tumor metastasis and more effective treatment targets are urgently required. In the present study, gene expression profiles were extracted from the Gene Expression Omnibus database and mRNA expression data were downloaded from The Cancer Genome Atlas database. In addition, TIMER 2.0 database was used to analyze the expression of genes in normal and multiple tumor tissues. Protein expression was confirmed using the Human Protein Atlas database and LUAD cell lines, sphere formation assay, western blotting, and a xenograft mouse model were used to confirm the bioinformatics analysis. Dipeptidase‑2 (DPEP2) expression was significantly decreased in LUAD and was negatively associated with prognosis. DPEP2 overexpression substantially inhibited epithelial‑mesenchymal transition (EMT) as well as LUAD cell metastasis, and limited the expression of the cancer stem cell transformation markers, CD44 and CD133. In addition, DPEP2 improved LUAD sensitivity to cisplatin by inhibiting EMT; this was verified in vitro and in vivo. These data indicated that DPEP2 upregulates E‑cadherin, thereby regulating cell migration, cancer stem cell transformation, and cisplatin resistance, ultimately affecting the survival of patients with LUAD. Overall, the findings of the present suggest that DPEP2 is important in the development of LUAD and can be used both as a prognostic marker and a target for future therapeutic research.
Collapse
Affiliation(s)
- Yuanyi Wang
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Ting Zhang
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Hongfei Du
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Min Yang
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Guangsu Xie
- Clinical Laboratory, Xindu District People's Hospital of Chengdu, Chengdu, Sichuan 610500, P.R. China
| | - Teng Liu
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Shihua Deng
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Wei Yuan
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Shuang He
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Dongming Wu
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Ying Xu
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
7
|
Liu Z, Yan W, Liu S, Liu Z, Xu P, Fang W. Regulatory network and targeted interventions for CCDC family in tumor pathogenesis. Cancer Lett 2023; 565:216225. [PMID: 37182638 DOI: 10.1016/j.canlet.2023.216225] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
CCDC (coiled-coil domain-containing) is a coiled helix domain that exists in natural proteins. There are about 180 CCDC family genes, encoding proteins that are involved in intercellular transmembrane signal transduction and genetic signal transcription, among other functions. Alterations in expression, mutation, and DNA promoter methylation of CCDC family genes have been shown to be associated with the pathogenesis of many diseases, including primary ciliary dyskinesia, infertility, and tumors. In recent studies, CCDC family genes have been found to be involved in regulation of growth, invasion, metastasis, chemosensitivity, and other biological behaviors of malignant tumor cells in various cancer types, including nasopharyngeal carcinoma, lung cancer, colorectal cancer, and thyroid cancer. In this review, we summarize the involvement of CCDC family genes in tumor pathogenesis and the relevant upstream and downstream molecular mechanisms. In addition, we summarize the potential of CCDC family genes as tumor therapy targets. The findings discussed here help us to further understand the role and the therapeutic applications of CCDC family genes in tumors.
Collapse
Affiliation(s)
- Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Shaohua Liu
- Department of General Surgery, Pingxiang People's Hospital, Pingxiang, Jiangxi, 337000, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, 410002, China
| | - Ping Xu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China; Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, 518034, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| |
Collapse
|
8
|
Saleem HM, Ramaiah P, Gupta J, Jalil AT, Kadhim NA, Alsaikhan F, Ramírez-Coronel AA, Tayyib NA, Guo Q. Nanotechnology-empowered lung cancer therapy: From EMT role in cancer metastasis to application of nanoengineered structures for modulating growth and metastasis. ENVIRONMENTAL RESEARCH 2023:115942. [PMID: 37080268 DOI: 10.1016/j.envres.2023.115942] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Lung cancer is one of the leading causes of death in both males and females, and it is the first causes of cancer-related deaths. Chemotherapy, surgery and radiotherapy are conventional treatment of lung cancer and recently, immunotherapy has been also appeared as another therapeutic strategy for lung tumor. However, since previous treatments have not been successful in cancer therapy and improving prognosis and survival rate of lung tumor patients, new studies have focused on gene therapy and targeting underlying molecular pathways involved in lung cancer progression. Nanoparticles have been emerged in treatment of lung cancer that can mediate targeted delivery of drugs and genes. Nanoparticles protect drugs and genes against unexpected interactions in blood circulation and improve their circulation time. Nanoparticles can induce phototherapy in lung cancer ablation and mediating cell death. Nanoparticles can induce photothermal and photodynamic therapy in lung cancer. The nanostructures can impair metastasis of lung cancer and suppress EMT in improving drug sensitivity. Metastasis is one of the drawbacks observed in lung cancer that promotes migration of tumor cells and allows them to establish new colony in secondary site. EMT can occur in lung cancer and promotes tumor invasion. EMT is not certain to lung cancer and it can be observed in other human cancers, but since lung cancer has highest incidence rate, understanding EMT function in lung cancer is beneficial in improving prognosis of patients. EMT induction in lung cancer promotes tumor invasion and it can also lead to drug resistance and radio-resistance. Moreover, non-coding RNAs and pharmacological compounds can regulate EMT in lung cancer and EMT-TFs such as Twist and Slug are important modulators of lung cancer invasion that are discussed in current review.
Collapse
Affiliation(s)
- Hiba Muwafaq Saleem
- Department of Medical Laboratory Techniques, Al-Maarif University College, AL-Anbar, Iraq.
| | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, UP, India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Qingdong Guo
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
9
|
Rare Inherited Cholestatic Disorders and Molecular Links to Hepatocarcinogenesis. Cells 2022; 11:cells11162570. [PMID: 36010647 PMCID: PMC9406938 DOI: 10.3390/cells11162570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer affecting adults and the second most common primary liver cancer affecting children. Recent years have seen a significant increase in our understanding of the molecular changes associated with HCC. However, HCC is a complex disease, and its molecular pathogenesis, which likely varies by aetiology, remains to be fully elucidated. Interestingly, some inherited cholestatic disorders that manifest in childhood are associated with early HCC development. This review will thus explore how three genes that are associated with liver disease in childhood (ABCB11, TJP2 and VPS33B) might play a role in the initiation and progression of HCC. Specifically, chronic bile-induced damage (caused by ABCB11 changes), disruption of intercellular junction formation (caused by TJP2 changes) and loss of normal apical–basal cell polarity (caused by VPS33B changes) will be discussed as possible mechanisms for HCC development.
Collapse
|
10
|
Zhang Z, Xu P, Hu Z, Fu Z, Deng T, Deng X, Peng L, Xie Y, Long L, Zheng D, Shen P, Zhang M, Gong B, Zhu Z, Lin J, Chen R, Liu Z, Yang H, Li R, Fang W. CCDC65, a Gene Knockout that leads to Early Death of Mice, acts as a potentially Novel Tumor Suppressor in Lung Adenocarcinoma. Int J Biol Sci 2022; 18:4171-4186. [PMID: 35844805 PMCID: PMC9274497 DOI: 10.7150/ijbs.69332] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/06/2022] [Indexed: 01/06/2023] Open
Abstract
CCDC65 is a member of the coiled-coil domain-containing protein family and was only reported in gastric cancer by our group. We first observed that it is downregulated in lung adenocarcinoma based on the TCGA database. Reduced CCDC65 protein was shown as an unfavorable factor promoting the clinical progression in lung adenocarcinoma. Subsequently, CCDC65-/- mice were found possibly dead of hydrocephalus. Compared with the CCDC65+/+ mice, the downregulation of CCDC65 in CCDC65+/- mice significantly increased the formation ability of lung cancer induced by urethane. In the subsequent investigation, we observed that CCDC65 functions as a tumor suppressor repressing cell proliferation in vitro and in vivo. Molecular mechanism showed that CCDC65 recruited E3 ubiquitin ligase FBXW7 to induce the ubiquitination degradation of c-Myc, an oncogenic transcription factor in tumors, and reduced c-Myc binding to ENO1 promoter, which suppressed the transcription of ENO1. In addition, CCDC65 also recruited FBXW7 to degrade ENO1 protein by ubiquitinated modulation. The downregulated ENO1 further reduced the phosphorylation activation of AKT1, which thus inactivated the cell cycle signal. Our data demonstrated that CCDC65 is a potential tumor suppressor by recruiting FBWX7 to suppress c-Myc/ENO1-induced cell cycle signal in lung adenocarcinoma.
Collapse
Affiliation(s)
- Ziyan Zhang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Ping Xu
- Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, 518034, China
| | - Zhe Hu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Zhaojian Fu
- Department of Oncology, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, 671000, China
| | - Tongyuan Deng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Xiaojie Deng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Lanzhu Peng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Yingying Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Lingzhi Long
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Dayong Zheng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Peng Shen
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Mengmin Zhang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Bin Gong
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Zhibo Zhu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Junhao Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Rui Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 510095, Guangdong, China
| | - Huilin Yang
- Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong, 510515, China
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Rong Li
- Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| |
Collapse
|
11
|
Hou R, Liu X, Yang H, Deng S, Cheng C, Liu J, Li Y, Zhang Y, Jiang J, Zhu Z, Su Y, Wu L, Xie Y, Li X, Li W, Liu Z, Fang W. Chemically synthesized cinobufagin suppresses nasopharyngeal carcinoma metastasis by inducing ENKUR to stabilize p53 expression. Cancer Lett 2022; 531:57-70. [PMID: 35114328 DOI: 10.1016/j.canlet.2022.01.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 01/01/2022] [Accepted: 01/19/2022] [Indexed: 02/09/2023]
Abstract
Clinically, the metastasis of tumor cells is the key factor of death in patients with cancer. In this study, we used a model of metastatic nasopharyngeal carcinoma (NPC) to explore the effects of a new chemical, cinobufagin (CB), combined with cisplatin (DDP). We observed that chemically synthesized CB strongly decreased the metastasis of NPC. Furthermore, a better therapeutic effect was shown when CB was combined with DDP. Molecular analysis revealed that CB induced ENKUR expression by deregulating the PI3K/AKT pathway and suppressing c-Jun, an oncogenic transcriptional factor that binds to the ENKUR promoter and negatively modulated its expression in NPC. ENKUR as a tumor suppressor binds to MYH9 and decreases its expression by recruiting β-catenin via its enkurin domain to prevent its nuclear accumulation, which therefore suppresses c-Jun-induced MYH9 expression. Subsequently, downregulated MYH9 reduces the enlistment of E3 ligase UBE3A and thus decreases the UBE3A-mediated ubiquitination degradation of p53, a key tumor suppressor that decreases epithelial-mesenchymal transition (EMT). Clinical sample analysis demonstrated that the ENKUR expression level was significantly reduced in NPC tissues. Its decreased expression substantially promoted clinical progression and reflected poor prognosis for patients with NPC. This study demonstrated that CB induced ENKUR to repress the β-catenin/c-Jun/MYH9 signal and thus decreased UBE3A-mediated p53 ubiquitination degradation. As a result, the EMT signal was inactivated to suppress NPC metastasis.
Collapse
Affiliation(s)
- Rentao Hou
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiong Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Huiling Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Shuting Deng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chao Cheng
- Otolaryngology Department, Shenzhen Hospital, Southern Medical University, Guangzhou, China
| | - Jiahao Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yonghao Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yewei Zhang
- Hepatobiliary Surgery, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jingwen Jiang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; Oncology Department, Traditional Chinese Medicine Hospital of Hainan Provincial, Haikou, China
| | - Zhibo Zhu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yun Su
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Liyang Wu
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yingying Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoning Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenmin Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China; Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|