1
|
Jiang M, Li H, Zhang Q, Xu T, Huang L, Zhang J, Yu H, Zhang J. The role of RGS12 in tissue repair and human diseases. Genes Dis 2025; 12:101480. [PMID: 40271194 PMCID: PMC12017852 DOI: 10.1016/j.gendis.2024.101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/05/2024] [Accepted: 11/02/2024] [Indexed: 04/25/2025] Open
Abstract
Regulator of G protein signaling 12 (RGS12) belongs to the superfamily of RGS proteins defined by a conserved RGS domain that canonically binds and deactivates heterotrimeric G-proteins. As the largest family member, RGS12 is widely expressed in many cells and tissues. In the past few decades, it has been found that RGS12 affects the activity of various cells in the human body, participates in many physiological and pathological processes, and plays an important role in the pathogenesis of many diseases. Here, we set out to comprehensively review the role of RGS12 in human diseases and its mechanisms, highlighting the possibility of RGS12 as a therapeutic target for the treatment of human diseases.
Collapse
Affiliation(s)
- Min Jiang
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing 400030, China
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hongmei Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tongtong Xu
- General Department of Critical Care Medicine, Zhenjiang Traditional Chinese Medicine Hospital, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Zhenjiang, Jiangsu 212003, China
| | - Le Huang
- Army 72nd Group Military Hospital, Huzhou, Zhejiang 313000, China
| | - Jinghong Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Huiqing Yu
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Junhui Zhang
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
2
|
Wan HQ, Xie LF, Li HL, Ma Y, Li QH, Dai MQ, Fu YD, Li WJ, Zhou JP, Qian MY, Shen X. GPR40 activation alleviates pulmonary fibrosis by repressing M2 macrophage polarization through the PKD1/CD36/TGF-β1 pathway. Acta Pharmacol Sin 2025:10.1038/s41401-025-01558-y. [PMID: 40369224 DOI: 10.1038/s41401-025-01558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/01/2025] [Indexed: 05/16/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by complex aetiologies involving the accumulation of inflammatory cells, such as macrophages, in the alveoli. This process is driven by uncontrolled extracellular matrix (ECM) deposition and the development of fibrous connective tissues. Here, we observed that the mRNA expression of Ffar1, the gene encoding G protein-coupled receptor 40 (GPR40), is repressed, while Cd36 is increased in the bronchoalveolar lavage fluid (BALF), which is predominantly composed of alveolar macrophages, of IPF patients. Furthermore, the GPR40 protein was found to be largely adhered to macrophages and was pathologically downregulated in the lungs of bleomycin (BLM)-induced PF model mice (PF mice) compared with those of control mice. Specific knockdown of GPR40 in pulmonary macrophages by adeno-associated virus 9-F4/80-shGPR40 (AAV9-shGPR40) exacerbated the fibrotic phenotype in the PF mice, and activation of GPR40 by its determined agonist compound SC (1,3-dihydroxy-8-methoxy-9H-xanthen-9-one) effectively protected the PF mice from pathological exacerbation. Moreover, Ffar1 or Cd36 gene knockout mouse-based assays were performed to explore the mechanism underlying the regulation of GPR40 activation in pulmonary macrophages with compound SC as a probe. We found that compound SC mitigated pulmonary fibrosis progression by preventing M2 macrophage polarization from exerting profibrotic effects through the GPR40/PKD1/CD36 axis. Our results strongly support the therapeutic potential of targeting intrinsic GPR40 activation in pulmonary macrophages for IPF and highlight the potential of compound SC in treating this disease.
Collapse
Affiliation(s)
- Hui-Qi Wan
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ling-Feng Xie
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Hong-Lin Li
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan Ma
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiu-Hui Li
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng-Qing Dai
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuan-Dong Fu
- Pulmonary Disease Department, Nanjing Pukou District Central Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen-Jun Li
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jin-Pei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| | - Min-Yi Qian
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xu Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing, China.
| |
Collapse
|
3
|
Shao C, Chen H, Liu T, Pan C. The Hippo pathway in bone and cartilage: implications for development and disease. PeerJ 2025; 13:e19334. [PMID: 40292098 PMCID: PMC12024444 DOI: 10.7717/peerj.19334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Bone is the main structure of the human body; it mainly plays a supporting role and participates in metabolic processes. The Hippo signaling pathway is composed of a series of protein kinases, including the mammalian STE20-like kinase MST1/2 and the large tumor suppressor LATS1/2, which are widely involved in pathophysiological processes, including cell proliferation, differentiation, apoptosis and death, especially those related to biomechanical transduction in vivo. However, the role of it in regulating skeletal system development and the evolution of bone-related diseases remains poorly understood. The pathway can intervene in and regulate the physiological activities of bone-related cells such as osteoclasts and chondrocytes through its own or other bone-related signaling pathways, such as the Wnt pathway, the Notch pathway, and receptor activator of nuclear factor-κB ligand (RANKL), thereby affecting the occurrence and development of bone diseases. This article discusses the role of the Hippo signaling pathway in bone development and disease to provide new insights into the treatment of bone-related diseases by targeting the Hippo signaling pathway.
Collapse
Affiliation(s)
- Chenwei Shao
- Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hao Chen
- Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Tingting Liu
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Chun Pan
- Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
4
|
Xu Y, Zhang Y, Yang M, Xue C, Dang Y, Yang Y, YongfangGong. MST1/2 DKO abates salvianolic acid B's therapeutic effect on CCl 4-induced liver injury mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04140-9. [PMID: 40220025 DOI: 10.1007/s00210-025-04140-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
MST1 and MST2 (MST1/2) are core kinases of the Hippo/YAP signaling pathway in mammals and play key roles in various liver diseases. Deep molecular profiling has shown that the Hippo/YAP pathway interacts synergistically with TGF-β1/Smad2 signaling. Salvianolic acid B (SAB) is an ingredient extracted from Salvia miltiorrhiza that can be used to treat liver diseases. Previous studies have confirmed that SAB hold commendable efficacy against liver injury by inhibition of inflammatory response and Smad2C/2L phosphorylation. However, scientific evidence involving how mutations in the Hippo/YAP pathway are related to the hepatoprotective function of SAB in MST1/2 double knockout (MST1/2 DKO) mice remains vague. Nowadays, the MST1-/- MST2fl/fl Alb-Cre mice were generated to establish a CCl4-induced liver injury model to investigate the potential effects of MST1/2 gene knockout on inflammatory reactions and pSmad2C/pSmad2L signal transduction with the intervention of SAB. As it turns out, genotype identification and western blot assays confirmed that we have successfully obtained MST1-/- MST2fl/fl Alb-Cre mice. General observation, HE staining, and biochemical assays promulgated that genetic deletion of MST1/2 could diminish SAB's hepatoprotective effect on liver injury by promoting the phosphorylation of smad2C/2L and boosting the expression of the inflammatory factors IL- 6 and TNF-α. In summary, these results suggest that MST1/2 play a key role in mediating SAB's effects on liver injury.
Collapse
Affiliation(s)
- Yanyan Xu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Yu Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Mengru Yang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Changfeng Xue
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Yuqi Dang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Yan Yang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China.
| | - YongfangGong
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China.
- School of Nursing, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
5
|
Gu H, Yu W, Feng P, Zeng C, Cao Q, Chen F, Wang Z, Shen H, Wu Y, Wang S. Circular RNA circSTX12 regulates osteo-adipogenic balance and proliferation of BMSCs in senile osteoporosis. Cell Mol Life Sci 2025; 82:149. [PMID: 40192802 PMCID: PMC11977094 DOI: 10.1007/s00018-025-05684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/03/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
Increased adipogenic differentiation and decreased osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) along with slow self-renewal are pivotal causes for decreased bone formation in senile osteoporosis. Circular RNAs (circRNAs) play important roles in cell proliferation and differentiation, and are closely related to osteoporosis. Whether circRNAs orchestrate the adipo-osteogenic balance and the proliferation of BMSCs in osteoporosis remains unclear. We found in this study that circSTX12 was abnormally upregulated in bone sections from osteoporosis patients and in BMSCs from aged mice, as well as in later-generation human BMSCs in culture. Knockdown of circSTX12 in BMSCs resulted in enhanced osteogenesis, decreased adipogenesis, and increased proliferation capacity; circSTX12 overexpression had the opposite effect. RNA pull-down and mass spectrometry revealed the interactions between circSTX12 with CBL and LMO7. At the molecular level, circSTX12 regulated cell fate in BMSCs by competitively binding to CBL, reducing the ubiquitination-mediated degradation of MST1 and thereby activating the Hippo pathway, a key regulator of adipo-osteogenic balance. Knockdown of circSTX12 promoted the nuclear localization of YAP. In addition, our findings suggest that LMO7 mediates circSTX12-induced BMSCs proliferation by regulating the transcription of CCNA2, CCNH, and CCND1. In vivo, injection of antisense oligonucleotides (ASOs) to knockdown circSTX12 promoted bone formation in aged mice. Our results provide evidence for circSTX12 as a regulator of adipo-osteogenic differentiation and proliferation of BMSCs through binding to CBL and LMO7, respectively. Targeting circSTX12 may be a novel approach for osteoporosis treatment.
Collapse
Affiliation(s)
- Huimin Gu
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Wenhui Yu
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Pei Feng
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Chenying Zeng
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Qian Cao
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Fenglei Chen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Ziming Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Huiyong Shen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China.
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China.
| | - Yanfeng Wu
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China.
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China.
| | - Shan Wang
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China.
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China.
| |
Collapse
|
6
|
Costa V, Raimondi L, Scilabra SD, Pinto ML, Bellavia D, De Luca A, Guglielmi P, Cusanno A, Cattini L, Pulsatelli L, Pavarini M, Chiesa R, Giavaresi G. Effect of Hydrothermal Coatings of Magnesium AZ31 Alloy on Osteogenic Differentiation of hMSCs: From Gene to Protein Analysis. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1254. [PMID: 40141537 PMCID: PMC11944061 DOI: 10.3390/ma18061254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025]
Abstract
An Mg-based alloy device manufactured via a superplastic forming process (Mg-AZ31+SPF) and coated using a hydrothermal method (Mg AZ31+SPF+HT) was investigated as a method to increase mechanical and osteointegration capability. The cell viability and osteointegrative properties of alloy-derived Mg AZ31+SPF and Mg AZ31+SPF+HT extracts were investigated regarding their effect on human mesenchymal stem cells (hMSCs) (maintained in basal (BM) and osteogenic medium (OM)) after 7 and 14 days of treatment. The viability was analyzed through metabolic activity and double-strand DNA quantification, while the osteoinductive effects were evaluated through qRT-PCR, osteoimage, and BioPlex investigations. Finally, a preliminary liquid mass spectrometry analysis was conducted on the secretome of hMSCs. Biocompatibility analysis revealed no toxic effect on cells' viability or proliferation during the experimental period. A modulation effect was observed on the osteoblast pre-commitment genes of hMSCs treated with Mg-AZ31+SPF+HT in OM, which was supported by mineralization nodule analysis. A preliminary mass spectrometry investigation highlighted the modulation of protein clusters involved in extracellular exosomes, Hippo, and the lipid metabolism process. In conclusion, our results revealed that the Mg AZ31+SPF+HT extracts can modulate the canonical and non-canonical osteogenic process in vitro, suggesting their possible application in bone tissue engineering.
Collapse
Affiliation(s)
- Viviana Costa
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (D.B.); (A.D.L.); (G.G.)
| | - Lavinia Raimondi
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (D.B.); (A.D.L.); (G.G.)
| | - Simone Dario Scilabra
- Ri.MED Foundation, IRCCS ISMETT, Via Ernesto Tricomi 5, 90145 Palermo, Italy; (S.D.S.); (M.L.P.)
| | - Margot Lo Pinto
- Ri.MED Foundation, IRCCS ISMETT, Via Ernesto Tricomi 5, 90145 Palermo, Italy; (S.D.S.); (M.L.P.)
| | - Daniele Bellavia
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (D.B.); (A.D.L.); (G.G.)
| | - Angela De Luca
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (D.B.); (A.D.L.); (G.G.)
| | - Pasquale Guglielmi
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, 70125 Bari, Italy; (P.G.); (A.C.)
| | - Angela Cusanno
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, 70125 Bari, Italy; (P.G.); (A.C.)
| | - Luca Cattini
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.C.); (L.P.)
| | - Lia Pulsatelli
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.C.); (L.P.)
| | - Matteo Pavarini
- Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’, Politecnico di Milano, 20135 Milan, Italy; (M.P.); (R.C.)
| | - Roberto Chiesa
- Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’, Politecnico di Milano, 20135 Milan, Italy; (M.P.); (R.C.)
| | - Gianluca Giavaresi
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (D.B.); (A.D.L.); (G.G.)
| |
Collapse
|
7
|
Qin Y, Jing Z, Zou D, Wang Y, Yang H, Chen K, Li W, Wen P, Zheng Y. A metamaterial scaffold beyond modulus limits: enhanced osteogenesis and angiogenesis of critical bone defects. Nat Commun 2025; 16:2180. [PMID: 40038291 PMCID: PMC11880532 DOI: 10.1038/s41467-025-57609-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 02/20/2025] [Indexed: 03/06/2025] Open
Abstract
Metallic scaffolds have shown promise in regenerating critical bone defects. However, limitations persist in achieving a modulus below 100 MPa due to insufficient strength. Consequently, the osteogenic impact of lower modulus and greater bone tissue strain ( > 1%) remains unclear. Here, we introduce a metamaterial scaffold that decouples strength and modulus through two-stage deformation. The scaffold facilitates an effective modulus of only 13 MPa, ensuring adaptability during bone regeneration. Followed by a stiff stage, it provides the necessary strength for load-bearing requirements. In vivo, the scaffold induces > 2% callus strain, upregulating calcium channels and HIF-1α to enhance osteogenesis and angiogenesis. 4-week histomorphology reveals a 44% and 498% increase in new bone fraction versus classic scaffolds with 500 MPa and 13 MPa modulus, respectively. This design transcends traditional modulus-matching paradigms, prioritizing bone tissue strain requirements. Its tunable mechanical properties also present promising implications for advancing osteogenesis mechanisms and addressing clinical challenges.
Collapse
Affiliation(s)
- Yu Qin
- School of Materials Science and Engineering, Peking University, Beijing, China
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Zehao Jing
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Da Zou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Youhao Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Hongtao Yang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Kai Chen
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Weishi Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China.
| | - Peng Wen
- Department of Mechanical Engineering, Tsinghua University, Beijing, China.
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, China.
| |
Collapse
|
8
|
Zhang H, Yang M, Kim SH, Li IT. Integrin force loading rate in mechanobiology: From model to molecular measurement. QRB DISCOVERY 2025; 6:e9. [PMID: 40160979 PMCID: PMC11950791 DOI: 10.1017/qrd.2024.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 04/02/2025] Open
Abstract
Integrins are critical transmembrane receptors that connect the extracellular matrix (ECM) to the intracellular cytoskeleton, playing a central role in mechanotransduction - the process by which cells convert mechanical stimuli into biochemical signals. The dynamic assembly and disassembly of integrin-mediated adhesions enable cells to adapt continuously to changing mechanical cues, regulating essential processes such as adhesion, migration, and proliferation. In this review, we explore the molecular clutch model as a framework for understanding the dynamics of integrin - ECM interactions, emphasizing the critical importance of force loading rate. We discuss how force loading rate bridges internal actomyosin-generated forces and ECM mechanical properties like stiffness and ligand density, determining whether sufficient force is transmitted to mechanosensitive proteins such as talin. This force transmission leads to talin unfolding and activation of downstream signalling pathways, ultimately influencing cellular responses. We also examine recent advances in single-molecule DNA tension sensors that have enabled direct measurements of integrin loading rates, refining the range to approximately 0.5-4 pN/s. These findings deepen our understanding of force-mediated mechanotransduction and underscore the need for improved sensor designs to overcome current limitations.
Collapse
Affiliation(s)
- Hongyuan Zhang
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| | - Micah Yang
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| | - Seong Ho Kim
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| | - Isaac T.S. Li
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
9
|
Sun Y, Wang Y, Dong B, Yang P, Ji C, Li Y, Ma J, Ma X. Understanding the relationship between pore structure and properties of triply periodic minimal surface bone scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:6. [PMID: 39775272 PMCID: PMC11706857 DOI: 10.1007/s10856-024-06856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
The number of patients with bone defects caused by trauma and diseases has been increasing year by year. The treatment of bone defects remains a major challenge in clinical practice. Bone scaffolds are increasingly favored for repairing bones, with triply periodic minimal surface (TPMS) scaffolds emerging as a popular option due to their superior performance. The aim of this review is to highlight the crucial influence of pore structure on the properties of TPMS bone scaffolds, offering important insights for their innovation and production. It briefly examines various elements that influence the properties of TPMS bone scaffolds, such as pore shape, porosity, pore diameter, and curvature. By analyzing these elements, this review serves as a valuable reference for upcoming research and practical implementations in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Yadi Sun
- Tianjin Hospital Tianjin University, Tianjin, China
- Tianjin Orthopedic Institute, Tianjin, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yan Wang
- Tianjin Hospital Tianjin University, Tianjin, China
- Tianjin Orthopedic Institute, Tianjin, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, China
| | - Benchao Dong
- Tianjin Hospital Tianjin University, Tianjin, China
- Tianjin Orthopedic Institute, Tianjin, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, China
| | - Peichuan Yang
- Tianjin Hospital Tianjin University, Tianjin, China
- Tianjin Orthopedic Institute, Tianjin, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, China
| | - Chunhui Ji
- School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Yiyang Li
- Tianjin Hospital Tianjin University, Tianjin, China
- Tianjin Orthopedic Institute, Tianjin, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, China
| | - Jianxiong Ma
- Tianjin Hospital Tianjin University, Tianjin, China.
- Tianjin Orthopedic Institute, Tianjin, China.
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, China.
| | - Xinlong Ma
- Tianjin Hospital Tianjin University, Tianjin, China
- Tianjin Orthopedic Institute, Tianjin, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, China
| |
Collapse
|
10
|
Du Y, Gao X, Chen J, Chen X, Liu H, He W, Liu L, Jiang Y, He B, Deng Z, Liang C, Guo F. OGT mediated HDAC5 O-GlcNAcylation promotes osteogenesis by regulating the homeostasis of epigenetic modifications and proteolysis. J Orthop Translat 2025; 50:14-29. [PMID: 39659899 PMCID: PMC11626777 DOI: 10.1016/j.jot.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 12/12/2024] Open
Abstract
Background O-GlcNAc transferase (OGT) is responsible for attaching O-linked N-acetylglucosamine (O-GlcNAc) to proteins, regulating diverse cellular processes ranging from transcription and translation to signaling and metabolism. This study focuses on the role and mechanisms of OGT in osteogenesis. Materials and methods We found that OGT is downregulated in osteoporosis by bioinformatics analysis, determined its role in osteogenic differentiation by using OGT inhibitors (or OGA inhibitors) as well as conditional knockout OGT mice in vitro and in vivo, and explored and specific mechanisms by quantitative proteomic analysis and RNA-seq, qRT-PCR, western blotting, immunofluorescence, H&E, ALP, ARS, Masson staining, IHC, micro CT, etc. Results we revealed that OGT positively influenced osteogenesis and osteoblast differentiation in vitro as well as ovariectomy (OVX) mice in vivo. Consistently, mice with conditionally depleted OGT exhibited a reduction in bone mass, while O-GlcNAcylation enhancer could partially recover bone mass in ovariectomy (OVX) mice. Mechanistically, quantitative proteomic analysis and high-throughput RNAseq further reveals that HDAC5 is one of the endogenous O-GlcNAcylation substrates, and O-GlcNAcylation of HDAC5 on Thr934 promotes its translocation to lysosomes and subsequent degradation, thus, elevating the O-GlcNAcylation level of HDAC5 leads to its cytoplasmic cleavage, consequently diminished its nuclear entry and enhanced DNA transcription. The OGT-mediated O-GlcNAcylation of HDAC5 modulates the balance between its cytoplasmic proteolysis and nuclear entry, thereby impacting the Notch signaling pathway and DNA epigenetic modifications then playing a role in osteogenesis. Conclusion OGT is a regulator that promotes osteoblast differentiation and bone regeneration. Additionally, it highlights the critical function of HDAC5 O-GlcNAcylation in controlling epigenetics. This study offers fresh perspectives on osteogenesis and O-GlcNAcylation, proposing that the OGT-mediated O-GlcNAcylation of HDAC5 could be a promising target for osteoporosis treatment. The translational potential of this article On one side, OGT might potentially be used as a new biomarker for clinical diagnosis of osteoporosis (OP) in the future. On the other side, small molecule inhibitors of HDAC5, a glycosylation substrate of OGT, or OGT agonists such as silymarin, could all potentially serve as therapeutic targets for the prevention or treatment of OP in the future.
Collapse
Affiliation(s)
- Yu Du
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xiang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jianqiang Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xinxin Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hang Liu
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Wenge He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lu Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yue Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Baicheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zhongliang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Fengjin Guo
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Tyrina E, Yakubets D, Markina E, Buravkova L. Hippo Signaling Pathway Involvement in Osteopotential Regulation of Murine Bone Marrow Cells Under Simulated Microgravity. Cells 2024; 13:1921. [PMID: 39594669 PMCID: PMC11592674 DOI: 10.3390/cells13221921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/02/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
The development of osteopenia is one of the most noticeable manifestations of the adverse effects of space factors on crew members. The Hippo signaling pathway has been shown to play a central role in regulating the functional activity of cells through their response to mechanical stimuli. In the present study, the components of the Hippo pathway and the protective properties of osteodifferentiation inducers were investigated under simulated microgravity (smg) using a heterotypic bone marrow cell culture model, which allows for the maintenance of the close interaction between the stromal and hematopoietic compartments, present in vivo and of great importance for both the fate of osteoprogenitors and hematopoiesis. After 14 days of smg, the osteopotential and osteodifferentiation of bone marrow stromal progenitor cells, the expression of Hippo cascade genes and the immunocytochemical status of the adherent fraction of bone marrow cells, as well as the paracrine profile in the conditioned medium and the localization of Yap1 and Runx2 in mechanosensitive cells of the bone marrow were obtained. Simulated microgravity negatively affects stromal and hematopoietic cells when interacting in a heterotypic murine bone marrow cell culture. This is evidenced by the decrease in cell proliferation and osteopotential. Changes in the production of pleiotropic cytokines IL-6, GROβ and MCP-1 were revealed. Fourteen days of simulated microgravity induced a decrease in the nuclear translocation of Yap1 and the transcription factor Runx2 in the stromal cells of the intact group. Exposure to osteogenic induction conditions partially compensated for the negative effect of simulated microgravity. The data obtained will be crucial for understanding the effects of spaceflight on osteoprogenitor cell growth and differentiation via Hippo-Yap signaling.
Collapse
Affiliation(s)
- Ekaterina Tyrina
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (D.Y.); (L.B.)
| | | | - Elena Markina
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (D.Y.); (L.B.)
| | | |
Collapse
|
12
|
Qu Z, Yue J, Song N, Li S. Innovations in three-dimensional-printed individualized bone prosthesis materials: revolutionizing orthopedic surgery: a review. Int J Surg 2024; 110:6748-6762. [PMID: 38905508 PMCID: PMC11486933 DOI: 10.1097/js9.0000000000001842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
The advent of personalized bone prosthesis materials and their integration into orthopedic surgery has made a profound impact, primarily as a result of the incorporation of three-dimensional (3D) printing technology. By leveraging digital models and additive manufacturing techniques, 3D printing enables the creation of customized, high-precision bone implants tailored to address complex anatomical variabilities and challenging bone defects. In this review, we highlight the significant progress in utilizing 3D-printed prostheses across a wide range of orthopedic procedures, including pelvis, hip, knee, foot, ankle, spine surgeries, and bone tumor resections. The integration of 3D printing in preoperative planning, surgical navigation, and postoperative rehabilitation not only enhances treatment outcomes but also reduces surgical risks, accelerates recovery, and optimizes cost-effectiveness. Emphasizing the potential for personalized care and improved patient outcomes, this review underscores the pivotal role of 3D-printed bone prosthesis materials in advancing orthopedic practice towards precision, efficiency, and patient-centric solutions. The evolving landscape of 3D printing in orthopedic surgery holds promise for revolutionizing treatment approaches, enhancing surgical outcomes, and ultimately improving the quality of care for orthopedic patients.
Collapse
Affiliation(s)
- Zhigang Qu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun
| | - Jiaji Yue
- Department of Orthopedics, Shenzhen Second People’s Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong
| | - Ning Song
- Operating Theatre, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine With Engineering, Shenyang, Liaoning
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning Province, China
| |
Collapse
|
13
|
Yang Z, Lu J, Yan T, Ibrahim M, Wang Q, Tan L, Wang Q, Mu Y, Gao Y. Construction of a Titanium-Magnesium Composite Internal Fixation System for Repairing Bone Defects. ACS Biomater Sci Eng 2024; 10:5723-5738. [PMID: 39163588 DOI: 10.1021/acsbiomaterials.4c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The repair and regeneration of maxillofacial bone defects are major clinical challenges. Titanium (Ti)-magnesium (Mg) composites are a new generation of revolutionary internal fixation materials encompassing the mechanical strength and bioactive advantages of Ti and Mg alloys, respectively. This study was aimed to construct a Ti-Mg composite internal plate/screw fixation system to fix and repair bone defects. Further, the effects of different internal fixation systems on bone repair were analyzed through radiological and histological analyses. Notably, Ti6Al4V with rolled Mg foil was used as the experimental group, and a bone defect model of transverse complete amputation of the ulna in rabbits similar to the clinical condition was established. The internal fixation system with the highest osteogenic efficiency was selected based on in vivo results, and the direct and indirect bone repair abilities of the selected materials were evaluated in vitro. Notably, the thin Mg foil-Ti6Al4V internal fixation system exhibited the best fixation effect in the bone defect model and promoted the formation of new bone and early healing of bone defect areas. In vitro, the thin Mg foil-Ti6Al4V composite enhanced the activity of MC3T3-E1 cells; promoted the proliferation, adhesion, extension, and osteogenic differentiation of MC3T3-E1 cells; and regulated new bone formation. Further, it also promoted the polarization of RAW264.7 cells to M2 macrophages, induced the osteogenic immune microenvironment, and indirectly regulated the bone repair process. Therefore, a internal fixation system holds a promising potential for the internal fixation of maxillofacial bone defects. Our findings provide a theoretical and scientific basis for the design and clinical application of Ti-Mg internal fixation systems.
Collapse
Affiliation(s)
- Zhongheng Yang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Jiarui Lu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang 110001, China
| | - Tao Yan
- Department of Orthopedics and Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, Liaoning 110016, China
| | - Muhammad Ibrahim
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Qingchuan Wang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lili Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang 110001, China
| | - Yabing Mu
- Department of Medical Bioscience, Building 6M, Umeå University, SE 90185 Umeå, Sweden
| | - Yuzhong Gao
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| |
Collapse
|
14
|
Zhao Y, Cheng C, Wang X, Yuan Z, Sun B, El-Newehy M, Abdulhameed MM, Fang B, Mo X. Aspirin-Loaded Anti-Inflammatory ZnO-SiO 2 Aerogel Scaffolds for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17092-17108. [PMID: 38533625 DOI: 10.1021/acsami.3c17152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The increasing aging of the population has elevated bone defects to a significant threat to human life and health. Aerogel, a biomimetic material similar to an extracellular matrix (ECM), is considered an effective material for the treatment of bone defects. However, most aerogel scaffolds suffer from immune rejection and poor anti-inflammatory properties and are not well suited for human bone growth. In this study, we used electrospinning to prepare flexible ZnO-SiO2 nanofibers with different zinc concentrations and further assembled them into three-dimensional composite aerogel scaffolds. The prepared scaffolds exhibited an ordered pore structure, and chitosan (CS) was utilized as a cross-linking agent with aspirin (ASA). Interestingly, the 1%ZnO-SiO2/CS@ASA scaffolds not only exhibited good biocompatibility, bioactivity, anti-inflammation, and better mechanical properties but also significantly promoted vascularization and osteoblast differentiation in vitro. In the mouse cranial defect model, the BV/TV data showed a higher osteogenesis rate in the 1%ZnO-SiO2/CS group (10.94 ± 0.68%) and the 1%ZnO-SiO2/CS@ASA group (22.76 ± 1.83%), compared with the control group (5.59 ± 2.08%), and in vivo studies confirmed the ability of 1%ZnO-SiO2/CS@ASA to promote in situ regeneration of new bone. This may be attributed to the fact that Si4+, Zn2+, and ASA released from 1%ZnO-SiO2/CS@ASA scaffolds can promote angiogenesis and bone formation by stimulating the interaction between endothelial cells (ECs) and BMSCs, as well as inducing macrophage differentiation to the M2 type and downregulating the expression of pro-inflammatory factor (TNF-α) to modulate local inflammatory response. These exciting results and evidence suggest that it provides a new and effective strategy for the treatment of bone defects.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P R China
| | - Caiqi Cheng
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Xinyi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P R China
| | - Zhengchao Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P R China
| | - Binbin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P R China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P R China
| |
Collapse
|
15
|
Ma J, Fan H, Geng H. Distinct and overlapping functions of YAP and TAZ in tooth development and periodontal homeostasis. Front Cell Dev Biol 2024; 11:1281250. [PMID: 38259513 PMCID: PMC10800899 DOI: 10.3389/fcell.2023.1281250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Orthodontic tooth movement (OTM) involves mechanical-biochemical signal transduction, which results in tissue remodeling of the tooth-periodontium complex and the movement of orthodontic teeth. The dynamic regulation of osteogenesis and osteoclastogenesis serves as the biological basis for remodeling of the periodontium, and more importantly, the prerequisite for establishing periodontal homeostasis. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key effectors of the Hippo signaling pathway, which actively respond to mechanical stimuli during tooth movement. Specifically, they participate in translating mechanical into biochemical signals, thereby regulating periodontal homeostasis, periodontal remodeling, and tooth development. YAP and TAZ have widely been considered as key factors to prevent dental dysplasia, accelerate orthodontic tooth movement, and shorten treatment time. In this review, we summarize the functions of YAP and TAZ in regulating tooth development and periodontal remodeling, with the aim to gain a better understanding of their mechanisms of action and provide insights into maintaining proper tooth development and establishing a healthy periodontal and alveolar bone environment. Our findings offer novel perspectives and directions for targeted clinical treatments. Moreover, considering the similarities and differences in the development, structure, and physiology between YAP and TAZ, these molecules may exhibit functional variations in specific regulatory processes. Hence, we pay special attention to their distinct roles in specific regulatory functions to gain a comprehensive and profound understanding of their contributions.
Collapse
Affiliation(s)
- Jing Ma
- Department of Oral Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Haixia Fan
- Department of Oral Medicine, Jining Medical University, Jining, Shandong, China
| | - Haixia Geng
- Department of Orthodontics, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
16
|
Kong H, Han JJ, Gorbachev D, Zhang XA. Role of the Hippo pathway in autoimmune diseases. Exp Gerontol 2024; 185:112336. [PMID: 38042379 DOI: 10.1016/j.exger.2023.112336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
The immune system is an important defense against diseases, and it is essential to maintain the homeostasis of the body's internal environment. Under normal physiological conditions, the steady state of the immune system should be sustained to play normal immune response and immune function. Exploring the molecular mechanism of maintaining immune homeostasis under physiological and pathological conditions will provides understanding of the pathogenesis of autoimmune diseases, infections, metabolic disorders, and tumors, as well as new ideas and molecular targets for the prevention and treatment of these diseases. Hippo signaling pathway can not only regulate immune cells such as macrophages, T cells and dendritic cells, but also interact with immune-related signaling pathways such as NF-kB signaling pathway, TGF-β signaling pathway and Toll-like receptor signaling pathway, so as to resist the internal environment disorder caused by the invasion of exogenous pathogenic microorganisms and maintain the internal environment stability and physiological balance of the body. Hippo signaling pathway is also involved in the pathological process of immune system-related diseases such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. Hippo pathway is closely related to organ development, stem cell biology, regeneration, and tumor biology. It affects cell differentiation by participating in extracellular and intracellular physiological signal reactions, sensing cell environment, and coordinating cell reactions. This pathway is crucial in maintaining immune homeostasis. This review summarizes the mechanism of Hippo pathway in different immune cells and some autoimmune diseases and the interaction between different immune signaling pathways and Hippo signaling pathway. It aims to explore the role of Hippo in autoimmune diseases and provide theoretical and practical basis for the treatment of autoimmune diseases through Hippo signaling pathway.
Collapse
Affiliation(s)
- Hui Kong
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Juan-Juan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | | | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China.
| |
Collapse
|