1
|
Zhang W, Zou M, Xiong X, Wei Y, Ke C, Li H, Xie J, Wei Q, Huang J. Transcriptome analysis reveals the regulatory mechanism of myofiber development in male and female black Muscovy duck at different ages. Front Vet Sci 2024; 11:1484102. [PMID: 39634756 PMCID: PMC11614779 DOI: 10.3389/fvets.2024.1484102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Sexual dimorphism in Muscovy ducks results in substantial differences in muscle development potential between males and females, leading to significant variations in growth rates and body weights throughout their development. Methods This study aimed to investigate the regulatory mechanisms underlying the differences in muscle development between genders in black Muscovy ducks, we analyzed the phenotypic characteristics and transcriptome profiles of breast muscles in male and female black Muscovy ducks at different developmental stages (postnatal days 28, 42, and 70). Results In the analysis of tissue physical morphology, the results showed that females exhibit larger myofiber diameters and lower myofiber densities compared to males at postnatal day 42 (p < 0.05). The difference becomes more pronounced by day 70, however, no significant difference was observed at postnatal day 28. Transcriptome analysis identified a total of 1,118 unique differentially expressed genes (DEGs) across the various comparison groups. In different growth and development stages of black Muscovy ducks, the DEGs like MYLK4, KIT, CD36, ATP2A1 were significantly associated with myofiber hypertrophy, and key pathways such as AMPK signaling pathway, focal adhesion, and ECM-receptor interactions have been found to be closely associated with muscle size and hypertrophy. In the breast muscles of different sexes black Muscovy ducks, the DEGs such as TPM2, HNRNPK, VCP, ATP2A2, and ANKRD1 may be the reason for the difference in breast muscle size between male and female ducks. Furthermore, key pathways, including the cGMP-PKG signaling pathway, calcium signaling pathway, and hypertrophic cardiomyopathy are also involved in regulating the developmental potential differences in muscle between male and female ducks. Discussion This study reveals the molecular mechanism regulating the muscle development in male and female black Muscovy ducks at different growth stages, and provides valuable insights into the specific genes responsible for muscle development, laying a theoretical foundation for enhancing the genetic quality of duck meat.
Collapse
Affiliation(s)
- Weihong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Jiangxi Poultry Engineering Technology Research Center, Jiangxi Poultry Breeding Engineering Laboratory, Nanchang, Jiangxi, China
| | - Mengyun Zou
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Jiangxi Poultry Engineering Technology Research Center, Jiangxi Poultry Breeding Engineering Laboratory, Nanchang, Jiangxi, China
| | - Xiaolan Xiong
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Jiangxi Poultry Engineering Technology Research Center, Jiangxi Poultry Breeding Engineering Laboratory, Nanchang, Jiangxi, China
| | - Yue Wei
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Jiangxi Poultry Engineering Technology Research Center, Jiangxi Poultry Breeding Engineering Laboratory, Nanchang, Jiangxi, China
| | - Changling Ke
- Jiujiang Academy of Agricultural Sciences, Jiujiang, Jiangxi, China
| | - Haiqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Jiangxi Poultry Engineering Technology Research Center, Jiangxi Poultry Breeding Engineering Laboratory, Nanchang, Jiangxi, China
| | - Jinfang Xie
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Jiangxi Poultry Engineering Technology Research Center, Jiangxi Poultry Breeding Engineering Laboratory, Nanchang, Jiangxi, China
| | - Qipeng Wei
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Jiangxi Poultry Engineering Technology Research Center, Jiangxi Poultry Breeding Engineering Laboratory, Nanchang, Jiangxi, China
| | - Jiangnan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Jiangxi Poultry Engineering Technology Research Center, Jiangxi Poultry Breeding Engineering Laboratory, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Wang H, Liu K, Zeng W, Bai J, Xiao L, Qin Y, Liu Y, Xu X. Pyrroroquinoline Quinone (PQQ) Improves the Quality of Holstein Bull Semen during Cryopreservation. Animals (Basel) 2024; 14:2940. [PMID: 39457870 PMCID: PMC11503688 DOI: 10.3390/ani14202940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Cryopreserved semen is extensively utilized in the artificial insemination (AI) of domestic animals; however, suboptimal conception rates due to oxidative damage following AI continue to pose a challenge. The present study investigated the effects of Pyrroroquinoline Quinone (PQQ), a novel antioxidant, on the semen quality of Holstein bulls during cryopreservation, as well as its potential molecular mechanisms. Semen samples were diluted with varying concentrations of PQQ (0, 50 μmol/L, 100 μmol/L, 150 μmol/L) prior to cryopreservation. Following the freeze-thaw process, a comprehensive evaluation was conducted to assess sperm motility, plasma membrane integrity, acrosome integrity, and the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and adenosine triphosphate (ATP). Western blot analysis was employed to examine the levels of proteins including PGAM2, CAPZB, CAT, SOD1, and GPX1. Notably, the inclusion of 100 μmol/L PQQ significantly enhanced sperm motility, membrane integrity, and acrosome integrity post freeze-thawing (p < 0.05). Furthermore, the group treated with 100 μmol/L PQQ exhibited reduced levels of MDA and ROS (p < 0.05), while ATP levels were significantly elevated (p < 0.05). Interestingly, treatment with 100 μmol/L PQQ resulted in decreased consumption of PGAM2, CAPZB, CAT, SOD1, and GPX1 proteins in sperm after freeze-thawing, compared to the control group (p < 0.05). These findings indicate that PQQ treatment enhances the quality of bull semen, mitigates oxidative stress damage, and ultimately improves the efficacy of sperm cryopreservation.
Collapse
Affiliation(s)
- Hai Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China;
| | - Kexiong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Weibin Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China;
| | - Jiahua Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Linli Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Yusheng Qin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Xiaoling Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| |
Collapse
|
3
|
Zhang S, Zhang H, Liu K, Xu X, Qin Y, Xiao L, Zhou C, Wu J, Liu Y, Bai J. Effect of cholesterol-loaded cyclodextrin treatment on boar sperm cryopreservation. Anim Biosci 2024; 37:1558-1567. [PMID: 38754842 PMCID: PMC11366524 DOI: 10.5713/ab.24.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/07/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE This study investigated the efficacy of different concentrations of cholesterolloaded cyclodextrin (CLC) on cryopreservation in boar sperm quality. METHODS In this study, we treated boar sperm with different concentrations of CLC before freezing and analyzed the sperm cholesterol concentration, plasma membrane, acrosome integrity rate and total motility rate before and after freeze-thawing. We also investigated the levels of reactive oxygen species (ROS), malondialdehyde (MDA), adenosine triphosphate (ATP), and structural- and oxidative-damage related proteins in all groups after thawing. RESULTS The results revealed that the cholesterol concentration of the CLC-treated groups was higher than that of the control group, both before freezing and after thawing (p<0.05). The plasma membrane integrity rate, acrosome integrity rate, and total motility rate of sperm were also enhanced after thawing in the CLC-treated group (all p<0.05). Moreover, ROS and MDA production and ATP loss were reduced in CLC-treated sperm during freezing and thawing (p<0.05). Finally, CLC pretreatment partially prevented the consumption of various proteins involved in metabolism including capping actin protein of muscle Z-line subunit beta (CAPZB), heat shock protein 90 alpha family class A member 1 (HSP90AA1) and phosphoglycerate mutase 2 (PGAM2) (p<0.05). CONCLUSION The CLC treatment increased cholesterol concentration and decreased structural injury and oxidative damage during boar sperm freezing and thawing, improving the efficacy of sperm cryopreservation in boar.
Collapse
Affiliation(s)
- Silong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
- Beijing University of Agricultural, College of Animal Science and Technology, Beijing 100096,
China
| | - Hanbing Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
- Beijing University of Agricultural, College of Animal Science and Technology, Beijing 100096,
China
| | - Kexiong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Xiaoling Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Yusheng Qin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Linli Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Chunmei Zhou
- Beijing Feifan Biotechnology Co., Ltd., Beijing 100094,
China
| | - Jianliang Wu
- Beijing Zhongyu Pig Breeding Co., Ltd., Beijing 100194,
China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Jiahua Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| |
Collapse
|
4
|
Ma J, Pang X, Laher I, Li S. Bioinformatics Analysis Identifies Key Genes in the Effect of Resistance Training on Female Skeletal Muscle Aging. J Aging Phys Act 2024; 32:531-540. [PMID: 38684216 DOI: 10.1123/japa.2023-0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/24/2023] [Accepted: 02/21/2024] [Indexed: 05/02/2024]
Abstract
Resistance training is used to combat skeletal muscle function decline in older adults. Few studies have been designed specific for females, resulting in very limited treatment options for skeletal muscle atrophy in aging women. Here, we analyzed the gene expression profiles of skeletal muscle samples from sedentary young women, sedentary older women, and resistance-trained older women, using microarray data from public database. A total of 45 genes that were differentially expressed during female muscle aging and reversed by resistance training were identified. Functional and pathway enrichment analysis, protein-protein interaction network analysis, and receiver operating characteristic analysis were performed to reveal the key genes and pathways involved in the effects of resistance training on female muscle aging. The collagen genes COL1A1, COL3A1, and COL4A1 were identified important regulators of female muscle aging and resistance training, by modulating multiple signaling pathways, such as PI3 kinase-Akt signaling, focal adhesions, extracellular matrix-receptor interactions, and relaxin signaling. Interestingly, the expression of CDKN1A and TP63 were increased during aging, and further upregulated by resistance training in older women, suggesting they may negatively affect resistance training outcomes. Our findings provide novel insights into the molecular mechanisms of resistance training on female muscle aging and identify potential biomarkers and targets for clinical intervention.
Collapse
Affiliation(s)
- Jiacheng Ma
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, SC, China
| | - Xiaoli Pang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, SC, China
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, SC, China
| |
Collapse
|
5
|
Yu H, Zhang K, Cheng G, Mei C, Wang H, Zan L. Genome-wide analysis reveals genomic diversity and signatures of selection in Qinchuan beef cattle. BMC Genomics 2024; 25:558. [PMID: 38834950 DOI: 10.1186/s12864-024-10482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Indigenous Chinese cattle have abundant genetic diversity and a long history of artificial selection, giving local breeds advantages in adaptability, forage tolerance and resistance. The detection of selective sweeps and comparative genome analysis of selected breeds and ancestral populations provide a basis for understanding differences among breeds and for the identification and utilization of candidate genes. We investigated genetic diversity, population structure, and signatures of selection using genome-wide sequencing data for a new breed of Qinchuan cattle (QNC, n = 21), ancestral Qinchuan cattle (QCC, n = 20), and Zaosheng cattle (ZSC, n = 19). RESULTS A population structure analysis showed that the ancestry components of QNC and ZSC were similar. In addition, the QNC and ZSC groups showed higher proportions of European taurine ancestry than that of QCC, and this may explain the larger body size of QNC, approaching that of European cattle under long-term domestication and selection. A neighbor-joining tree revealed that QCC individuals were closely related, whereas QNC formed a distinct group. To search for signatures of selection in the QNC genome, we evaluated nucleotide diversity (θπ), the fixation index (FST) and Tajima's D. Overlapping selective sweeps were enriched for one KEGG pathway, the apelin signaling pathway, and included five candidate genes (MEF2A, SMAD2, CAMK4, RPS6, and PIK3CG). We performed a comprehensive review of genomic variants in QNC, QCC, and ZSC using whole-genome sequencing data. QCC was rich in novel genetic diversity, while diversity in QNC and ZSC cattle was reduced due to strong artificial selection, with divergence from the original cattle. CONCLUSIONS We identified candidate genes associated with production traits. These results support the success of selective breeding and can guide further breeding and resource conservation of Qinchuan cattle.
Collapse
Affiliation(s)
- Hengwei Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ke Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, No.22 Xinong Road, Yangling, 712100, China
- National Beef Cattle Improvement Center, Yangling, 712100, China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- National Beef Cattle Improvement Center, Yangling, 712100, China.
| |
Collapse
|
6
|
Zhao Z, Fan C, Wang S, Wang H, Deng H, Zeng S, Tang S, Li L, Xiong Z, Qiu X. Single-nucleus RNA and multiomics in situ pairwise sequencing reveals cellular heterogeneity of the abnormal ligamentum teres in patients with developmental dysplasia of the hip. Heliyon 2024; 10:e27803. [PMID: 38524543 PMCID: PMC10958365 DOI: 10.1016/j.heliyon.2024.e27803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Developmental dysplasia of the hip (DDH) is the most common hip deformity in pediatric orthopedics. One of the common pathological changes in DDH is the thickening and hypertrophy of the ligamentum teres. However, the underlying pathogenic mechanism responsible for these changes remains unclear. This study represents the first time that the heterogeneity of cell subsets in the abnormal ligamentum teres of patients with DDH has been resolved at the single-cell and spatial levels by snRNA-Seq and MiP-Seq. Through gene set enrichment and intercellular communication network analyses, we found that receptor-like cells and ligament stem cells may play an essential role in the pathological changes resulting in ligamentum teres thickening and hypertrophy. Eight ligand-receptor pairs related to the ECM-receptor pathway were observed to be closely associated with DDH. Further, using the Monocle R package, we predicted a differentiation trajectory of pericytes into two branches, leading to junctional ligament stem cells or fibroblasts. The expression of extracellular matrix-related genes along pseudotemporal trajectories was also investigated. Using MiP-Seq, we determined the expression distribution of marker genes specific to different cell types within the ligamentum teres, as well as differentially expressed DDH-associated genes at the spatial level.
Collapse
Affiliation(s)
- Zhenhui Zhao
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
- China Medical University, Shenyang, Liaoning Province, China
| | - Chuiqin Fan
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
- China Medical University, Shenyang, Liaoning Province, China
| | - Shiyou Wang
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Haoyu Wang
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Hansheng Deng
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Shuaidan Zeng
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Shengping Tang
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Li Li
- Shenzhen Luohu Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Zhu Xiong
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
- China Medical University, Shenyang, Liaoning Province, China
| | - Xin Qiu
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|