1
|
Del Duca S, Vassallo A, Semenzato G, Fani R. Mimicking the last step of gene elongation: hints from the bacterial hisF gene. Gene 2023:147533. [PMID: 37279865 DOI: 10.1016/j.gene.2023.147533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Gene elongation consists in an in-tandem duplication of a gene and divergence and fusion of the two copies, resulting in a gene constituted by two divergent paralogous modules. Many present-day proteins show internal repeats of amino acid sequences, generated by gene elongation events; however, gene elongation is still a poorly studied evolutionary molecular mechanism. The most documented case is that of the histidine biosynthetic genes hisA and hisF, which derive from the gene elongation of an ancestral gene half the size of the extant ones. The aim of this work was to experimentally simulate the possible last step of the gene elongation event occurred during hisF gene evolution under selective pressure conditions. Azospirillum brasilense hisF gene, carrying a single nucleotide mutation that generates a stop codon between the two halves of the gene, was used to transform the histidine-auxotrophic Escherichia coli strain FB182 (hisF892). The transformed strain was subjected to selective pressure (i.e., low concentration/absence of histidine in the growth medium) and the obtained mutants were characterized. The restoration of prototrophy was strongly dependent on the time of incubation and on the strength of the selective pressure. The mutations involved the introduced stop codon with a single base substitution and none of the mutants restored the wild-type codon. Possible correlations between the different mutations and i) E. coli codon usage, ii) three-dimensional structures of the mutated HisF proteins, and iii) growth ability of the mutants were investigated. On the contrary, when the experiment was repeated by mutating a more conserved codon, only a synonymous substitution was obtained. Thus, experiments performed in this study allowed to mimic a possible gene elongation event occurred during the evolution of hisF gene, evidencing the ability of bacterial cells to modify their genome in short times under selective conditions.
Collapse
Affiliation(s)
- Sara Del Duca
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy; Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics (CREA-AA), Via di Lanciola 12/A, 50125, Cascine del Riccio (FI), Italy
| | - Alberto Vassallo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano 1, 62032, Camerino (MC) Italy
| | - Giulia Semenzato
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy.
| |
Collapse
|
2
|
Del Duca S, Semenzato G, Esposito A, Liò P, Fani R. The Operon as a Conundrum of Gene Dynamics and Biochemical Constraints: What We Have Learned from Histidine Biosynthesis. Genes (Basel) 2023; 14:genes14040949. [PMID: 37107707 PMCID: PMC10138114 DOI: 10.3390/genes14040949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Operons represent one of the leading strategies of gene organization in prokaryotes, having a crucial influence on the regulation of gene expression and on bacterial chromosome organization. However, there is no consensus yet on why, how, and when operons are formed and conserved, and many different theories have been proposed. Histidine biosynthesis is a highly studied metabolic pathway, and many of the models suggested to explain operons origin and evolution can be applied to the histidine pathway, making this route an attractive model for the study of operon evolution. Indeed, the organization of his genes in operons can be due to a progressive clustering of biosynthetic genes during evolution, coupled with a horizontal transfer of these gene clusters. The necessity of physical interactions among the His enzymes could also have had a role in favoring gene closeness, of particular importance in extreme environmental conditions. In addition, the presence in this pathway of paralogous genes, heterodimeric enzymes and complex regulatory networks also support other operon evolution hypotheses. It is possible that histidine biosynthesis, and in general all bacterial operons, may result from a mixture of several models, being shaped by different forces and mechanisms during evolution.
Collapse
Affiliation(s)
- Sara Del Duca
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Via di Lanciola 12/A, Cascine del Riccio, 50125 Firenze, Italy
| | - Giulia Semenzato
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Antonia Esposito
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Via di Lanciola 12/A, Cascine del Riccio, 50125 Firenze, Italy
| | - Pietro Liò
- Department of Computer Science and Technology, University of Cambridge, Cambridge CB3 0FD, UK
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Chioccioli S, Del Duca S, Vassallo A, Castronovo LM, Fani R. Exploring the role of the histidine biosynthetic hisF gene in cellular metabolism and in the evolution of (ancestral) genes: from LUCA to the extant (micro)organisms. Microbiol Res 2020; 240:126555. [PMID: 32673985 DOI: 10.1016/j.micres.2020.126555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 01/14/2023]
Abstract
Histidine biosynthesis is an ancestral pathway that was assembled before the appearance of the Last Universal Common Ancestor; afterwards, it remained unaltered in all the extant histidine-synthesizing (micro)organisms. It is a metabolic cross-road interconnecting histidine biosynthesis to nitrogen metabolism and the de novo synthesis of purines. This interconnection is due to the reaction catalyzed by the products of hisH and hisF genes. The latter gene is an excellent model to study which trajectories have been followed by primordial cells to build the first metabolic routes, since its evolution is the result of different molecular rearrangement events, i.e. gene duplication, gene fusion, gene elongation, and domain shuffling. Additionally, this review summarizes data concerning the involvement of hisF and its product in other different cellular processes, revealing that HisF very likely plays a role also in cell division control and involvement in virulence and nodule development in different bacteria. From the metabolic viewpoint, these results suggest that HisF plays a central role in cellular metabolism, highlighting the interconnections of different metabolic pathways.
Collapse
Affiliation(s)
- Sofia Chioccioli
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Sara Del Duca
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Alberto Vassallo
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | | | - Renato Fani
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
4
|
The Role of Gene Elongation in the Evolution of Histidine Biosynthetic Genes. Microorganisms 2020; 8:microorganisms8050732. [PMID: 32414216 PMCID: PMC7284861 DOI: 10.3390/microorganisms8050732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 11/29/2022] Open
Abstract
Gene elongation is a molecular mechanism consisting of an in-tandem duplication of a gene and divergence and fusion of the two copies, resulting in a gene constituted by two divergent paralogous modules. The aim of this work was to evaluate the importance of gene elongation in the evolution of histidine biosynthetic genes and to propose a possible evolutionary model for some of them. Concerning the genes hisA and hisF, which code for two homologous (β/α)8-barrels, it has been proposed that the two extant genes could be the result of a cascade of gene elongation/domain shuffling events starting from an ancestor gene coding for just one (β/α) module. A gene elongation event has also been proposed for the evolution of hisB and hisD; structural analyses revealed the possibility of an early elongation event, resulting in the repetition of modules. Furthermore, it is quite possible that the gene elongations responsible for the evolution of the four proteins occurred before the earliest phylogenetic divergence. In conclusion, gene elongation events seem to have played a crucial role in the evolution of the histidine biosynthetic pathway, and they may have shaped the structures of many genes during the first steps of their evolution.
Collapse
|
5
|
Henry CS, Lerma-Ortiz C, Gerdes SY, Mullen JD, Colasanti R, Zhukov A, Frelin O, Thiaville JJ, Zallot R, Niehaus TD, Hasnain G, Conrad N, Hanson AD, de Crécy-Lagard V. Systematic identification and analysis of frequent gene fusion events in metabolic pathways. BMC Genomics 2016; 17:473. [PMID: 27342196 PMCID: PMC4921024 DOI: 10.1186/s12864-016-2782-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/26/2016] [Indexed: 11/19/2022] Open
Abstract
Background Gene fusions are the most powerful type of in silico-derived functional associations. However, many fusion compilations were made when <100 genomes were available, and algorithms for identifying fusions need updating to handle the current avalanche of sequenced genomes. The availability of a large fusion dataset would help probe functional associations and enable systematic analysis of where and why fusion events occur. Results Here we present a systematic analysis of fusions in prokaryotes. We manually generated two training sets: (i) 121 fusions in the model organism Escherichia coli; (ii) 131 fusions found in B vitamin metabolism. These sets were used to develop a fusion prediction algorithm that captured the training set fusions with only 7 % false negatives and 50 % false positives, a substantial improvement over existing approaches. This algorithm was then applied to identify 3.8 million potential fusions across 11,473 genomes. The results of the analysis are available in a searchable database at http://modelseed.org/projects/fusions/. A functional analysis identified 3,000 reactions associated with frequent fusion events and revealed areas of metabolism where fusions are particularly prevalent. Conclusions Customary definitions of fusions were shown to be ambiguous, and a stricter one was proposed. Exploring the genes participating in fusion events showed that they most commonly encode transporters, regulators, and metabolic enzymes. The major rationales for fusions between metabolic genes appear to be overcoming pathway bottlenecks, avoiding toxicity, controlling competing pathways, and facilitating expression and assembly of protein complexes. Finally, our fusion dataset provides powerful clues to decipher the biological activities of domains of unknown function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2782-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher S Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA. .,Computation Institute, The University of Chicago, Chicago, IL, 60637, USA.
| | - Claudia Lerma-Ortiz
- Microbiology and Cell Science Department, University of Florida, Gainesville, FL, 32611, USA
| | - Svetlana Y Gerdes
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA.,Microbiology and Cell Science Department, University of Florida, Gainesville, FL, 32611, USA
| | - Jeffrey D Mullen
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Ric Colasanti
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Aleksey Zhukov
- Microbiology and Cell Science Department, University of Florida, Gainesville, FL, 32611, USA
| | - Océane Frelin
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Jennifer J Thiaville
- Microbiology and Cell Science Department, University of Florida, Gainesville, FL, 32611, USA
| | - Rémi Zallot
- Microbiology and Cell Science Department, University of Florida, Gainesville, FL, 32611, USA
| | - Thomas D Niehaus
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Ghulam Hasnain
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Neal Conrad
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Valérie de Crécy-Lagard
- Microbiology and Cell Science Department, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
6
|
Marcos CM, de Oliveira HC, da Silva JDF, Assato PA, Fusco-Almeida AM, Mendes-Giannini MJS. The multifaceted roles of metabolic enzymes in the Paracoccidioides species complex. Front Microbiol 2014; 5:719. [PMID: 25566229 PMCID: PMC4271699 DOI: 10.3389/fmicb.2014.00719] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/01/2014] [Indexed: 12/19/2022] Open
Abstract
Paracoccidioides species are dimorphic fungi and are the etiologic agents of paracoccidioidomycosis, which is a serious disease that involves multiple organs. The many tissues colonized by this fungus suggest a variety of surface molecules involved in adhesion. A surprising finding is that most enzymes in the glycolytic pathway, tricarboxylic acid (TCA) cycle and glyoxylate cycle in Paracoccidioides spp. have adhesive properties that aid in interacting with the host extracellular matrix and thus act as ‘moonlighting’ proteins. Moonlighting proteins have multiple functions, which adds a dimension to cellular complexity and benefit cells in several ways. This phenomenon occurs in both eukaryotes and prokaryotes. For example, moonlighting proteins from the glycolytic pathway or TCA cycle can play a role in bacterial pathogenesis by either acting as proteins secreted in a conventional pathway and/or as cell surface components that facilitate adhesion or adherence. This review outlines the multifunctionality exhibited by many Paracoccidioides spp. enzymes, including aconitase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, isocitrate lyase, malate synthase, triose phosphate isomerase, fumarase, and enolase. We discuss the roles that moonlighting activities play in the virulence characteristics of this fungus and several other human pathogens during their interactions with the host.
Collapse
Affiliation(s)
- Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Julhiany de F da Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| |
Collapse
|
7
|
Abstract
Determining the molecular changes that give rise to functional innovations is a major unresolved problem in biology. The paucity of examples has served as a significant hindrance in furthering our understanding of this process. Here we used experimental evolution with the bacterium Escherichia coli to quantify the molecular changes underlying functional innovation in 68 independent instances ranging over 22 different metabolic functions. Using whole-genome sequencing, we show that the relative contribution of regulatory and structural mutations depends on the cellular context of the metabolic function. In addition, we find that regulatory mutations affect genes that act in pathways relevant to the novel function, whereas structural mutations affect genes that act in unrelated pathways. Finally, we use population genetic modeling to show that the relative contributions of regulatory and structural mutations during functional innovation may be affected by population size. These results provide a predictive framework for the molecular basis of evolutionary innovation, which is essential for anticipating future evolutionary trajectories in the face of rapid environmental change.
Collapse
|
8
|
Ahangar MS, Vyas R, Nasir N, Biswal BK. Structures of native, substrate-bound and inhibited forms of Mycobacterium tuberculosis imidazoleglycerol-phosphate dehydratase. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2461-7. [PMID: 24311587 DOI: 10.1107/s0907444913022579] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/12/2013] [Indexed: 11/10/2022]
Abstract
Imidazoleglycerol-phosphate dehydratase (IGPD; HisB), which catalyses the conversion of imidazoleglycerol-phosphate (IGP) to imidazoleacetol-phosphate in the histidine biosynthesis pathway, is absent in mammals. This feature makes it an attractive target for herbicide discovery. Here, the crystal structure of Mycobacterium tuberculosis (Mtb) IGPD is reported together with the first crystal structures of substrate-bound and inhibited (by 3-amino-1,2,4-triazole; ATZ) forms of IGPD from any organism. The overall tertiary structure of Mtb IGPD, a four-helix-bundle sandwiched between two four-stranded mixed β-sheets, resembles the three-dimensional structures of IPGD from other organisms; however, Mtb IGPD possesses a unique structural feature: the insertion of a one-turn 310-helix followed by a loop ten residues in length. The functional form of IGPD is 24-meric, exhibiting 432 point-group symmetry. The structure of the IGPD-IGP complex revealed that the imidazole ring of the IGP is firmly anchored between the two Mn atoms, that the rest of the substrate interacts through hydrogen bonds mainly with residues Glu21, Arg99, Glu180, Arg121 and Lys184 which protrude from three separate protomers and that the 24-mer assembly contains 24 catalytic centres. Both the structural and the kinetic data demonstrate that the inhibitor 3-amino-1,2,4-triazole inhibits IGPD competitively.
Collapse
Affiliation(s)
- Mohammad Syed Ahangar
- Protein Crystallography Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | | | |
Collapse
|
9
|
Zhang YHP. Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol Adv 2011; 29:715-25. [PMID: 21672618 DOI: 10.1016/j.biotechadv.2011.05.020] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 05/19/2011] [Accepted: 05/30/2011] [Indexed: 12/25/2022]
Abstract
Substrate channeling is a process of transferring the product of one enzyme to an adjacent cascade enzyme or cell without complete mixing with the bulk phase. Such phenomena can occur in vivo, in vitro, or ex vivo. Enzyme-enzyme or enzyme-cell complexes may be static or transient. In addition to enhanced reaction rates through substrate channeling in complexes, numerous potential benefits of such complexes are protection of unstable substrates, circumvention of unfavorable equilibrium and kinetics imposed, forestallment of substrate competition among different pathways, regulation of metabolic fluxes, mitigation of toxic metabolite inhibition, and so on. Here we review numerous examples of natural and synthetic complexes featuring substrate channeling. Constructing synthetic in vivo, in vitro or ex vivo complexes for substrate channeling would have great biotechnological potentials in metabolic engineering, multi-enzyme-mediated biocatalysis, and cell-free synthetic pathway biotransformation (SyPaB).
Collapse
Affiliation(s)
- Y-H Percival Zhang
- Biological Systems Engineering Department, 210-A Seitz Hall, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
10
|
Papaleo MC, Russo E, Fondi M, Emiliani G, Frandi A, Brilli M, Pastorelli R, Fani R. Structural, evolutionary and genetic analysis of the histidine biosynthetic “core” in the genus Burkholderia. Gene 2009; 448:16-28. [DOI: 10.1016/j.gene.2009.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 07/25/2009] [Accepted: 08/05/2009] [Indexed: 11/28/2022]
|
11
|
Fani R, Fondi M. Origin and evolution of metabolic pathways. Phys Life Rev 2009; 6:23-52. [PMID: 20416849 DOI: 10.1016/j.plrev.2008.12.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 11/27/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
Abstract
The emergence and evolution of metabolic pathways represented a crucial step in molecular and cellular evolution. In fact, the exhaustion of the prebiotic supply of amino acids and other compounds that were likely present in the ancestral environment, imposed an important selective pressure, favoring those primordial heterotrophic cells which became capable of synthesizing those molecules. Thus, the emergence of metabolic pathways allowed primitive organisms to become increasingly less-dependent on exogenous sources of organic compounds. Comparative analyses of genes and genomes from organisms belonging to Archaea, Bacteria and Eukarya revealed that, during evolution, different forces and molecular mechanisms might have driven the shaping of genomes and the arisal of new metabolic abilities. Among these gene elongations, gene and operon duplications undoubtedly played a major role since they can lead to the (immediate) appearance of new genetic material that, in turn, might undergo evolutionary divergence giving rise to new genes coding for new metabolic abilities. Gene duplication has been invoked in the different schemes proposed to explain why and how the extant metabolic pathways have arisen and shaped. Both the analysis of completely sequenced genomes and directed evolution experiments strongly support one of them, i.e. the patchwork hypothesis, according to which metabolic pathways have been assembled through the recruitment of primitive enzymes that could react with a wide range of chemically related substrates. However, the analysis of the structure and organization of genes belonging to ancient metabolic pathways, such as histidine biosynthesis and nitrogen fixation, suggested that other different hypothesis, i.e. the retrograde hypothesis or the semi-enzymatic theory, may account for the arisal of some metabolic routes.
Collapse
Affiliation(s)
- Renato Fani
- Laboratory of Microbial and Molecular Evolution, Department of Evolutionary Biology, Via Romana 17-19, University of Florence, Italy
| | | |
Collapse
|
12
|
Abstract
Proteins able to participate in unrelated biological processes have been grouped under the generic name of moonlighting proteins. Work with different yeast species has uncovered a great number of moonlighting proteins and shown their importance for adequate functioning of the yeast cell. Moonlighting activities in yeasts include such diverse functions as control of gene expression, organelle assembly, and modification of the activity of metabolic pathways. In this review, we consider several well-studied moonlighting proteins in different yeast species, paying attention to the experimental approaches used to identify them and the evidence that supports their participation in the unexpected function. Usually, moonlighting activities have been uncovered unexpectedly, and up to now, no satisfactory way to predict moonlighting activities has been found. Among the well-characterized moonlighting proteins in yeasts, enzymes from the glycolytic pathway appear to be prominent. For some cases, it is shown that despite close phylogenetic relationships, moonlighting activities are not necessarily conserved among yeast species. Organisms may utilize moonlighting to add a new layer of regulation to conventional regulatory networks. The existence of this type of proteins in yeasts should be taken into account when designing mutant screens or in attempts to model or modify yeast metabolism.
Collapse
Affiliation(s)
- Carlos Gancedo
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain.
| | | |
Collapse
|
13
|
Fani R, Brilli M, Fondi M, Lió P. The role of gene fusions in the evolution of metabolic pathways: the histidine biosynthesis case. BMC Evol Biol 2007; 7 Suppl 2:S4. [PMID: 17767732 PMCID: PMC1963479 DOI: 10.1186/1471-2148-7-s2-s4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Histidine biosynthesis is one of the best characterized anabolic pathways. There is a large body of genetic and biochemical information available, including operon structure, gene expression, and increasingly larger sequence databases. For over forty years this pathway has been the subject of extensive studies, mainly in Escherichia coli and Salmonella enterica, in both of which details of histidine biosynthesis appear to be identical. In these two enterobacteria the pathway is unbranched, includes a number of unusual reactions, and consists of nine intermediates; his genes are arranged in a compact operon (hisGDC [NB]HAF [IE]), with three of them (hisNB, hisD and hisIE) coding for bifunctional enzymes. We performed a detailed analysis of his gene fusions in available genomes to understand the role of gene fusions in shaping this pathway. RESULTS The analysis of HisA structures revealed that several gene elongation events are at the root of this protein family: internal duplication have been identified by structural superposition of the modules composing the TIM-barrel protein. Several his gene fusions happened in distinct taxonomic lineages; hisNB originated within gamma-proteobacteria and after its appearance it was transferred to Campylobacter species (epsilon-proteobacteria) and to some Bacteria belonging to the CFB group. The transfer involved the entire his operon. The hisIE gene fusion was found in several taxonomic lineages and our results suggest that it probably happened several times in distinct lineages. Gene fusions involving hisIE and hisD genes (HIS4) and hisH and hisF genes (HIS7) took place in the Eukarya domain; the latter has been transferred to some delta-proteobacteria. CONCLUSION Gene duplication is the most widely known mechanism responsible for the origin and evolution of metabolic pathways; however, several other mechanisms might concur in the process of pathway assembly and gene fusion appeared to be one of the most important and common.
Collapse
Affiliation(s)
- Renato Fani
- Dept. of Animal Biology and Genetics, via Romana 17, 50125 Florence, Italy
| | - Matteo Brilli
- Dept. of Animal Biology and Genetics, via Romana 17, 50125 Florence, Italy
| | - Marco Fondi
- Dept. of Animal Biology and Genetics, via Romana 17, 50125 Florence, Italy
| | - Pietro Lió
- Computer Laboratory, University of Cambridge, CB3 0FD, Cambridge, UK
| |
Collapse
|
14
|
Wang CL, Malkus A, Zuzga SM, Chang PFL, Cunfer BM, Arseniuk E, Ueng PP. Diversity of the trifunctional histidine biosynthesis gene (his) in cereal Phaeosphaeria species. Genome 2007; 50:595-609. [PMID: 17632581 DOI: 10.1139/g07-038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phaeosphaeria species are important causal agents of Stagonospora leaf blotch diseases in cereals. In this study, the nucleotide sequence and deduced polypeptide of the trifunctional histidine biosynthesis gene (his) are used to investigate the phylogenetic relationships and provide molecular identification among cereal Phaeosphaeria species. The full-length sequences of the his gene were obtained by PCR amplification and compared among cereal Phaeosphaeria species. The coding sequence of the his gene in wheat-biotype P. nodorum (PN-w) was 2697 bp. The his genes in barley-biotype P. nodorum (PN-b), two P. avenaria f. sp. triticea isolates (homothallic Pat1 and Pat3), and Phaeosphaeria species from Polish rye and dallis grass were 2694 bp. The his gene in heterothallic isolate Pat2, however, was 2693 bp because the intron had one fewer base. In P. avenaria f. sp. avenaria (Paa), the his gene was only 2670 bp long. The differences in the size of the his gene contributed to the variation in amino acid sequences in the gap region located between the phosphoribosyl-ATP pyrophosphohydrolase and histidinol dehydrogenase sub-domains. Based on nucleotide and deduced amino acid sequences of the his gene, Pat1 was not closely related to either PN-w or the Paa clade. It appears that rates of evolution of the his gene were fast in cereal Phaeosphaeria species. The possible involvement of meiotic recombination in genetic diversity of the his gene in P. nodorum is discussed.
Collapse
Affiliation(s)
- Chih-Li Wang
- Department of Plant Protection, Fengshan Tropical Horticultural Experiment Station, Agricultural Research Institute, Kaohsiung 830, Taiwan
| | | | | | | | | | | | | |
Collapse
|
15
|
Fondi M, Brilli M, Fani R. On the origin and evolution of biosynthetic pathways: integrating microarray data with structure and organization of the Common Pathway genes. BMC Bioinformatics 2007; 8 Suppl 1:S12. [PMID: 17430556 PMCID: PMC1885841 DOI: 10.1186/1471-2105-8-s1-s12] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The lysine, threonine, and methionine biosynthetic pathways share the three initial enzymatic steps, which are referred to as the Common Pathway (CP). In Escherichia coli three different aspartokinases (AKI, AKII, AKIII, the products of thrA, metL and lysC, respectively) can perform the first step of the CP. Moreover, two of them (AKI and AKII) are bifunctional, carrying also homoserine dehydrogenasic activity (hom product). The second step of the CP is catalyzed by a single aspartate semialdehyde dehydrogenase (ASDH, the product of asd). Thus, in the CP of E. coli while a single copy of ASDH performs the same reaction for three different metabolic routes, three different AKs perfom a unique step. Why and how such a situation did emerge and maintain? How is it correlated to the different regulatory mechanisms acting on these genes? The aim of this work was to trace the evolutionary pathway leading to the extant scenario in proteobacteria. RESULTS The analysis of the structure, organization, phylogeny, and distribution of ask and hom genes revealed that the presence of multiple copies of these genes and their fusion events are restricted to the gamma-subdivision of proteobacteria. This allowed us to depict a model to explain the evolution of ask and hom according to which the fused genes are the outcome of a cascade of gene duplication and fusion events that can be traced in the ancestor of gamma-proteobacteria. Moreover, the appearance of fused genes paralleled the assembly of operons of different sizes, suggesting a strong correlation between the structure and organization of these genes. A statistic analysis of microarray data retrieved from experiments carried out on E. coli and Pseudomonas aeruginosa was also performed. CONCLUSION The integration of data concerning gene structure, organization, phylogeny, distribution, and microarray experiments allowed us to depict a model for the evolution of ask and hom genes in proteobacteria and to suggest a biological significance for the extant scenario.
Collapse
Affiliation(s)
- Marco Fondi
- Dipartimento di Biologia Animale e Genetica, Università di Firenze, Via Romana 17\19, Firenze, Italy
| | - Matteo Brilli
- Dipartimento di Biologia Animale e Genetica, Università di Firenze, Via Romana 17\19, Firenze, Italy
| | - Renato Fani
- Dipartimento di Biologia Animale e Genetica, Università di Firenze, Via Romana 17\19, Firenze, Italy
| |
Collapse
|
16
|
Stepansky A, Leustek T. Histidine biosynthesis in plants. Amino Acids 2006; 30:127-42. [PMID: 16547652 DOI: 10.1007/s00726-005-0247-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 07/18/2005] [Indexed: 11/29/2022]
Abstract
The study of histidine metabolism has never been at the forefront of interest in plant systems despite the significant role that the analysis of this pathway has played in development of the field of molecular genetics in microbes. With the advent of methods to analyze plant gene function by complementation of microbial auxotrophic mutants and the complete analysis of plant genome sequences, strides have been made in deciphering the histidine pathway in plants. The studies point to a complex evolutionary origin of genes for histidine biosynthesis. Gene regulation studies have indicated novel regulatory networks involving histidine. In addition, physiological studies have indicated novel functions for histidine in plants as chelators and transporters of metal ions. Recent investigations have revealed intriguing connections of histidine in plant reproduction. The exciting new information suggests that the study of plant histidine biosynthesis has finally begun to flower.
Collapse
Affiliation(s)
- A Stepansky
- Biotechnology Center for Agriculture and the Environment, Rutgers University, New Brunswick, New Jersey 08903, USA.
| | | |
Collapse
|
17
|
Fani R, Brilli M, Liò P. The origin and evolution of operons: the piecewise building of the proteobacterial histidine operon. J Mol Evol 2005; 60:378-90. [PMID: 15871048 DOI: 10.1007/s00239-004-0198-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 10/01/2004] [Indexed: 12/01/2022]
Abstract
The structure and organization of 470 histidine biosynthetic genes from 47 different proteobacteria were combined with phylogenetic inference to investigate the mechanisms responsible for assembly of the his pathway and the origin of his operons. Data obtained in this work showed that a wide variety of different organization strategies of his gene arrays exist and that some his genes or entire his operons are likely to have been horizontally transferred between bacteria of the same or different proteobacterial branches. We propose a "piecewise" model for the origin and evolution of proteobacterial his operons, according to which the initially scattered his genes of the ancestor of proteobacteria coded for monofunctional enzymes (except possibly for hisD) and underwent a stepwise compacting process that reached its culmination in some gamma-proteobacteria. The initial step of operon buildup was the formation of the his "core," a cluster consisting of four genes (hisBHAF) whose products interconnect histidine biosynthesis to both de novo synthesis of purine metabolism and that occurred in the common ancestor of the alpha/beta/gamma branches, possibly after its separation from the epsilon one. The following step was the formation of three mini-operons (hisGDC, hisBHAF, hisIE) transcribed from independent promoters, that very likely occurred in the ancestor of the beta/gamma-branch, after its separation from the alpha one. Then the three mini-operons joined together to give a compact operon. In most gamma-proteobacteria the two fusions involving the gene pairs hisN-B and hisI-E occurred. Finally the gamma-proteobacterial his operon was horizontally transferred to other proteobacteria, such as Campylobacter jejuni. The biological significance of clustering of his genes is also discussed.
Collapse
Affiliation(s)
- Renato Fani
- Dipartimento di Biologia Animale e Genetica, Firenze, Italy.
| | | | | |
Collapse
|