1
|
Zhang X, Jiang J, Ma Z, Yang Y, Meng L, Xie F, Cui G, Yin X. Cloning of TaeRF1 gene from Caucasian clover and its functional analysis responding to low-temperature stress. FRONTIERS IN PLANT SCIENCE 2022; 13:968965. [PMID: 36605954 PMCID: PMC9809470 DOI: 10.3389/fpls.2022.968965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Low temperature (LT) is an important threat to the normal growth of plants. In this study, based on the full-length transcriptome sequencing results, the cold resistance genes were cloned from Caucasian clover with strong cold resistance. We cloned the CDS of TaeRF1, which is 1311 bp in length and encodes 436 amino acids. The molecular weight of the protein is 48.97 kDa, which had no transmembrane structure, and its isoelectric point (pI) was 5.42. We predicted the structure of TaeRF1 and found 29 phosphorylation sites. Subcellular localization showed that TaeRF1 was localized and expressed in cell membrane and chloroplasts. The TaeRF1 gene was induced by stress due to cold, salt, alkali and drought and its expression level was higher in roots and it was more sensitive to LT. Analysis of transgenic A. thaliana plants before and after LT treatment showed that the TaeRF1 gene enhanced the removal of excess H2O2, and increased the activity of antioxidant enzymes, thus improving the plant's ability to resist stress. Additionally, the OE lines showed increased cold tolerance by upregulating the transcription level of cold-responsive genes (CBF1, CBF2, COR15B, COR47, ICE1, and RD29A). This study demonstrates that TaeRF1 is actively involved in the responses of plants to LT stress. We also provide a theoretical basis for breeding and a potential mechanism underlying the responses of Caucasian clover to abiotic stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guowen Cui
- *Correspondence: Guowen Cui, ; Xiujie Yin,
| | - Xiujie Yin
- *Correspondence: Guowen Cui, ; Xiujie Yin,
| |
Collapse
|
2
|
May JP, Simon AE. Targeting of viral RNAs by Upf1-mediated RNA decay pathways. Curr Opin Virol 2020; 47:1-8. [PMID: 33341474 DOI: 10.1016/j.coviro.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
Viral RNAs are susceptible to co-translational RNA decay pathways mediated by the RNA helicase Upstream frameshift 1 (Upf1). Upf1 is a key component in nonsense-mediated decay (NMD), Staufen1-mediated mRNA decay (SMD), and structure-mediated RNA decay (SRD) pathways, among others. Diverse families of viruses have features that predispose them to Upf1 targeting, but have evolved means to escape decay through the action of cis-acting or trans-acting viral factors. Studies aimed at understanding how viruses are subjected to and circumvent NMD have increased our understanding of NMD target selection of host mRNAs. This review focuses on the knowledge gained from studying NMD in viral systems as well as related Upf1-dependent pathways and how these pathways restrict virus replication.
Collapse
Affiliation(s)
- Jared P May
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland - College Park, College Park, MD, USA.
| |
Collapse
|
3
|
Kurilla A, Szőke A, Auber A, Káldi K, Silhavy D. Expression of the translation termination factor eRF1 is autoregulated by translational readthrough and 3'UTR intron-mediated NMD in Neurospora crassa. FEBS Lett 2020; 594:3504-3517. [PMID: 32869294 DOI: 10.1002/1873-3468.13918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 01/24/2023]
Abstract
Eukaryotic release factor 1 (eRF1) is a translation termination factor that binds to the ribosome at stop codons. The expression of eRF1 is strictly controlled, since its concentration defines termination efficiency and frequency of translational readthrough. Here, we show that eRF1 expression in Neurospora crassa is controlled by an autoregulatory circuit that depends on the specific 3'UTR structure of erf1 mRNA. The stop codon context of erf1 promotes readthrough that protects the mRNA from its 3'UTR-induced nonsense-mediated mRNA decay (NMD). High eRF1 concentration leads to inefficient readthrough, thereby allowing NMD-mediated erf1 degradation. We propose that eRF1 expression is controlled by similar autoregulatory circuits in many fungi and seed plants and discuss the evolution of autoregulatory systems of different translation termination factors.
Collapse
Affiliation(s)
- Anita Kurilla
- Department of Genetics, NARIC, Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Anita Szőke
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Andor Auber
- Department of Genetics, NARIC, Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Krisztina Káldi
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Dániel Silhavy
- Department of Genetics, NARIC, Agricultural Biotechnology Institute, Gödöllő, Hungary.,Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| |
Collapse
|
4
|
Nyikó T, Auber A, Szabadkai L, Benkovics A, Auth M, Mérai Z, Kerényi Z, Dinnyés A, Nagy F, Silhavy D. Expression of the eRF1 translation termination factor is controlled by an autoregulatory circuit involving readthrough and nonsense-mediated decay in plants. Nucleic Acids Res 2017; 45:4174-4188. [PMID: 28062855 PMCID: PMC5397192 DOI: 10.1093/nar/gkw1303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/24/2016] [Accepted: 12/28/2016] [Indexed: 12/28/2022] Open
Abstract
When a ribosome reaches a stop codon, the eukaryotic Release Factor 1 (eRF1) binds to the A site of the ribosome and terminates translation. In yeasts and plants, both over- and underexpression of eRF1 lead to altered phenotype indicating that eRF1 expression should be strictly controlled. However, regulation of eRF1 level is still poorly understood. Here we show that expression of plant eRF1 is controlled by a complex negative autoregulatory circuit, which is based on the unique features of the 3΄untranslated region (3΄UTR) of the eRF1-1 transcript. The stop codon of the eRF1-1 mRNA is in a translational readthrough promoting context, while its 3΄UTR induces nonsense-mediated decay (NMD), a translation termination coupled mRNA degradation mechanism. We demonstrate that readthrough partially protects the eRF1-1 mRNA from its 3΄UTR induced NMD, and that elevated eRF1 levels inhibit readthrough and stimulate NMD. Thus, high eRF1 level leads to reduced eRF1-1 expression, as weakened readthrough fails to protect the eRF1-1 mRNA from the more intense NMD. This eRF1 autoregulatory circuit might serve to finely balance general translation termination efficiency.
Collapse
Affiliation(s)
- Tünde Nyikó
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Andor Auber
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Levente Szabadkai
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Anna Benkovics
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Mariann Auth
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Zsuzsanna Mérai
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Zoltán Kerényi
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Andrea Dinnyés
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári 62, H-6726, Hungary
| | - Dániel Silhavy
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| |
Collapse
|
5
|
Hellens RP, Brown CM, Chisnall MAW, Waterhouse PM, Macknight RC. The Emerging World of Small ORFs. TRENDS IN PLANT SCIENCE 2016; 21:317-328. [PMID: 26684391 DOI: 10.1016/j.tplants.2015.11.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/23/2015] [Accepted: 11/05/2015] [Indexed: 05/10/2023]
Abstract
Small open reading frames (sORFs) are an often overlooked feature of plant genomes. Initially found in plant viral RNAs and considered an interesting curiosity, an increasing number of these sORFs have been shown to encode functional peptides or play a regulatory role. The recent discovery that many of these sORFs initiate with start codons other than AUG, together with the identification of functional small peptides encoded in supposedly noncoding primary miRNA transcripts (pri-miRs), has drastically increased the number of potentially functional sORFs within the genome. Here we review how advances in technology, notably ribosome profiling (RP) assays, are complementing bioinformatics and proteogenomic methods to provide powerful ways to identify these elusive features of plant genomes, and highlight the regulatory roles sORFs can play.
Collapse
Affiliation(s)
- Roger P Hellens
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Chris M Brown
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Matthew A W Chisnall
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter M Waterhouse
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Richard C Macknight
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand; New Zealand Institute for Plant and Food Research Ltd.
| |
Collapse
|
6
|
Browning KS, Bailey-Serres J. Mechanism of cytoplasmic mRNA translation. THE ARABIDOPSIS BOOK 2015; 13:e0176. [PMID: 26019692 PMCID: PMC4441251 DOI: 10.1199/tab.0176] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings.
Collapse
Affiliation(s)
- Karen S. Browning
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin TX 78712-0165
- Both authors contributed equally to this work
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, CA, 92521 USA
- Both authors contributed equally to this work
| |
Collapse
|
7
|
An Y, Lou Y, Xu Y. Overexpression, crystallization and preliminary X-ray crystallographic analysis of release factor eRF1-1 from Arabidopsis thaliana. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1295-8. [PMID: 24192373 PMCID: PMC3818057 DOI: 10.1107/s1744309113027784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/10/2013] [Indexed: 11/10/2022]
Abstract
Peptide release factor 1 (RF1) regulates the termination of translation in protein synthesis by recognizing the stop codons. The eukaryotic RF1s (eRF1s) from Arabidopsis thaliana and human have different stop-codon preferences even though they share high sequence similarity. Based on known RF1 structures, it has been suggested that the specificity depends on both the local structure and the domain arrangement, but the lack of a structure of Arabidopsis eRF1 hinders a detailed comparison. To reveal the mechanism of stop-codon recognition and compare it with that of human eRF1, one of the three Arabidopsis eRF1s, AteRF1-1, was studied and a preliminary X-ray crystallographic analysis is reported here. The protein was overexpressed in Escherichia coli and crystallized at room temperature using the vapour-diffusion method. Crystals were grown from 1.6 M lithium sulfate, 0.1 M Tris-HCl pH 8.0, 2%(v/v) PEG 400 and diffracted to 3.77 Å resolution. The data were processed in point group 622, with unit-cell parameters a = b = 136.6, c = 325.7 Å.
Collapse
Affiliation(s)
- Yan An
- The Nurturing Station for the State Key Laboratory of Subtropical Sylviculture, Zhejiang Agriculture and Forestry University, Lin’an, Zhejiang 331300, People’s Republic of China
| | - Yongfeng Lou
- The Nurturing Station for the State Key Laboratory of Subtropical Sylviculture, Zhejiang Agriculture and Forestry University, Lin’an, Zhejiang 331300, People’s Republic of China
| | - Yingwu Xu
- The Nurturing Station for the State Key Laboratory of Subtropical Sylviculture, Zhejiang Agriculture and Forestry University, Lin’an, Zhejiang 331300, People’s Republic of China
| |
Collapse
|
8
|
Zhou X, Sun TH, Wang N, Ling HQ, Lu S, Li L. The cauliflower Orange gene enhances petiole elongation by suppressing expression of eukaryotic release factor 1. THE NEW PHYTOLOGIST 2011; 190:89-100. [PMID: 21175633 DOI: 10.1111/j.1469-8137.2010.03578.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The cauliflower (Brassica oleracea var. botrytis) Orange (Or) gene affects plant growth and development in addition to conferring β-carotene accumulation. This study was undertaken to investigate the molecular basis for the effects of the Or gene mutation in on plant growth. The OR protein was found to interact with cauliflower and Arabidopsis eukaryotic release factor 1-2 (eRF1-2), a member of the eRF1 family, by yeast two-hybrid analysis and by bimolecular fluorescence complementation (BiFC) assay. Concomitantly, the Or mutant showed reduced expression of the BoeRF1 family genes. Transgenic cauliflower plants with suppressed expression of BoeRF1-2 and BoeRF1-3 were generated by RNA interference. Like the Or mutant, the BoeRF1 RNAi lines showed increased elongation of the leaf petiole. This long-petiole phenotype was largely caused by enhanced cell elongation, which resulted from increased cell length and elevated expression of genes involved in cell-wall loosening. These findings demonstrate that the cauliflower Or gene controls petiole elongation by suppressing the expression of eRF1 genes, and provide new insights into the molecular mechanism of leaf petiole regulation.
Collapse
Affiliation(s)
- Xiangjun Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tian-Hu Sun
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ning Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shan Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Zhou X, Cooke P, Li L. Eukaryotic release factor 1-2 affects Arabidopsis responses to glucose and phytohormones during germination and early seedling development. JOURNAL OF EXPERIMENTAL BOTANY 2009; 61:357-67. [PMID: 19939886 PMCID: PMC2803205 DOI: 10.1093/jxb/erp308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 09/22/2009] [Accepted: 10/01/2009] [Indexed: 05/20/2023]
Abstract
Germination and early seedling development are coordinately regulated by glucose and phytohormones such as ABA, GA, and ethylene. However, the molecules that affect plant responses to glucose and phytohormones remain to be fully elucidated. Eukaryotic release factor 1 (eRF1) is responsible for the recognition of the stop codons in mRNAs during protein synthesis. Accumulating evidence indicates that eRF1 functions in other processes in addition to translation termination. The physiological role of eRF1-2, a member of the eRF1 family, in Arabidopsis was examined here. The eRF1-2 gene was found to be specifically induced by glucose. Arabidopsis plants overexpressing eRF1-2 were hypersensitive to glucose during germination and early seedling development. Such hypersensitivity to glucose was accompanied by a dramatic reduction of the expression of glucose-regulated genes, chlorophyll a/b binding protein and plastocyanin. The hypersensitive response was not due to the enhanced accumulation of ABA. In addition, the eRF1-2 overexpressing plants showed increased sensitivity to paclobutrazol, an inhibitor of GA biosynthesis, and exogenous GA restored their normal growth. By contrast, the loss-of-function erf1-2 mutant exhibited resistance to paclobutrazol, suggesting that eRF1-2 may exert a negative effect on the GA signalling pathway. Collectively, these data provide evidence in support of a novel role of eRF1-2 in affecting glucose and phytohormone responses in modulating plant growth and development.
Collapse
Affiliation(s)
- Xiangjun Zhou
- Robert W Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Peter Cooke
- Microscopic Imaging, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Li Li
- Robert W Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Atkinson GC, Baldauf SL, Hauryliuk V. Evolution of nonstop, no-go and nonsense-mediated mRNA decay and their termination factor-derived components. BMC Evol Biol 2008; 8:290. [PMID: 18947425 PMCID: PMC2613156 DOI: 10.1186/1471-2148-8-290] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 10/23/2008] [Indexed: 11/20/2022] Open
Abstract
Background Members of the eukaryote/archaea specific eRF1 and eRF3 protein families have central roles in translation termination. They are also central to various mRNA surveillance mechanisms, together with the eRF1 paralogue Dom34p and the eRF3 paralogues Hbs1p and Ski7p. We have examined the evolution of eRF1 and eRF3 families using sequence similarity searching, multiple sequence alignment and phylogenetic analysis. Results Extensive BLAST searches confirm that Hbs1p and eRF3 are limited to eukaryotes, while Dom34p and eRF1 (a/eRF1) are universal in eukaryotes and archaea. Ski7p appears to be restricted to a subset of Saccharomyces species. Alignments show that Dom34p does not possess the characteristic class-1 RF minidomains GGQ, NIKS and YXCXXXF, in line with recent crystallographic analysis of Dom34p. Phylogenetic trees of the protein families allow us to reconstruct the evolution of mRNA surveillance mechanisms mediated by these proteins in eukaryotes and archaea. Conclusion We propose that the last common ancestor of eukaryotes and archaea possessed Dom34p-mediated no-go decay (NGD). This ancestral Dom34p may or may not have required a trGTPase, mostly like a/eEF1A, for its delivery to the ribosome. At an early stage in eukaryotic evolution, eEF1A was duplicated, giving rise to eRF3, which was recruited for translation termination, interacting with eRF1. eRF3 evolved nonsense-mediated decay (NMD) activity either before or after it was again duplicated, giving rise to Hbs1p, which we propose was recruited to assist eDom34p in eukaryotic NGD. Finally, a third duplication within ascomycete yeast gave rise to Ski7p, which may have become specialised for a subset of existing Hbs1p functions in non-stop decay (NSD). We suggest Ski7p-mediated NSD may be a specialised mechanism for counteracting the effects of increased stop codon read-through caused by prion-domain [PSI+] mediated eRF3 precipitation.
Collapse
Affiliation(s)
- Gemma C Atkinson
- Department of Biology, University of York, Heslington, York, YO10 5DD, United Kingdom.
| | | | | |
Collapse
|
11
|
Baranov PV, Vestergaard B, Hamelryck T, Gesteland RF, Nyborg J, Atkins JF. Diverse bacterial genomes encode an operon of two genes, one of which is an unusual class-I release factor that potentially recognizes atypical mRNA signals other than normal stop codons. Biol Direct 2006; 1:28. [PMID: 16970810 PMCID: PMC1586002 DOI: 10.1186/1745-6150-1-28] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 09/13/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While all codons that specify amino acids are universally recognized by tRNA molecules, codons signaling termination of translation are recognized by proteins known as class-I release factors (RF). In most eukaryotes and archaea a single RF accomplishes termination at all three stop codons. In most bacteria, there are two RFs with overlapping specificity, RF1 recognizes UA(A/G) and RF2 recognizes U(A/G)A. THE HYPOTHESIS First, we hypothesize that orthologues of the E. coli K12 pseudogene prfH encode a third class-I RF that we designate RFH. Second, it is likely that RFH responds to signals other than conventional stop codons. Supporting evidence comes from the following facts: (i) A number of bacterial genomes contain prfH orthologues with no discernable interruptions in their ORFs. (ii) RFH shares strong sequence similarity with other class-I bacterial RFs. (iii) RFH contains a highly conserved GGQ motif associated with peptidyl hydrolysis activity (iv) residues located in the areas supposedly interacting with mRNA and the ribosomal decoding center are highly conserved in RFH, but different from other RFs. RFH lacks the functional, but non-essential domain 1. Yet, RFH-encoding genes are invariably accompanied by a highly conserved gene of unknown function, which is absent in genomes that lack a gene for RFH. The accompanying gene is always located upstream of the RFH gene and with the same orientation. The proximity of the 3' end of the former with the 5' end of the RFH gene makes it likely that their expression is co-regulated via translational coupling. In summary, RFH has the characteristics expected for a class-I RF, but likely with different specificity than RF1 and RF2. TESTING THE HYPOTHESIS The most puzzling question is which signals RFH recognizes to trigger its release function. Genetic swapping of RFH mRNA recognition components with its RF1 or RF2 counterparts may reveal the nature of RFH signals. IMPLICATIONS OF THE HYPOTHESIS The hypothesis implies a greater versatility of release-factor like activity in the ribosomal A-site than previously appreciated. A closer study of RFH may provide insight into the evolution of the genetic code and of the translational machinery responsible for termination of translation. REVIEWERS This article was reviewed by Daniel Wilson (nominated by Eugene Koonin), Warren Tate (nominated by Eugene Koonin), Yoshikazu Nakamura (nominated by Eugene Koonin) and Eugene Koonin.
Collapse
Affiliation(s)
- Pavel V Baranov
- Bioscience Institute, University College Cork, Cork, Ireland
- Department of Human Genetics, University of Utah, 15N 2030E, Salt Lake City, UT84112-5330, USA
| | - Bente Vestergaard
- Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
- Department of Medicinal Chemistry, Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Thomas Hamelryck
- Bioinformatics center, Institute of Molecular Biology and Physiology, University of Copenhagen, Universitetsparken 15, Building 10, 2100 Copenhagen, Denmark
| | | | - Jens Nyborg
- Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - John F Atkins
- Bioscience Institute, University College Cork, Cork, Ireland
- Department of Human Genetics, University of Utah, 15N 2030E, Salt Lake City, UT84112-5330, USA
| |
Collapse
|
12
|
Yoine M, Ohto MA, Onai K, Mita S, Nakamura K. The lba1 mutation of UPF1 RNA helicase involved in nonsense-mediated mRNA decay causes pleiotropic phenotypic changes and altered sugar signalling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:49-62. [PMID: 16740149 DOI: 10.1111/j.1365-313x.2006.02771.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The low-beta-amylase1 (lba1) mutant of Arabidopsis thaliana has reduced sugar-induced expression of Atbeta-Amy and shows pleiotropic phenotypes such as early flowering; short day-sensitive growth; and seed germination that is hypersensitive to glucose and abscisic acid and resistant to mannose. lba1 was a missense mutation of UPF1 RNA helicase involved in nonsense-mediated mRNA decay (NMD), which eliminates mRNAs with premature termination codons (PTCs), and replaces highly conserved Gly851 of UPF1 with Glu. Expression of the wild-type UPF1 in lba1 rescued not only the reduced sugar-inducible gene expression, but also early flowering and altered seed-germination phenotypes. Sugar-inducible mRNAs were over-represented among transcripts decreased in sucrose-treated lba1 compared with Col plants, suggesting that UPF1 is involved in the expression of a subset of sugar-inducible genes. On the other hand, transcripts increased in lba1, which are likely to contain direct targets of NMD, included mRNAs for many transcription factors and metabolic enzymes that play diverse functions. Among these, the level of an alternatively spliced transcript of AtTFIIIA containing PTC was 17-fold higher in lba1 compared with Col plants, and it was reduced to the level in Col by expressing the wild-type UPF1. The lba1 mutant provides a good tool for studying NMD in plants.
Collapse
Affiliation(s)
- Masato Yoine
- Laboratory of Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
13
|
Petsch KA, Mylne J, Botella JR. Cosuppression of eukaryotic release factor 1-1 in Arabidopsis affects cell elongation and radial cell division. PLANT PHYSIOLOGY 2005; 139:115-26. [PMID: 16113224 PMCID: PMC1203362 DOI: 10.1104/pp.105.062695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Revised: 05/30/2005] [Accepted: 05/30/2005] [Indexed: 05/04/2023]
Abstract
The role of the eukaryotic release factor 1 (eRF1) in translation termination has previously been established in yeast; however, only limited characterization has been performed on any plant homologs. Here, we demonstrate that cosuppression of eRF1-1 in Arabidopsis (Arabidopsis thaliana) has a profound effect on plant morphology, resulting in what we term the broomhead phenotype. These plants primarily exhibit a reduction in internode elongation causing the formation of a broomhead-like cluster of malformed siliques at the top of the inflorescence stem. Histological analysis of broomhead stems revealed that cells are reduced in height and display ectopic lignification of the phloem cap cells, some phloem sieve cells, and regions of the fascicular cambium, as well as enhanced lignification of the interfascicular fibers. We also show that cell division in the fascicular cambial regions is altered, with the majority of vascular bundles containing cambial cells that are disorganized and possess enlarged nuclei. This is the first attempt at functional characterization of a release factor in vivo in plants and demonstrates the importance of eRF1-1 function in Arabidopsis.
Collapse
Affiliation(s)
- Katherine Anne Petsch
- Plant Genetic Engineering Laboratory, Department of Botany, School of Integrative Biology, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|