1
|
Castaño MI, Ye X, Uy FMK. First genome assembly of the order Strepsiptera using PacBio HiFi reads reveals a miniature genome. Sci Data 2024; 11:934. [PMID: 39198488 PMCID: PMC11358474 DOI: 10.1038/s41597-024-03808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Twisted-wing insects (Strepsiptera) are an enigmatic order of parasites with unusual life histories and striking sexual dimorphism. Males emerge from hosts as free-living winged adults, while females from most species remain as endoparasites that retain larval traits. Due to scarce genomic data and phylogenetic controversies, Strepsiptera was only recently placed as the closest living relative to beetles (Coleoptera). Here, we report the first PacBio HiFi genome assembly of the strepsipteran Xenos peckii (Xenidae). This de novo assembly size is 72.1 Mb, with a BUSCO score of 87.4%, N50 of 7.3 Mb, 23.4% GC content, and 38.41% repeat content. We identified 8 contigs that contain >75% of the assembly and reflect the haploid chromosome number reported from karyotypic data, and 3 contigs that exhibit sex chromosome coverage patterns. Additionally, the mitochondrial genome is 16,111 bp long and has 37 genes. This long-read assembly for Strepsiptera reveals a miniature genome and provides a unique tool to understand complex genome evolution associated with a parasitic lifestyle and extreme sexual dimorphism.
Collapse
Affiliation(s)
| | - Xinhai Ye
- College of Advanced Agriculture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Floria M K Uy
- University of Rochester, Department of Biology, Rochester, NY, USA.
| |
Collapse
|
2
|
Castañeda-Osorio R, Belokobylskij SA, Jasso-Martínez JM, Samacá-Sáenz E, Kula RR, Zaldívar-Riverón A. Mitogenome architecture supports the non-monophyly of the cosmopolitan parasitoid wasp subfamily Doryctinae (Hymenoptera: Braconidae) recovered by nuclear and mitochondrial phylogenomics. INVERTEBR SYST 2024; 38:IS24029. [PMID: 38740060 DOI: 10.1071/is24029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Mitochondrial DNA gene organisation is an important source of phylogenetic information for various metazoan taxa at different evolutionary timescales, though this has not been broadly tested for all insect groups nor within a phylogenetic context. The cosmopolitan subfamily Doryctinae is a highly diverse group of braconid wasps mainly represented by ectoparasitoids of xylophagous beetle larvae. Previous molecular studies based on Sanger and genome-wide (ultraconserved elements, UCE; and mitochondrial genomes) sequence data have recovered a non-monophyletic Doryctinae, though the relationships involved have always been weakly supported. We characterised doryctine mitogenomes and conducted separate phylogenetic analyses based on mitogenome and UCE sequence data of ~100 representative doryctine genera to assess the monophyly and higher-level classification of the subfamily. We identified rearrangements of mitochondrial transfer RNAs (tRNAs) that support a non-monophyletic Doryctinae consisting of two separate non-related clades with strong geographic structure ('New World' and 'Old World' clades). This geographic structure was also consistently supported by the phylogenetic analyses preformed with mitogenome and UCE sequence data. These results highlight the utility of the mitogenome gene rearrangements as a potential source of phylogenetic information at different evolutionary timescales.
Collapse
Affiliation(s)
- Rubén Castañeda-Osorio
- Colección Nacional de Insectos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, 3er circuito exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México, México; and Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1er Piso, Circuito de Posgrados, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Sergey A Belokobylskij
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya Naberezhnaya 1, Saint Petersburg, Russian Federation
| | - Jovana M Jasso-Martínez
- Colección Nacional de Insectos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, 3er circuito exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México, México; and Department of Entomology, Smithsonian Institution, National Museum of Natural History, 10th Street & Constitution Avenue NW, Washington, DC, USA
| | - Ernesto Samacá-Sáenz
- Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, 3er Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México, México
| | - Robert R Kula
- Systematic Entomology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, c/o Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Alejandro Zaldívar-Riverón
- Colección Nacional de Insectos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, 3er circuito exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México, México
| |
Collapse
|
3
|
Kanzaki N, Makino S, Kosaka H, Sayama K, Hamaguchi K, Narayama S. Nematode and Strepsipteran Parasitism in Bait-Trapped and Hand-Collected Hornets (Hymenoptera, Vespidae, Vespa). INSECTS 2023; 14:398. [PMID: 37103213 PMCID: PMC10143633 DOI: 10.3390/insects14040398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
The parasitism of two groups of host-manipulating parasites of hornets was examined in Kyoto, Japan. Vespa mandarinia (661 individuals), V. simillima (303), V. analis (457), V. ducalis (158), V. crabro (57), and V. dybowskii (4) were collected either by bait trap or hand collection with an insect net, and examined for their parasites. An endoparasitic nematode, Sphaerularia vespae was isolated from three overwintered gynes of V. mandarinia and a gyne of V. ducalis. While endoparasitic insects, Xenos spp., were recovered from 13 V. mandarinia, 77 V. analis, two V. ducalis, and three V. crabro, and those recovered from V. analis and others were molecularly identified as X. oxyodontes and X. moutoni, respectively. Comparing Xenos parasitism level and capturing methods, the parasitism level was significantly higher in trapped hosts than in hand-collected ones, suggesting that stylopized hosts are more strongly attracted to the food source (bait trap) compared with unparasitized hosts. The genotypes of S. vespae were identical to each other, and near identical to its type population. While each of the two Xenos spp. showed four mitochondrial DNA haplotypes. A phylogenetic comparison suggested that Xenos haplotypes found in the present study are close to those previously reported from Japan and other Asian countries.
Collapse
Affiliation(s)
- Natsumi Kanzaki
- Kansai Research Center, Forestry and Forest Products Research Institute (FFPRI), 68 Nagaikyutaroh, Momoyama, Fushimi, Kyoto 612-0855, Japan; (K.H.); (S.N.)
| | - Shun’ichi Makino
- Department of Forest Entomology, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan;
| | - Hajime Kosaka
- Department of Mushroom Science and Forest Microbiology, FFPRI, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan;
| | - Katsuhiko Sayama
- Kyushu Research Center, Forestry and Forest Products Research Institute, 4-11-16 Kurokami, Chuo, Kumamoto 860-0862, Japan
| | - Keiko Hamaguchi
- Kansai Research Center, Forestry and Forest Products Research Institute (FFPRI), 68 Nagaikyutaroh, Momoyama, Fushimi, Kyoto 612-0855, Japan; (K.H.); (S.N.)
| | - Shinji Narayama
- Kansai Research Center, Forestry and Forest Products Research Institute (FFPRI), 68 Nagaikyutaroh, Momoyama, Fushimi, Kyoto 612-0855, Japan; (K.H.); (S.N.)
| |
Collapse
|
4
|
Wang Y, Cao J, Guo X, Guo C, Li W, Murányi D. Comparative analysis of mitochondrial genomes among the family Peltoperlidae (Plecoptera: Systellognatha) and phylogenetic implications. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.979847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nowadays, the position of Peltoperlidae in Systellognatha has been resolved based on morphological analyses. However, there are different opinions based on molecular data. To date, only three peltoperlid mitogenomes are available, and more sampling is needed to obtain precise phylogenetic relationships. In this study, we obtained the complete mitogenomes of Cryptoperla kawasawai (15,832 bp) and Peltoperlopsis sagittata (15,756 bp). Our results show that gene content, gene order, DmTTF binding site, nucleotide composition, codon usage, ribonucleic acid (RNA) structure, and structural elements in the control region are highly conserved in peltoperlids. Heatmap analysis of codon usage shows that the AT-rich codons UUA, AUU, UUU, and AUA were commonly used codons in the Peltoperlidae. Evolutionary rate analyses of protein-coding genes reveal that different genes have been subject to different rates of molecular evolution correlated with the GC content. All tRNA genes in peltoperlid mitogenomes have a canonical cloverleaf secondary structure except for trnS1, whose dihydrouridine arm simply forms a loop. The control region of the family has several distinct structural characteristics and has the potential to serve as effective phylogenetic markers. Phylogenetic analyses support the monophyly of Perloidea, but the monophyly of Pteronarcyoidea is still not supported. The Peltoperlidae is placed as the earliest branch within the Systellognatha, and the estimated phylogenetic relationship is: Peltoperlidae + {(Styloperlidae + Pteronarcyidae) + [Perlidae + (Chloroperlidae + Perlodidae)]}. Our results provide new insight into the phylogeny of this group.
Collapse
|
5
|
Complete Mitochondrial Genome of Malenka flexura (Plecoptera: Nemouridae) and Phylogenetic Analysis. Genes (Basel) 2022; 13:genes13050911. [PMID: 35627296 PMCID: PMC9142110 DOI: 10.3390/genes13050911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
The genus-level relationships within the subfamily Amphinemurinae have been controversial, although attempts have been made based on morphology and limited molecular data. With the establishment of two new genera, the phylogenetic relationships within Amphinemurinae should be re-examined. In this study, the complete mitochondrial genome (mitogenome) of Malenka flexura of the genus Malenka was firstly sequenced and analyzed. The phylogeny of Amphinemurinae was also reconstructed using 13 proteincoding genes (PCGs) from previously published stoneflies. This mitogenome was 15,744 bp long and encoded the typical 37 genes, as well as a putative control region. The gene arrangement of M. flexura mitogenome is identical with the putative ancestral mitogenome in Drosophila yakuba. Most PCGs used standard ATN as start codons and TAA/TAG as termination codons. All tRNA genes exhibited the typical cloverleaf secondary structure, except for tRNASer(AGN), whose dihydrouridine (DHU) arm was lacking. Some structural elements in the control region were founded, such as tandem repeat regions, stemloop structures, polyN stretch and microsatellite structure, etc. Phylogenetic analyses of sequenced Amphinemurinae mitogenomes unsupported the sister relationship of Amphinemura and Malenka. Finally, the phylogenetic analyses inferred a relationship within Amphinemurinae: Amphinemura + (Malenka + (Protonemura + (Indonemoura + (Sphaeronemoura + Mesonemoura)))).
Collapse
|
6
|
Dong Z, Liu X, Mao C, He J, Li X. Xenos yangi sp. nov.: A new twisted-wing parasite species (Strepsiptera, Xenidae) from Gaoligong Mountains, Southwest China. Zookeys 2022; 1085:11-27. [PMID: 35210903 PMCID: PMC8828590 DOI: 10.3897/zookeys.1085.76484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/14/2022] [Indexed: 11/12/2022] Open
Abstract
Here we report a new twisted-wing parasite species of the family Xenidae based on both morphological and molecular evidence. By using nearly complete mitogenomes, we confirmed the twisted-wing parasites on two wasps (Vespavelutina and Vespabicolor) (China: Yunnan) as the same species, and associated its neotenic females and alate males. Combining the mitogenomic data (COI) and morphological traits, this species was identified to be a new species of the genus Xenos, namely Xenosyangi Dong, Liu & Li, sp. nov. Detailed descriptions and illustrations are provided for the new species.
Collapse
|
7
|
Towett-Kirui S, Morrow JL, Riegler M. Substantial rearrangements, single nucleotide frameshift deletion and low diversity in mitogenome of Wolbachia-infected strepsipteran endoparasitoid in comparison to its tephritid hosts. Sci Rep 2022; 12:477. [PMID: 35013476 PMCID: PMC8748643 DOI: 10.1038/s41598-021-04398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022] Open
Abstract
Insect mitogenome organisation is highly conserved, yet, some insects, especially with parasitic life cycles, have rearranged mitogenomes. Furthermore, intraspecific mitochondrial diversity can be reduced by fitness-affecting bacterial endosymbionts like Wolbachia due to their maternal coinheritance with mitochondria. We have sequenced mitogenomes of the Wolbachia-infected endoparasitoid Dipterophagus daci (Strepsiptera: Halictophagidae) and four of its 22 known tephritid fruit fly host species using total genomic extracts of parasitised flies collected across > 700 km in Australia. This halictophagid mitogenome revealed extensive rearrangements relative to the four fly mitogenomes which exhibited the ancestral insect mitogenome pattern. Compared to the only four available other strepsipteran mitogenomes, the D. daci mitogenome had additional transpositions of one rRNA and two tRNA genes, and a single nucleotide frameshift deletion in nad5 requiring translational frameshifting or, alternatively, resulting in a large protein truncation. Dipterophagus daci displays an almost completely endoparasitic life cycle when compared to Strepsiptera that have maintained the ancestral state of free-living adults. Our results support the hypothesis that the transition to extreme endoparasitism evolved together with increased levels of mitogenome changes. Furthermore, intraspecific mitogenome diversity was substantially smaller in D. daci than the parasitised flies suggesting Wolbachia reduced mitochondrial diversity because of a role in D. daci fitness.
Collapse
Affiliation(s)
- Sharon Towett-Kirui
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jennifer L Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
8
|
Zhang R, Li J, Mao C, Dong Z, He J, Liu G, Zhao R, Wang W, Li X. The mitochondrial genome of one 'twisted-wing parasite' Xenos cf. moutoni (Insecta, Strepsiptera, Xenidae) from Gaoligong Mountains, Southwest of China. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:512-514. [PMID: 33628908 PMCID: PMC7889101 DOI: 10.1080/23802359.2021.1872443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The nearly complete mitochondrial genome (mitogenome) of Xenos cf. moutoni, one twisted-wing parasite on wasp Vespa velutina from Southwest of China, is described in this study. The total length of this mitogenome is 16,717 bp, containing 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and an incomplete A + T-rich control region . All of the 13 PCGs are initiated with canonical ATN (N represents A, T, G, C) as start codons; 8 PCGs are terminated with a complete typical stop codon TAA, and the remaining five PCGs (cox2, cox3, nad3, nad4 and nad5) have an incomplete stop codon with just a T. The phylogenetic analysis based on the nucleotide sequences of PCGs and rRNAs indicates that Xenos cf. moutoni has a close relationship with Xenos vesparum, confirming its placement in the family Xenidae.
Collapse
Affiliation(s)
- Ru Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jun Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chuyang Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhiwei Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jinwu He
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Guichun Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ruoping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Center for Excellence in Animal Evolution and Genetics, Kunming, Yunnan, China
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
9
|
Wang Y, Cao J, Murányi D, Li W. Comparison of two complete mitochondrial genomes from Perlodidae (Plecoptera: Perloidea) and the family-level phylogenetic implications of Perloidea. Gene 2018; 675:254-264. [DOI: 10.1016/j.gene.2018.06.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
|
10
|
Kjer KM, Simon C, Yavorskaya M, Beutel RG. Progress, pitfalls and parallel universes: a history of insect phylogenetics. J R Soc Interface 2016; 13:20160363. [PMID: 27558853 PMCID: PMC5014063 DOI: 10.1098/rsif.2016.0363] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/19/2016] [Indexed: 11/12/2022] Open
Abstract
The phylogeny of insects has been both extensively studied and vigorously debated for over a century. A relatively accurate deep phylogeny had been produced by 1904. It was not substantially improved in topology until recently when phylogenomics settled many long-standing controversies. Intervening advances came instead through methodological improvement. Early molecular phylogenetic studies (1985-2005), dominated by a few genes, provided datasets that were too small to resolve controversial phylogenetic problems. Adding to the lack of consensus, this period was characterized by a polarization of philosophies, with individuals belonging to either parsimony or maximum-likelihood camps; each largely ignoring the insights of the other. The result was an unfortunate detour in which the few perceived phylogenetic revolutions published by both sides of the philosophical divide were probably erroneous. The size of datasets has been growing exponentially since the mid-1980s accompanied by a wave of confidence that all relationships will soon be known. However, large datasets create new challenges, and a large number of genes does not guarantee reliable results. If history is a guide, then the quality of conclusions will be determined by an improved understanding of both molecular and morphological evolution, and not simply the number of genes analysed.
Collapse
Affiliation(s)
- Karl M Kjer
- Department of Entomology and Nematology, University of California-Davis, 1282 Academic Surge, Davis, CA 95616, USA
| | - Chris Simon
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA
| | - Margarita Yavorskaya
- Institut für Spezielle Zoologie und Evolutionsbiologie, FSU Jena, 07743 Jena, Germany
| | - Rolf G Beutel
- Institut für Spezielle Zoologie und Evolutionsbiologie, FSU Jena, 07743 Jena, Germany
| |
Collapse
|
11
|
Liu QN, Chai XY, Bian DD, Ge BM, Zhou CL, Tang BP. The complete mitochondrial genome of fall armyworm Spodoptera frugiperda (Lepidoptera:Noctuidae). Genes Genomics 2015. [DOI: 10.1007/s13258-015-0346-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Huang M, Wang Y, Liu X, Li W, Kang Z, Wang K, Li X, Yang D. The complete mitochondrial genome and its remarkable secondary structure for a stonefly Acroneuria hainana Wu (Insecta: Plecoptera, Perlidae). Gene 2014; 557:52-60. [PMID: 25499698 DOI: 10.1016/j.gene.2014.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
The Plecoptera (stoneflies) is a hemimetabolous order of insects, whose larvae are usually used as indicators for fresh water biomonitoring. Herein, we describe the complete mitochondrial (mt) genome of a stonefly species, namely Acroneuria hainana Wu belonging to the family Perlidae. This mt genome contains 13 PCGs, 22 tRNA-coding genes and 2 rRNA-coding genes that are conserved in most insect mt genomes, and it also has the identical gene order with the insect ancestral gene order. However, there are three special initiation codons of ND1, ND5 and COI in PCGs: TTG, GTG and CGA, coding for L, V and R, respectively. Additionally, the 899-bp control region, with 73.30% A+T content, has two long repeated sequences which are found at the 3'-end closing to the tRNA(Ile) gene. Both of them can be folded into a stem-loop structure, whose adjacent upstream and downstream sequences can be also folded into stem-loop structures. It is presumed that the four special structures in series could be associated with the D-loop replication. It might be able to adjust the replication speed of two replicate directions.
Collapse
Affiliation(s)
- Mingchao Huang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Yuyu Wang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xingyue Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Weihai Li
- Department of Plant Protection, Henan Institute of Science and Technology, Xinxiang, China
| | - Zehui Kang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Kai Wang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xuankun Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Ding Yang
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Babbucci M, Basso A, Scupola A, Patarnello T, Negrisolo E. Is it an ant or a butterfly? Convergent evolution in the mitochondrial gene order of Hymenoptera and Lepidoptera. Genome Biol Evol 2014; 6:3326-43. [PMID: 25480682 PMCID: PMC4466343 DOI: 10.1093/gbe/evu265] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 11/18/2022] Open
Abstract
Insect mitochondrial genomes (mtDNA) are usually double helical and circular molecules containing 37 genes that are encoded on both strands. The arrangement of the genes is not constant for all species, and produces distinct gene orders (GOs) that have proven to be diagnostic in defining clades at different taxonomic levels. In general, it is believed that distinct taxa have a very low chance of sharing identically arranged GOs. However, examples of identical, homoplastic local rearrangements occurring in distinct taxa do exist. In this study, we sequenced the complete mtDNAs of the ants Formica fusca and Myrmica scabrinodis (Formicidae, Hymenoptera) and compared their GOs with those of other Insecta. The GO of F. fusca was found to be identical to the GO of Dytrisia (the largest clade of Lepidoptera). This finding is the first documented case of an identical GO shared by distinct groups of Insecta, and it is the oldest known event of GO convergent evolution in animals. Both Hymenoptera and Lepidoptera acquired this GO early in their evolution. Using a phylogenetic approach combined with new bioinformatic tools, the chronological order of the evolutionary events that produced the diversity of the hymenopteran GOs was determined. Additionally, new local homoplastic rearrangements shared by distinct groups of insects were identified. Our study showed that local and global homoplasies affecting the insect GOs are more widespread than previously thought. Homoplastic GOs can still be useful for characterizing the various clades, provided that they are appropriately considered in a phylogenetic and taxonomic context.
Collapse
Affiliation(s)
- Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Agripolis, Legnaro (PD), Italy
| | - Andrea Basso
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Agripolis, Legnaro (PD), Italy Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNE), University of Padova, Agripolis, Legnaro (PD), Italy Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Agripolis, Legnaro (PD), Italy
| | - Antonio Scupola
- Natural History Museum (Museo di Storia Naturale), Verona, Italy
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Agripolis, Legnaro (PD), Italy
| | - Enrico Negrisolo
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Agripolis, Legnaro (PD), Italy
| |
Collapse
|
14
|
Simon S, Hadrys H. A comparative analysis of complete mitochondrial genomes among Hexapoda. Mol Phylogenet Evol 2013; 69:393-403. [DOI: 10.1016/j.ympev.2013.03.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 02/13/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
|
15
|
Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny. ANNUAL REVIEW OF ENTOMOLOGY 2013; 59:95-117. [PMID: 24160435 DOI: 10.1146/annurev-ento-011613-162007] [Citation(s) in RCA: 941] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The mitochondrial (mt) genome is, to date, the most extensively studied genomic system in insects, outnumbering nuclear genomes tenfold and representing all orders versus very few. Phylogenomic analysis methods have been tested extensively, identifying compositional bias and rate variation, both within and between lineages, as the principal issues confronting accurate analyses. Major studies at both inter- and intraordinal levels have contributed to our understanding of phylogenetic relationships within many groups. Genome rearrangements are an additional data type for defining relationships, with rearrangement synapomorphies identified across multiple orders and at many different taxonomic levels. Hymenoptera and Psocodea have greatly elevated rates of rearrangement offering both opportunities and pitfalls for identifying rearrangement synapomorphies in each group. Finally, insects are model systems for studying aberrant mt genomes, including truncated tRNAs and multichromosomal genomes. Greater integration of nuclear and mt genomic studies is necessary to further our understanding of insect genomic evolution.
Collapse
Affiliation(s)
- Stephen L Cameron
- Earth, Environmental & Biological Sciences School, Science & Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia;
| |
Collapse
|
16
|
Kim MJ, Kim KG, Kim I. Description of Nearly Completed Mitochondrial Genome Sequences of the Garden Chafer Polyphylla laticollis manchurica, Endangered in Korea (Insecta: Coleoptera). ACTA ACUST UNITED AC 2013. [DOI: 10.7852/ijie.2013.27.1.185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
The complete mitochondrial genome of the Antarctic sea spider Ammothea carolinensis (Chelicerata; Pycnogonida). Polar Biol 2013. [DOI: 10.1007/s00300-013-1288-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Elven H, Bachmann L, Gusarov VI. Molecular phylogeny of the Athetini-Lomechusini-Ecitocharini clade of aleocharine rove beetles (Insecta). ZOOL SCR 2012; 41:617-636. [PMID: 23316099 PMCID: PMC3532658 DOI: 10.1111/j.1463-6409.2012.00553.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2012] [Indexed: 11/30/2022]
Abstract
Elven, E., Bachmann, L. & Gusarov V. I. (2012) Molecular phylogeny of the Athetini-Lomechusini-Ecitocharini clade of aleocharine rove beetles (Insecta). -Zoologica Scripta, 41, 617-636.It has previously been shown that the Aleocharinae tribes Athetini and Lomechusini form a well-supported clade, which also includes the small Neotropical tribe Ecitocharini. However, neither Athetini nor Lomechusini were recovered as monophyletic. In this study, we addressed the basal phylogenetic relationships among the three tribes using sequence data from (i) a mitochondrial fragment covering the COI, Leu2 and COII genes; (ii) a mitochondrial fragment covering part of the 16S gene, the Leu1 gene and part of the NADH 1 gene; and (iii) a part of the nuclear 18S gene, for 68 Athetini, 33 Lomechusini and 2 Ecitocharini species, plus representatives from 10 other tribes. The athetine subtribe Geostibina was recovered as sister group to the 'true Lomechusini', which included the type genus Lomechusa. The two clades formed a sister group to the main Athetini clade, which also included Ecitocharini and the 'false Lomechusini', a group of New World genera normally placed in Lomechusini. The following changes in classification are proposed: (i) Geostibina Seevers, 1978 is raised to tribal rank, and 13 Athetini genera are placed in Geostibini; (ii) Ecitodonia Seevers, 1965; Ecitopora Wasmann, 1887, and Tetradonia Wasmann, 1894 are moved from Lomechusini to Athetini; (iii) Ecitocharini Seevers, 1965 is placed in synonymy with Athetini; (iv) Discerota Mulsant & Rey, 1874 is tentatively included in Oxypodini; (v) Actocharina Bernhauer, 1907 is placed in synonymy with Hydrosmecta Thomson, 1858.
Collapse
Affiliation(s)
- Hallvard Elven
- Hallvard Elven, National Center for Biosystematics, Natural History Museum, University of OsloPO Box 1172 Blindern, NO-0318 Oslo, Norway
| | - Lutz Bachmann
- Lutz Bachmann, National Center for Biosystematics, Natural History Museum, University of OsloPO Box 1172 Blindern, NO-0318 Oslo, Norway
| | - Vladimir I Gusarov
- Vladimir I. Gusarov, National Center for Biosystematics, Natural History Museum, University of OsloPO Box 1172 Blindern, NO-0318 Oslo, Norway
| |
Collapse
|
19
|
Cao YQ, Ma C, Chen JY, Yang DR. The complete mitochondrial genomes of two ghost moths, Thitarodes renzhiensis and Thitarodes yunnanensis: the ancestral gene arrangement in Lepidoptera. BMC Genomics 2012; 13:276. [PMID: 22726496 PMCID: PMC3463433 DOI: 10.1186/1471-2164-13-276] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/12/2012] [Indexed: 11/23/2022] Open
Abstract
Background Lepidoptera encompasses more than 160,000 described species that have been classified into 45–48 superfamilies. The previously determined Lepidoptera mitochondrial genomes (mitogenomes) are limited to six superfamilies of the lineage Ditrysia. Compared with the ancestral insect gene order, these mitogenomes all contain a tRNA rearrangement. To gain new insights into Lepidoptera mitogenome evolution, we sequenced the mitogenomes of two ghost moths that belong to the non-ditrysian lineage Hepialoidea and conducted a comparative mitogenomic analysis across Lepidoptera. Results The mitogenomes of Thitarodes renzhiensis and T. yunnanensis are 16,173 bp and 15,816 bp long with an A + T content of 81.28 % and 82.34 %, respectively. Both mitogenomes include 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and the A + T-rich region. Different tandem repeats in the A + T-rich region mainly account for the size difference between the two mitogenomes. All the protein-coding genes start with typical mitochondrial initiation codons, except for cox1 (CGA) and nad1 (TTG) in both mitogenomes. The anticodon of trnS(AGN) in T. renzhiensis and T. yunnanensis is UCU instead of the mostly used GCU in other sequenced Lepidoptera mitogenomes. The 1,584-bp sequence from rrnS to nad2 was also determined for an unspecified ghost moth (Thitarodes sp.), which has no repetitive sequence in the A + T-rich region. All three Thitarodes species possess the ancestral gene order with trnI-trnQ-trnM located between the A + T-rich region and nad2, which is different from the gene order trnM-trnI-trnQ in all previously sequenced Lepidoptera species. The formerly identified conserved elements of Lepidoptera mitogenomes (i.e. the motif ‘ATAGA’ and poly-T stretch in the A + T-rich region and the long intergenic spacer upstream of nad2) are absent in the Thitarodes mitogenomes. Conclusion The mitogenomes of T. renzhiensis and T. yunnanensis exhibit unusual features compared with the previously determined Lepidoptera mitogenomes. Their ancestral gene order indicates that the tRNA rearrangement event(s) likely occurred after Hepialoidea diverged from other lepidopteran lineages. Characterization of the two ghost moth mitogenomes has enriched our knowledge of Lepidoptera mitogenomes and contributed to our understanding of the mechanisms underlying mitogenome evolution, especially gene rearrangements.
Collapse
Affiliation(s)
- Yong-Qiang Cao
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | | | | | | |
Collapse
|
20
|
Ye HY, Xiao LL, Zhou ZJ, Huang Y. Complete mitochondrial genome of Locusta migratoria migratoria (Orthoptera: Oedipodidae): three tRNA-like sequences on the N-strand. Zoolog Sci 2012; 29:90-6. [PMID: 22303849 DOI: 10.2108/zsj.29.90] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The complete 16053 bp mitochondrial genome (mitogenome) sequence of Locusta migratoria migratoria has been determined. This mitogenome contains the base compositional biases and codon usage typical of metazoans, and the RSCU values indicate a negative correlation with the C and G contents in codon. The orientation and gene order of the L. migratoria migratoria is identical to Locusta migratoria migratoiodes. An unusual feature of the L. migratoria migratoria mitogenome is the presence of three tRNA-like structures on the N-strand: one tRNA(Ile)-like and two tRNA(Leu(CUN))-like sequences. The tRNA-like sequences have proper folding structures and anticodons sequences. Two repeated DNA sequences, Rpt I and Rpt II, were found in the A+T-rich region of the L. migratoria migratoria mitogenome. Both repeated sequences have various features. In the 5' region of Rpt I, a 51 bp fragment is localized in the srRNA gene; and there are two tandemly sub-repeated DNA sequences (sub-Rpts), Rpt 1-4, within Rpt I and Rpt II. One stem-loop structure on the N-strand that may be involved in the N-strand replication initiation was found in the A+T-rich region.
Collapse
|
21
|
Li H, Liu H, Cao L, Shi A, Yang H, Cai W. The complete mitochondrial genome of the damsel bug Alloeorhynchus bakeri (Hemiptera: Nabidae). Int J Biol Sci 2011; 8:93-107. [PMID: 22211108 PMCID: PMC3248651 DOI: 10.7150/ijbs.8.93] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 11/10/2011] [Indexed: 11/05/2022] Open
Abstract
The complete sequence of the mitochondrial DNA (mtDNA) of the damsel bug, Alloeorhynchus bakeri, has been completed and annotated in this study. It represents the first sequenced mitochondrial genome of heteropteran family Nabidae. The circular genome is 15, 851 bp in length with an A+T content of 73.5%, contains the typical 37 genes that are arranged in the same order as that of the putative ancestor of hexapods. Nucleotide composition and codon usage are similar to other known heteropteran mitochondrial genomes. All protein-coding genes (PCGs) use standard initiation codons (methionine and isoleucine), except COI, which started with TTG. Canonical TAA and TAG termination codons are found in eight protein-coding genes, the remaining five (COI, COII, COIII, ND5, ND1) have incomplete termination codons (T or TA). PCGs of two strands present opposite CG skew which is also reflected by the nucleotide composition and codon usage. All tRNAs have the typical clover-leaf structure, except the dihydrouridine (DHU) arm of tRNA(Ser (AGN))which forms a simple loop as known in many other metazoa. Secondary structure models of the ribosomal RNA genes of A. bakeri are presented, similar to those proposed for other insect orders. There are six domains and 45 helices and three domains and 27 helices in the secondary structures of rrnL and rrnS, respectively. The major non-coding region (also called control region) between the small ribosomal subunit and the tRNA(Ile )gene includes two special regions. The first region includes four 133 bp tandem repeat units plus a partial copy of the repeat (28 bp of the beginning), and the second region at the end of control region contains 4 potential stem-loop structures. Finally, PCGs sequences were used to perform a phylogenetic study. Both maximum likelihood and Bayesian inference analyses highly support Nabidae as the sister group to Anthocoridae and Miridae.
Collapse
Affiliation(s)
- Hu Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | |
Collapse
|
22
|
Talavera G, Vila R. What is the phylogenetic signal limit from mitogenomes? The reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny. BMC Evol Biol 2011; 11:315. [PMID: 22032248 PMCID: PMC3213125 DOI: 10.1186/1471-2148-11-315] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/27/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Efforts to solve higher-level evolutionary relationships within the class Insecta by using mitochondrial genomic data are hindered due to fast sequence evolution of several groups, most notably Hymenoptera, Strepsiptera, Phthiraptera, Hemiptera and Thysanoptera. Accelerated rates of substitution on their sequences have been shown to have negative consequences in phylogenetic inference. In this study, we tested several methodological approaches to recover phylogenetic signal from whole mitochondrial genomes. As a model, we used two classical problems in insect phylogenetics: The relationships within Paraneoptera and within Holometabola. Moreover, we assessed the mitochondrial phylogenetic signal limits in the deeper Eumetabola dataset, and we studied the contribution of individual genes. RESULTS Long-branch attraction (LBA) artefacts were detected in all the datasets. Methods using Bayesian inference outperformed maximum likelihood approaches, and LBA was avoided in Paraneoptera and Holometabola when using protein sequences and the site-heterogeneous mixture model CAT. The better performance of this method was evidenced by resulting topologies matching generally accepted hypotheses based on nuclear and/or morphological data, and was confirmed by cross-validation and simulation analyses. Using the CAT model, the order Strepsiptera was recovered as sister to Coleoptera for the first time using mitochondrial sequences, in agreement with recent results based on large nuclear and morphological datasets. Also the Hymenoptera-Mecopterida association was obtained, leaving Coleoptera and Strepsiptera as the basal groups of the holometabolan insects, which coincides with one of the two main competing hypotheses. For the Paraneroptera, the currently accepted non-monophyly of Homoptera was documented as a phylogenetic novelty for mitochondrial data. However, results were not satisfactory when exploring the entire Eumetabola, revealing the limits of the phylogenetic signal that can be extracted from Insecta mitogenomes. Based on the combined use of the five best topology-performing genes we obtained comparable results to whole mitogenomes, highlighting the important role of data quality. CONCLUSION We show for the first time that mitogenomic data agrees with nuclear and morphological data for several of the most controversial insect evolutionary relationships, adding a new independent source of evidence to study relationships among insect orders. We propose that deeper divergences cannot be inferred with the current available methods due to sequence saturation and compositional bias inconsistencies. Our exploratory analysis indicates that the CAT model is the best dealing with LBA and it could be useful for other groups and datasets with similar phylogenetic difficulties.
Collapse
Affiliation(s)
- Gerard Talavera
- Institut de Biologia Evolutiva (CSIC-UPF), Pg. Marítim de la Barceloneta 37, 08003 Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Spain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF), Pg. Marítim de la Barceloneta 37, 08003 Barcelona, Spain
| |
Collapse
|
23
|
The mitochondrial genome of the ascalaphid owlfly Libelloides macaronius and comparative evolutionary mitochondriomics of neuropterid insects. BMC Genomics 2011; 12:221. [PMID: 21569260 PMCID: PMC3115881 DOI: 10.1186/1471-2164-12-221] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 05/10/2011] [Indexed: 11/18/2022] Open
Abstract
Background The insect order Neuroptera encompasses more than 5,700 described species. To date, only three neuropteran mitochondrial genomes have been fully and one partly sequenced. Current knowledge on neuropteran mitochondrial genomes is limited, and new data are strongly required. In the present work, the mitochondrial genome of the ascalaphid owlfly Libelloides macaronius is described and compared with the known neuropterid mitochondrial genomes: Megaloptera, Neuroptera and Raphidioptera. These analyses are further extended to other endopterygotan orders. Results The mitochondrial genome of L. macaronius is a circular molecule 15,890 bp long. It includes the entire set of 37 genes usually present in animal mitochondrial genomes. The gene order of this newly sequenced genome is unique among Neuroptera and differs from the ancestral type of insects in the translocation of trnC. The L. macaronius genome shows the lowest A+T content (74.50%) among known neuropterid genomes. Protein-coding genes possess the typical mitochondrial start codons, except for cox1, which has an unusual ACG. Comparisons among endopterygotan mitochondrial genomes showed that A+T content and AT/GC-skews exhibit a broad range of variation among 84 analyzed taxa. Comparative analyses showed that neuropterid mitochondrial protein-coding genes experienced complex evolutionary histories, involving features ranging from codon usage to rate of substitution, that make them potential markers for population genetics/phylogenetics studies at different taxonomic ranks. The 22 tRNAs show variable substitution patterns in Neuropterida, with higher sequence conservation in genes located on the α strand. Inferred secondary structures for neuropterid rrnS and rrnL genes largely agree with those known for other insects. For the first time, a model is provided for domain I of an insect rrnL. The control region in Neuropterida, as in other insects, is fast-evolving genomic region, characterized by AT-rich motifs. Conclusions The new genome shares many features with known neuropteran genomes but differs in its low A+T content. Comparative analysis of neuropterid mitochondrial genes showed that they experienced distinct evolutionary patterns. Both tRNA families and ribosomal RNAs show composite substitution pathways. The neuropterid mitochondrial genome is characterized by a complex evolutionary history.
Collapse
|
24
|
Zhao L, Zheng ZM, Huang Y, Sun HM. A comparative analysis of mitochondrial genomes in Orthoptera (Arthropoda: Insecta) and genome descriptions of three grasshopper species. Zoolog Sci 2010; 27:662-72. [PMID: 20695782 DOI: 10.2108/zsj.27.662] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The complete sequences of mitochondrial DNA (mtDNA) from the three new grasshopper species, Euchorthippus fusigeniculatus, Mekongiana xiangchengensis and Mekongiella xizangensis, consisting of 15772 bp, 15567 bp, and 15885 bp, respectively, were analyzed and compared to mtDNAs from other 19 Orthoptera species obtained from GenBank. The three mitochondrial genomes contain a standard set of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes. and an A+T-rich region in the same order as those of the other analyzed caeliferan species, but different from those of the ensiferan species by the rearrangement of trnD and trnK. The putative initiation codon for the cox1 gene is ATC in E. fusigeniculatus, CTG in M. xiangchengensis and CCG in M. xizangensis. All secondary structures of tRNA-Ser((AGN)) in the three species lack a DHU arm. In this study, we stressed the comparative analysis of the stem-loop secondary structure in A+T-rich region of all Orthoptera species available to date, and report new findings which may facilitate further investigation and better understanding of this secondary structure. Finally, we undertook a phylogenetic study of all Orthoptera species available from GenBank to date based on three different datasets using parsimony, maximum likelihood, and Bayesian inference. Our result showed that protein-coding genes (PCG) and amino acid sequences (PCG_PROT) provided good resolution of higher-level relationships within the Orthoptera, whereas ribosomal RNA genes (RIBO) perform poorly under different optimality criteria.
Collapse
Affiliation(s)
- Ling Zhao
- Institute of Zoology, Shaanxi Normal University, Xi'an 710062, China
| | | | | | | |
Collapse
|
25
|
Elven H, Bachmann L, Gusarov VI. Phylogeny of the tribe Athetini (Coleoptera: Staphylinidae) inferred from mitochondrial and nuclear sequence data. Mol Phylogenet Evol 2010; 57:84-100. [DOI: 10.1016/j.ympev.2010.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 04/18/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
|
26
|
Darracq A, Varré JS, Touzet P. A scenario of mitochondrial genome evolution in maize based on rearrangement events. BMC Genomics 2010; 11:233. [PMID: 20380689 PMCID: PMC2859866 DOI: 10.1186/1471-2164-11-233] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 04/09/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite their monophyletic origin, animal and plant mitochondrial genomes have been described as exhibiting different modes of evolution. Indeed, plant mitochondrial genomes feature a larger size, a lower mutation rate and more rearrangements than their animal counterparts. Gene order variation in animal mitochondrial genomes is often described as being due to translocation and inversion events, but tandem duplication followed by loss has also been proposed as an alternative process. In plant mitochondrial genomes, at the species level, gene shuffling and duplicate occurrence are such that no clear phylogeny has ever been identified, when considering genome structure variation. RESULTS In this study we analyzed the whole sequences of eight mitochondrial genomes from maize and teosintes in order to comprehend the events that led to their structural features, i.e. the order of genes, tRNAs, rRNAs, ORFs, pseudogenes and non-coding sequences shared by all mitogenomes and duplicate occurrences. We suggest a tandem duplication model similar to the one described in animals, except that some duplicates can remain. This model enabled us to develop a manual method to deal with duplicates, a recurrent problem in rearrangement analyses. The phylogenetic tree exclusively based on rearrangement and duplication events is congruent with the tree based on sequence polymorphism, validating our evolution model. CONCLUSIONS This study suggests more similarity than usually reported between plant and animal mitochondrial genomes in their mode of evolution. Further work will consist of developing new tools in order to automatically look for signatures of tandem duplication events in other plant mitogenomes and evaluate the occurrence of this process on a larger scale.
Collapse
Affiliation(s)
- Aude Darracq
- Laboratoire de Genetique et Evolution des Populations Vegetales, UMR CNRS 8016, Universite Lille 1, Villeneuve d'Ascq Cedex, France
| | | | | |
Collapse
|
27
|
McMahon DP, Hayward A, Kathirithamby J. The mitochondrial genome of the 'twisted-wing parasite' Mengenilla australiensis (Insecta, Strepsiptera): a comparative study. BMC Genomics 2009; 10:603. [PMID: 20003419 PMCID: PMC2800125 DOI: 10.1186/1471-2164-10-603] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 12/14/2009] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Strepsiptera are an unusual group of sexually dimorphic, entomophagous parasitoids whose evolutionary origins remain elusive. The lineage leading to Mengenilla australiensis (Family Mengenillidae) is the sister group to all remaining extant strepsipterans. It is unique in that members of this family have retained a less derived condition, where females are free-living from pupation onwards, and are structurally much less simplified. We sequenced almost the entire mitochondrial genome of M. australiensis as an important comparative data point to the already available genome of its distant relative Xenos vesparum (Family Xenidae). This study represents the first in-depth comparative mitochondrial genomic analysis of Strepsiptera. RESULTS The partial genome of M. australiensis is presented as a 13421 bp fragment, across which all 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes and 18 transfer RNA (tRNA) sequences are identified. Two tRNA translocations disrupt an otherwise ancestral insect mitochondrial genome order. A+T content is measured at 84.3%, C-content is also very skewed. Compared with M. australiensis, codon bias in X. vesparum is more balanced. Interestingly, the size of the protein coding genome is truncated in both strepsipterans, especially in X. vesparum which, uniquely, has 4.3% fewer amino acids than the average holometabolan complement. A revised assessment of mitochondrial rRNA secondary structure based on comparative structural considerations is presented for M. australiensis and X. vesparum. CONCLUSIONS The mitochondrial genome of X. vesparum has undergone a series of alterations which are probably related to an extremely derived lifestyle. Although M. australiensis shares some of these attributes; it has retained greater signal from the hypothetical most recent common ancestor (MRCA) of Strepsiptera, inviting the possibility that a shift in the mitochondrial selective environment might be related to the specialization accompanying the evolution of a small, morphologically simplified completely host-dependent lifestyle. These results provide useful insights into the nature of the evolutionary transitions that accompanied the emergence of Strepsiptera, but we emphasize the need for adequate sampling across the order in future investigations concerning the extraordinary developmental and evolutionary origins of this group.
Collapse
Affiliation(s)
- Dino P McMahon
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK
| | - Alexander Hayward
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK
| | - Jeyaraney Kathirithamby
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
28
|
Cameron SL, Sullivan J, Song H, Miller KB, Whiting MF. A mitochondrial genome phylogeny of the Neuropterida (lace-wings, alderflies and snakeflies) and their relationship to the other holometabolous insect orders. ZOOL SCR 2009. [DOI: 10.1111/j.1463-6409.2009.00392.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Hua J, Li M, Dong P, Cui Y, Xie Q, Bu W. Phylogenetic analysis of the true water bugs (Insecta: Hemiptera: Heteroptera: Nepomorpha): evidence from mitochondrial genomes. BMC Evol Biol 2009; 9:134. [PMID: 19523246 PMCID: PMC2711072 DOI: 10.1186/1471-2148-9-134] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 06/15/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The true water bugs are grouped in infraorder Nepomorpha (Insecta: Hemiptera: Heteroptera) and are of great economic importance. The phylogenetic relationships within Nepomorpha and the taxonomic hierarchies of Pleoidea and Aphelocheiroidea are uncertain. Most of the previous studies were based on morphological characters without algorithmic assessment. In the latest study, the molecular markers employed in phylogenetic analyses were partial sequences of 16S rDNA and 18S rDNA with a total length about 1 kb. Up to now, no mitochondrial genome of the true water bugs has been sequenced, which is one of the largest data sets that could be compared across animal taxa. In this study we analyzed the unresolved problems in Nepomorpha using evidence from mitochondrial genomes. RESULTS Nine mitochondrial genomes of Nepomorpha and five of other hemipterans were sequenced. These mitochondrial genomes contain the commonly found 37 genes without gene rearrangements. Based on the nucleotide sequences of mt-genomes, Pleoidea is not a member of the Nepomorpha and Aphelocheiroidea should be grouped back into Naucoroidea. Phylogenetic relationships among the superfamilies of Nepomorpha were resolved robustly. CONCLUSION The mt-genome is an effective data source for resolving intraordinal phylogenetic problems at the superfamily level within Heteroptera. The mitochondrial genomes of the true water bugs are typical insect mt-genomes. Based on the nucleotide sequences of the mt-genomes, we propose the Pleoidea to be a separate heteropteran infraorder. The infraorder Nepomorpha consists of five superfamilies with the relationships (Corixoidea + ((Naucoroidea + Notonectoidea) + (Ochteroidea + Nepoidea))).
Collapse
Affiliation(s)
- Jimeng Hua
- Department of Zoology and Developmental Biology, Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| | | | | | | | | | | |
Collapse
|
30
|
Wei SJ, Shi M, He JH, Sharkey M, Chen XX. The complete mitochondrial genome of Diadegma semiclausum (Hymenoptera: Ichneumonidae) indicates extensive independent evolutionary events. Genome 2009; 52:308-19. [DOI: 10.1139/g09-008] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Few complete mitochondrial genomes representing limited families in the order Hymenoptera have been sequenced. Here, we sequenced the complete mitochondrial genome of Diadegma semiclausum (Hymenoptera: Ichneumonidae). This genome is 18 728 bp long, the second largest hexapod mitochondrial genome sequenced in its entirety and that with the highest A+T content at 87.4%. Four tRNAs are rearranged compared with the ancestral arrangement. Gene rearrangement mechanisms are different among all three rearranged regions. Six tRNAs have a large variable loop, which is not found in other metazoan mitochondrial genomes. trnS(AGY) uses the abnormal anticodon TCT but trnK uses the normal CTT. The A+T-rich region is very long (2161 bp). An extremely A+T-rich (99.1%) 1515 bp tandem repeat region with three types of repeat elements is located between cox1 and cox2, and the most likely ancestral element originated from the 3′ end of cox1. Independent tandem duplications followed by mutation–insertion–deletion is the best model to explain the formation of this region. These results indicate that independent evolutionary events occurred extensively, such as gene rearrangement events, gene rearrangement mechanisms, derivation of tRNA variable loops, and tandem repeat region evolutionary processes, all of which likely contribute to the diversified features of hymenopteran mitochondrial genomes.
Collapse
Affiliation(s)
- Shu-jun Wei
- Institute of Insect Sciences, 268 Kaixuan Road, Zhejiang University, Hangzhou 310029, China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310029, China
- Department of Entomology, University of Kentucky, Lexington KY 40546-0091, USA
| | - Min Shi
- Institute of Insect Sciences, 268 Kaixuan Road, Zhejiang University, Hangzhou 310029, China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310029, China
- Department of Entomology, University of Kentucky, Lexington KY 40546-0091, USA
| | - Jun-hua He
- Institute of Insect Sciences, 268 Kaixuan Road, Zhejiang University, Hangzhou 310029, China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310029, China
- Department of Entomology, University of Kentucky, Lexington KY 40546-0091, USA
| | - M. Sharkey
- Institute of Insect Sciences, 268 Kaixuan Road, Zhejiang University, Hangzhou 310029, China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310029, China
- Department of Entomology, University of Kentucky, Lexington KY 40546-0091, USA
| | - Xue-xin Chen
- Institute of Insect Sciences, 268 Kaixuan Road, Zhejiang University, Hangzhou 310029, China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310029, China
- Department of Entomology, University of Kentucky, Lexington KY 40546-0091, USA
| |
Collapse
|
31
|
Matsumoto Y, Yanase T, Tsuda T, Noda H. Species-specific mitochondrial gene rearrangements in biting midges and vector species identification. MEDICAL AND VETERINARY ENTOMOLOGY 2009; 23:47-55. [PMID: 19239613 DOI: 10.1111/j.1365-2915.2008.00789.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Partial mitochondrial gene sequences of 16 Culicoides species were determined to elucidate phylogenetic relations among species and to develop a molecular identification method for important virus vector species. In addition, the analysis found mitochondrial gene rearrangement in several species. Sequences of the mitochondrial genome region, cox1-trnL2-cox2 (1940-3785 bp) of 16 Culicoides and additional sequences were determined in some species, including whole mitochondrial genome sequences of Culicoides arakawae. Nine species showed common organization in this region, with three genes cox1-trnL2-cox2 and a small or no intergenic region (0-30 bp) between them. The other seven species showed translocation of tRNA and protein-coding genes and/or insertion of AT-rich non-coding sequences (65-1846 bp) between the genes. The varied gene rearrangements among species within a genus is very rare for mitochondrial genome organization. Phylogenetic analyses based on the sequences of cox1+cox2 suggest a few clades among Japanese Culicoides species. No relationships between phylogenetic closeness and mitochondrial gene rearrangements were observed. Sequence data were used to establish a polymerase chain reaction tool to distinguish three important vector species from other Culicoides species, for which classification during larval stages is not advanced and identification is difficult.
Collapse
Affiliation(s)
- Y Matsumoto
- Insect-Microbe Research Unit, National Institute of Agrobiological Sciences, Ibaraki, Japan.
| | | | | | | |
Collapse
|
32
|
Abstract
Strepsiptera are obligate endoparasitoids that exhibit extreme sexual dimorphism and parasitize seven orders and 33 families of Insecta. The adult males and the first instar larvae in the Mengenillidia and Stylopidia are free-living, whereas the adult females in Mengenillidia are free-living but in the suborder Stylopidia they remain endoparasitic in the host. Parasitism occurs at the host larval/nymphal stage and continues in a mobile host until that host's adult stage. The life of the host is lengthened to allow the male strepsipteran to complete maturation and the viviparous female to release the first instar larvae when the next generation of the host's larvae/nymphs has been produced. The ability of strepsipterans to parasitize a wide range of hosts, in spite of being endoparasitoids, is perhaps due to their unique immune avoidance system. Aspects of virulence, heterotrophic heteronomy in the family Myrmecolacidae, cryptic species, genomics, immune response, and behavior of stylopized hosts are discussed in this chapter.
Collapse
|
33
|
Abstract
SUMMARYHost discrimination by immature host-seeking endoparasites is a complex and somewhat unexplored topic. In the case of multiple infections, conflicts among conspecifics may occur to monopolize space and resources in the same host. Two or more 1st instar larvae ofXenos vesparum(Strepsiptera, Stylopidae) may enter into aPolistes dominulus(Hymenoptera, Vespidae) larva and develop together until the adult stage of both parasite and host. We carried out a screening of mitochondrial haplotypes inX. vesparumindividuals extracted from superparasitized wasps taken in 5 naturally infected nests from different areas of Tuscany (Italy), to assess whether non-sibling parasites may infect the same colony and host. In total, we obtained 12 different haplotypes out of 122 genotyped individuals of both sexes: 17 of 34 superparasitized wasps hosted parasites that originated from females differing in their haplotypes. To date, this is the first described case of superparasitism with non-sibling host-seeking larvae infecting a single individual hymenopteran host. In addition, at least in heavily infected colonies, there is evidence of a male-biased sex-ratio and synchronous development of the parasites, regardless of their haplotypes. Finally, the distribution of haplotypes per nest is consistent with either phoretic infection or larvipositing on nests by means of superparasitized wasps.
Collapse
|
34
|
Zhou Z, Huang Y, Shi F. The mitochondrial genome of Ruspolia dubia (Orthoptera: Conocephalidae) contains a short A+T-rich region of 70 bp in length. Genome 2007; 50:855-66. [PMID: 17893726 DOI: 10.1139/g07-057] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complete sequence (14 971 bp) of the Ruspolia dubia mitochondrial genome was determined and annotated. The genome contains the gene content, base composition, and codon usage typical of metazoan mitochondrial genomes. All 37 genes are conserved in the positions observed most frequently in insect mitochondrial genome structures. The secondary structures of both small subunit and large subunit rRNA were predicted. The most unusual features found were the initiation codon (TTA) of COI and a short A+T-rich region of 70 bp in length. In addition, a short, highly conserved polythymidine stretch that was previously described in Orthoptera and Diptera was also present in the A+T-rich region.
Collapse
Affiliation(s)
- Zhijun Zhou
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | | | | |
Collapse
|
35
|
Gillespie JJ, Johnston JS, Cannone JJ, Gutell RR. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. INSECT MOLECULAR BIOLOGY 2006; 15:657-86. [PMID: 17069639 PMCID: PMC2048585 DOI: 10.1111/j.1365-2583.2006.00689.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 06/28/2006] [Indexed: 05/12/2023]
Abstract
As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome, we expect our report eventually to shed light on the evolution of the hymenopteran genome within higher insects, particularly regarding the relative maintenance of conserved rDNA genes, related variable spacer regions and retrotransposable elements.
Collapse
Affiliation(s)
- J J Gillespie
- Department of Entomology, Texas A & M University, College Station, TX, USA.
| | | | | | | |
Collapse
|
36
|
Podsiadlowski L, Carapelli A, Nardi F, Dallai R, Koch M, Boore JL, Frati F. The mitochondrial genomes of Campodea fragilis and Campodea lubbocki (Hexapoda: Diplura): High genetic divergence in a morphologically uniform taxon. Gene 2006; 381:49-61. [PMID: 16919404 DOI: 10.1016/j.gene.2006.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 05/15/2006] [Accepted: 06/05/2006] [Indexed: 11/20/2022]
Abstract
Complete mitochondrial genome sequences are presented from two dipluran hexapods (i.e., a group of "primarily wingless insects") of the genus Campodea and compared to those of other arthropods. Their gene order is the same as in most other hexapods and crustaceans. Structural changes have occurred in tRNA-C, tRNA-R, tRNA-S1 and tRNA-S2 as well as in both ribosomal RNAs. These mtDNAs have striking biases in nucleotide and amino acid composition. Although the two Campodea species are morphologically highly similar, their genetic divergence is larger than expected, suggesting a long evolutionary history, perhaps under stable ecological conditions.
Collapse
Affiliation(s)
- L Podsiadlowski
- Department of Animal Systematics and Evolution, Freie Universität Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|