1
|
Cruz N, Méndez T, Ramos P, Urbina D, Vega A, Gutiérrez RA, Moya-León MA, Herrera R. Induction of PrMADS10 on the lower side of bent pine tree stems: potential role in modifying plant cell wall properties and wood anatomy. Sci Rep 2019; 9:18981. [PMID: 31831838 PMCID: PMC6908731 DOI: 10.1038/s41598-019-55276-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
The molecular mechanisms underlying inclination responses in trees are unclear. In this study, we identified a MADS-box transcription factor differentially expressed early after inclination in the stems of Pinus radiata D. Don. PrMADS10 has a CDS of 582 bp and encodes a group II MADS-box transcription factor. We measured highest accumulation of this transcript on the lower side of inclined pine stems. In an effort to identify putative targets, we stably transformed Arabidopsis thaliana with a 35S::PrMADS10 construct. Transcriptome analysis revealed 1,219 genes differentially-expressed, with 690 and 529 genes up- and down-regulated respectively, when comparing the transgenic and wild-type. Differentially-expressed genes belong to different biological processes, but were enriched in cell wall remodeling and phenylpropanoid metabolic functions. Interestingly, lignin content was 30% higher in transgenic as compared to wild-type plants consistent with observed changes in gene expression. Differentially expressed transcription factors and phenylpropanoid genes were analyzed using STRING. Several MYB and NAC transcription factors showed interactions with genes of the phenylpropanoid pathway. Together, these results implicate PrMADS10 as a regulatory factor, triggering the expression of other transcription factors and genes involved in the synthesis of lignin.
Collapse
Affiliation(s)
- Nicolás Cruz
- Instituto de Ciencias Biológicas, Universidad de Talca. Av. Lircay s/n, Talca, Chile
- Facultad de Ciencias Ambientales, Universidad Técnica Estatal de Quevedo, Quevedo, Ecuador
| | - Tamara Méndez
- Instituto de Ciencias Biológicas, Universidad de Talca. Av. Lircay s/n, Talca, Chile
| | - Patricio Ramos
- Instituto de Ciencias Biológicas, Universidad de Talca. Av. Lircay s/n, Talca, Chile
- Núcleo Científico Multidisciplinario-DI, Universidad de Talca. Av. Lircay s/n, Talca, Chile
| | - Daniela Urbina
- Instituto de Ciencias Biológicas, Universidad de Talca. Av. Lircay s/n, Talca, Chile
| | - Andrea Vega
- FONDAP Center for Genome Regulation. Millennium Institute for Integrative Systems and Synthetic Biology. Departamento de Genética Molecular y Microbiología. Facultad Ciencias Biológicas, P. Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Rodrigo A Gutiérrez
- FONDAP Center for Genome Regulation. Millennium Institute for Integrative Systems and Synthetic Biology. Departamento de Genética Molecular y Microbiología. Facultad Ciencias Biológicas, P. Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - María A Moya-León
- Instituto de Ciencias Biológicas, Universidad de Talca. Av. Lircay s/n, Talca, Chile
| | - Raúl Herrera
- Instituto de Ciencias Biológicas, Universidad de Talca. Av. Lircay s/n, Talca, Chile.
| |
Collapse
|
2
|
Li X, Ning G, Han X, Liu C, Bao M. The identification of novel PMADS3 interacting proteins indicates a role in post-transcriptional control. Gene 2015; 564:87-95. [PMID: 25827715 DOI: 10.1016/j.gene.2015.03.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/20/2015] [Accepted: 03/21/2015] [Indexed: 10/23/2022]
Abstract
PMADS3, a known MADS-box transcriptional factor and a C-class gene for floral development, plays dual roles in controlling the identity of inner floral organs and the termination of flower meristems in petunia. In this study, it was confirmed by bimolecular fluorescence complementation (BiFC) assays that the PMADS3 protein can interact individually with E-class proteins FBP2, FBP5, FBP9 and PMADS12. A yeast two-hybrid cDNA library was screened using the entire PMADS3 as bait, and this identified further potential interaction candidates. Two novel genes, PheIF3f and PhAGO10, were isolated, and suggested to regulate mRNA and translational processes according to the analysis of protein functional domains and subcellular localization predictions. Notably, the PhAGO10 protein belongs to the Argonaute family, members of which are major players in small-RNA-guided gene silencing processes via mRNA cleavage or translational inhibition. The results of yeast two-hybrid and BiFC assays indicated that PheIF3f and PhAGO10 could interact with PMADS3. Our findings indicate that the C-class gene PMADS3 potentially participates in post-transcriptional control, as well as transcriptional regulation.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Guogui Ning
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xueping Han
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Caixian Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
3
|
Abraham P, Giannone RJ, Adams RM, Kalluri U, Tuskan GA, Hettich RL. Putting the pieces together: high-performance LC-MS/MS provides network-, pathway-, and protein-level perspectives in Populus. Mol Cell Proteomics 2012; 12:106-19. [PMID: 23073815 DOI: 10.1074/mcp.m112.022996] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
High-performance mass spectrometry (MS)-based proteomics enabled the construction of a detailed proteome atlas for Populus, a woody perennial plant model organism. Optimization of experimental procedures and implementation of current state-of-the-art instrumentation afforded the most detailed look into the predicted proteome space of Populus, offering varying proteome perspectives: (1) network-wide, (2) pathway-specific, and (3) protein-level viewpoints. Together, enhanced protein retrieval through a detergent-based lysis approach and maximized peptide sampling via the dual-pressure linear ion trap mass spectrometer (LTQ Velos), have resulted in the identification of 63,056 tryptic peptides. The technological advancements, specifically spectral-acquisition and sequencing speed, afforded the deepest look into the Populus proteome, with peptide abundances spanning 6 orders of magnitude and mapping to ∼25% of the predicted proteome space. In total, tryptic peptides mapped to 11,689 protein assignments across four organ-types: mature (fully expanded, leaf plastichronic index (LPI) 10-12) leaf, young (juvenile, LPI 4-6) leaf, root, and stem. To resolve protein ambiguity, identified proteins were grouped by sequence similarity (≥ 90%), thereby reducing the protein assignments into 7538 protein groups. In addition, this large-scale data set features the first systems-wide survey of protein expression across different Populus organs. As a demonstration of the precision and comprehensiveness of the semiquantitative analysis, we were able to contrast two stages of leaf development, mature versus young leaf. Statistical comparison through ANOVA analysis revealed 1432 protein groups that exhibited statistically significant (p ≤ 0.01) differences in protein abundance. Experimental validation of the metabolic circuitry expected in mature leaf (characterized by photosynthesis and carbon fixation) compared with young leaf (characterized by rapid growth and moderate photosynthetic activities) strongly testifies to the credibility of the approach. Instead of quantitatively comparing a few proteins, a systems view of all the changes associated with a given cellular perturbation could be made.
Collapse
Affiliation(s)
- Paul Abraham
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37830, USA
| | | | | | | | | | | |
Collapse
|
4
|
Hoenicka H, Lautner S, Klingberg A, Koch G, El-Sherif F, Lehnhardt D, Zhang B, Burgert I, Odermatt J, Melzer S, Fromm J, Fladung M. Influence of over-expression of the Flowering Promoting Factor 1 gene (FPF1) from Arabidopsis on wood formation in hybrid poplar (Populus tremula L. × P. tremuloides Michx.). PLANTA 2012; 235:359-73. [PMID: 21909761 DOI: 10.1007/s00425-011-1507-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 08/17/2011] [Indexed: 05/20/2023]
Abstract
Constitutive expression of the FPF1 gene in hybrid aspen (Populus tremula L. × P. tremuloides Michx.) showed a strong effect on wood formation but no effect on flowering time. Gene expression studies showed that activity of flowering time genes PtFT1, PtCO2, and PtFUL was not increased in FPF1 transgenic plants. However, the SOC1/TM3 class gene PTM5, which has been related to wood formation and flowering time, showed a strong activity in stems of all transgenic lines studied. Wood density was lower in transgenic plants, despite significantly reduced vessel frequency which was overcompensated by thinner fibre cell walls. Chemical screening of the wood by pyrolysis GC/MS showed that FPF1 transgenics have higher fractions of cellulose and glucomannan products as well as lower lignin content. The latter observation was confirmed by UV microspectrophotometry on a cellular level. Topochemical lignin distribution revealed a slower increase of lignin incorporation in the developing xylem of the transgenics when compared with the wild-type plants. In line with the reduced wood density, micromechanical wood properties such as stiffness and ultimate stress were also significantly reduced in all transgenic lines. Thus, we provide evidence that FPF1 class genes may play a regulatory role in both wood formation and flowering in poplar.
Collapse
Affiliation(s)
- Hans Hoenicka
- Johann Heinrich von Thünen Institute, Institute of Forest Genetics, Sieker Landstr 2, 22927 Grosshansdorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
|
6
|
van Dijk ADJ, van Ham RCHJ. Conserved and variable correlated mutations in the plant MADS protein network. BMC Genomics 2010; 11:607. [PMID: 20979667 PMCID: PMC3017862 DOI: 10.1186/1471-2164-11-607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 10/28/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Plant MADS domain proteins are involved in a variety of developmental processes for which their ability to form various interactions is a key requisite. However, not much is known about the structure of these proteins or their complexes, whereas such knowledge would be valuable for a better understanding of their function. Here, we analyze those proteins and the complexes they form using a correlated mutation approach in combination with available structural, bioinformatics and experimental data. RESULTS Correlated mutations are affected by several types of noise, which is difficult to disentangle from the real signal. In our analysis of the MADS domain proteins, we apply for the first time a correlated mutation analysis to a family of interacting proteins. This provides a unique way to investigate the amount of signal that is present in correlated mutations because it allows direct comparison of mutations in various family members and assessing their conservation. We show that correlated mutations in general are conserved within the various family members, and if not, the variability at the respective positions is less in the proteins in which the correlated mutation does not occur. Also, intermolecular correlated mutation signals for interacting pairs of proteins display clear overlap with other bioinformatics data, which is not the case for non-interacting protein pairs, an observation which validates the intermolecular correlated mutations. Having validated the correlated mutation results, we apply them to infer the structural organization of the MADS domain proteins. CONCLUSION Our analysis enables understanding of the structural organization of the MADS domain proteins, including support for predicted helices based on correlated mutation patterns, and evidence for a specific interaction site in those proteins.
Collapse
Affiliation(s)
- Aalt DJ van Dijk
- Applied Bioinformatics, PRI, Wageningen UR, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Roeland CHJ van Ham
- Applied Bioinformatics, PRI, Wageningen UR, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
7
|
Dharmawardhana P, Brunner AM, Strauss SH. Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa. BMC Genomics 2010; 11:150. [PMID: 20199690 PMCID: PMC2846914 DOI: 10.1186/1471-2164-11-150] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 03/04/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND With its genome sequence and other experimental attributes, Populus trichocarpa has become the model species for genomic studies of wood development. Wood is derived from secondary growth of tree stems, and begins with the development of a ring of vascular cambium in the young developing stem. The terminal region of the developing shoot provides a steep developmental gradient from primary to secondary growth that facilitates identification of genes that play specialized functions during each of these phases of growth. RESULTS Using a genomic microarray representing the majority of the transcriptome, we profiled gene expression in stem segments that spanned primary to secondary growth. We found 3,016 genes that were differentially expressed during stem development (Q-value = 0.05; >2-fold expression variation), and 15% of these genes encode proteins with no significant identities to known genes. We identified all gene family members putatively involved in secondary growth for carbohydrate active enzymes, tubulins, actins, actin depolymerizing factors, fasciclin-like AGPs, and vascular development-associated transcription factors. Almost 70% of expressed transcription factors were upregulated during the transition to secondary growth. The primary shoot elongation region of the stem contained specific carbohydrate active enzyme and expansin family members that are likely to function in primary cell wall synthesis and modification. Genes involved in plant defense and protective functions were also dominant in the primary growth region. CONCLUSION Our results describe the global patterns of gene expression that occur during the transition from primary to secondary stem growth. We were able to identify three major patterns of gene expression and over-represented gene ontology categories during stem development. The new regulatory factors and cell wall biogenesis genes that we identified provide candidate genes for further functional characterization, as well as new tools for molecular breeding and biotechnology aimed at improvement of tree growth rate, crown form, and wood quality.
Collapse
Affiliation(s)
- Palitha Dharmawardhana
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331-5752, USA
| | - Amy M Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, 24061-0324, USA
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331-5752, USA
| |
Collapse
|
8
|
Immink RG, Kaufmann K, Angenent GC. The ‘ABC’ of MADS domain protein behaviour and interactions. Semin Cell Dev Biol 2010; 21:87-93. [DOI: 10.1016/j.semcdb.2009.10.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 10/23/2009] [Indexed: 02/05/2023]
|
9
|
Cseke LJ, Tsai CJ, Rogers A, Nelsen MP, White HL, Karnosky DF, Podila GK. Transcriptomic comparison in the leaves of two aspen genotypes having similar carbon assimilation rates but different partitioning patterns under elevated [CO2]. THE NEW PHYTOLOGIST 2009; 182:891-911. [PMID: 19383098 DOI: 10.1111/j.1469-8137.2009.02812.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study compared the leaf transcription profiles, physiological characteristics and primary metabolites of two Populus tremuloides genotypes (clones 216 and 271) known to differ in their responses to long-term elevated [CO2] (e[CO2]) at the Aspen free-air CO2 enrichment site near Rhinelander, WI, USA. The physiological responses of these clones were similar in terms of photosynthesis, stomatal conductance and leaf area index under e[CO2], yet very different in terms of growth enhancement (0-10% in clone 216; 40-50% in clone 271). Although few genes responded to long-term exposure to e[CO2], the transcriptional activity of leaf e[CO2]-responsive genes was distinctly different between the clones, differentially impacting multiple pathways during both early and late growing seasons. An analysis of transcript abundance and carbon/nitrogen biochemistry suggested that the CO2-responsive clone (271) partitions carbon into pathways associated with active defense/response to stress, carbohydrate/starch biosynthesis and subsequent growth. The CO2-unresponsive clone (216) partitions carbon into pathways associated with passive defense (e.g. lignin, phenylpropanoid) and cell wall thickening. This study indicates that there is significant variation in expression patterns between different tree genotypes in response to long-term exposure to e[CO2]. Consequently, future efforts to improve productivity or other advantageous traits for carbon sequestration should include an examination of genetic variability in CO2 responsiveness.
Collapse
Affiliation(s)
- Leland J Cseke
- Department of Biological Sciences, University of Alabama, Huntsville, AL 35899, USA
| | - Chung-Jui Tsai
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Alistair Rogers
- Environmental Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Crop Sciences, University of Illinois at Urbana Champaign, IL 61801, USA
| | - Matthew P Nelsen
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Holly L White
- Department of Biological Sciences, University of Alabama, Huntsville, AL 35899, USA
| | - David F Karnosky
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Gopi K Podila
- Department of Biological Sciences, University of Alabama, Huntsville, AL 35899, USA
| |
Collapse
|
10
|
Hill K, Wang H, Perry SE. A transcriptional repression motif in the MADS factor AGL15 is involved in recruitment of histone deacetylase complex components. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:172-85. [PMID: 17999645 DOI: 10.1111/j.1365-313x.2007.03336.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
AGAMOUS-like 15 (AGL15) encodes a MADS-domain transcription factor that is preferentially expressed in the plant embryo. A number of direct downstream targets of AGL15 have been identified, and although some of these target genes are induced in response to AGL15, others are repressed. Additionally, direct target genes have been analyzed that exhibit strong association with AGL15 in vivo, yet in vitro AGL15 binds only weakly. These data suggest that AGL15 may form complexes with other proteins, thus modulating the specificity and function of AGL15 in planta. Here we report that AGL15 interacts with members of the SWI-independent 3/histone deacetylase (SIN3/HDAC) complex, and that AGL15 target genes are also responsive to an AGL15 interacting protein that is also a member of this complex, SIN3-associated polypeptide of 18 kDa (SAP18). AGL15 can repress transcription in vivo, and a region essential to this repressive function contains a motif that is conserved among putative orthologs of AGL15. This motif mediates the association of AGL15 with SAP18, thus providing a possible mechanism for the role of AGL15 in regulating gene expression via recruitment of an HDAC complex.
Collapse
Affiliation(s)
- Kristine Hill
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA
| | | | | |
Collapse
|
11
|
Leseberg CH, Eissler CL, Wang X, Johns MA, Duvall MR, Mao L. Interaction study of MADS-domain proteins in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2253-65. [PMID: 18487636 DOI: 10.1093/jxb/ern094] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MADS-domain proteins are important transcription factors involved in many biological processes of plants. Interactions between MADS-domain proteins are essential for their functions. In tomato (Solanum lycopersicum), the number of MIKC(c)-type MADS-domain proteins identified has totalled 36, but a large-scale interaction assay is lacking. In this study, 22 tomato MADS-domain proteins were selected from six functionally important subfamilies of the MADS-box gene family, to create the first large-scale tomato protein interaction network. Compared with Arabidopsis and petunia (Petunia hybrida), protein interaction patterns in tomato displayed both conservation and divergence. The majority of proteins that can be identified as putative orthologues exhibited conserved interaction patterns, and modifications were mostly found in genes underlining traits unique to tomato. JOINTLESS and RIN, characterized for their roles in abscission zone development and fruit ripening, respectively, showed enlarged interaction networks in comparison with their Arabidopsis and petunia counterparts. Novel interactions were also found for members of the expanded subfamilies, such as those represented by AP1/FUL and AP3/PI MADS-domain proteins. In search for higher order complexes, TM5 was found to be the preferred bridge among the five SEP-like proteins. Additionally, 16 proteins with the MADS-domain removed were used to assess the role of the MADS-domain in protein-protein interactions. The current work provides important knowledge for further functional and evolutionary study of the MADS-box genes in tomato.
Collapse
Affiliation(s)
- Charles H Leseberg
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | | | | | | | | | | |
Collapse
|
12
|
Cseke LJ, Cseke SB, Podila GK. High efficiency poplar transformation. PLANT CELL REPORTS 2007; 26:1529-38. [PMID: 17492451 DOI: 10.1007/s00299-007-0365-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 03/31/2007] [Accepted: 04/12/2007] [Indexed: 05/07/2023]
Abstract
With the completion of the poplar tree genome database, Populus species have become one of the most useful model systems for the study of woody plant biology. Populus tremuloides (quaking aspen) is the most wide-spread tree species in North America, and its rapid growth generates the most abundant wood-based biomass out of any other plant species. To study such beneficial traits, there is a need for easier and more efficient transformation procedures that will allow the study of large numbers of tree genes. We have developed transformation procedures that are suitable for high-throughput format transformations using either Agrobacterium tumefaciens to produce transformed trees or Agrobacterium rhizogenes to generate hairy roots. Our method uses Agrobacterium inoculated aspen seedling hypocotyls followed by direct thidiazuron (TDZ)-mediated shoot regeneration on selective media. Transformation was verified through beta-glucuronidase (GUS) reporter gene expression in all tree tissues, PCR amplification of appropriate vector products from isolated genomic DNA, and northern hybridization of incorporated and expressed transgenes. The hairy root protocol follows the same inoculation procedures and was tested using GUS reporter gene integration and antibiotic selection. The benefit of these procedures is that they are simple and efficient, requiring no maintenance of starting materials and allowing fully formed transgenic trees (or hairy roots) to be generated in only 3-4 months, rather than the 6-12 months required by more traditional methods. Likewise, the fact that the protocols are amenable to high-throughput formats makes them better suited for large-scale functional genomics studies in poplars.
Collapse
Affiliation(s)
- Leland J Cseke
- Department of Biological Sciences, The University of Alabama in Huntsville, 142 Wilson Hall, Huntsville, AL 35899, USA
| | | | | |
Collapse
|