1
|
Abstract
In this review, I provide a brief history of the discovery of RAS and the GAPs and GEFs that regulate its activity from a personal perspective. Much of this history has been driven by technological breakthroughs that occurred concurrently, such as molecular cloning, cDNA expression to analyze RAS proteins and their structures, and application of PCR to detect mutations. I discuss the RAS superfamily and RAS proteins as therapeutic targets, including recent advances in developing RAS inhibitors. I also describe the role of the RAS Initiative at Frederick National Laboratory for Cancer Research in advancing development of RAS inhibitors and providing new insights into signaling complexes and interaction of RAS proteins with the plasma membrane.
Collapse
Affiliation(s)
- Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States; Frederick National Laboratory for Cancer Research, Frederick, MD, United States.
| |
Collapse
|
2
|
Kanade M, Chakraborty S, Shelke SS, Gayathri P. A Distinct Motif in a Prokaryotic Small Ras-Like GTPase Highlights Unifying Features of Walker B Motifs in P-Loop NTPases. J Mol Biol 2020; 432:5544-5564. [PMID: 32750390 DOI: 10.1016/j.jmb.2020.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 01/22/2023]
Abstract
A hallmark of the catalytically essential Walker B motif of P-loop NTPases is the presence of an acidic residue (aspartate/glutamate) for efficient Mg2+ coordination. Although the Walker B motif has been identified in well-studied examples of P-loop NTPases, its identity is ambiguous in many families, for example, in the prokaryotic small Ras-like GTPase family of MglA. MglA, belonging to TRAFAC class of P-loop NTPases, possesses a threonine at the position equivalent to Walker B aspartate in eukaryotic Ras-like GTPases. To resolve the identity of the Walker B residue in MglA, we carried out a comprehensive analysis of Mg2+ coordination on P-loop NTPase structures. Atoms in the octahedral coordination of Mg2+ and their interactions comprise a network including water molecules, Walker A, Walker B and switch motifs of P-loop NTPases. Based on the conserved geometry of Mg2+ coordination, we confirm that a conserved aspartate functions as the Walker B residue of MglA, and validate it through mutagenesis and biochemical characterization. Location of the newly identified aspartate is spatially equivalent to the Walker B residue of the ASCE division of P-loop NTPases. Furthermore, similar to the allosteric regulation of the Walker B aspartate conformation in MglA, we identify protein families in which large conformational changes involving Walker B motif potentially function as allosteric regulators. The study unravels conserved features of Mg2+ coordination among divergent families of P-loop NTPases, especially between ancient Ras-like GTPases and ASCE family of ATPases. The conserved geometric features provide a foundation for design of nucleotide-hydrolyzing enzymes.
Collapse
Affiliation(s)
- Manil Kanade
- Indian Institute of Science Education and Research, Pune, India
| | | | | | | |
Collapse
|
3
|
Buchmann L, Frey W, Gusbeth C, Ravaynia PS, Mathys A. Effect of nanosecond pulsed electric field treatment on cell proliferation of microalgae. BIORESOURCE TECHNOLOGY 2019; 271:402-408. [PMID: 30296747 DOI: 10.1016/j.biortech.2018.09.124] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 05/11/2023]
Abstract
Photoautotrophic microalgae based biorefinery concepts are currently not competitive compared to other established production systems. Therefore, innovative upstream processes need to be developed to increase the competitiveness of photoautotrophic microalgae biorefinery concepts. Abiotic sub-lethal stress induction via nanosecond pulsed electric field (nsPEF) treatment might be a viable process to increase the efficiency of photoautotrophic microalgae cultivation. In this work, an increased cell growth after nsPEF treatment was observable. Application of nsPEF to highly proliferating cells in a repetitive process resulted in a statistical significant increase in cell growth (p = 0.009). The effect was most pronounced after five days wherefore cellular structures and processes were analyzed to reveal a possible mechanism. Within this work, a protocol for increased cell proliferation with a possible mechanism was derived, which improves competitiveness of photoautotrophic microalgae biorefineries in the future. However, based on the derived mechanism, the results are also relevant for other microorganisms.
Collapse
Affiliation(s)
- Leandro Buchmann
- ETH Zurich, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, IFNH, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, Zurich 8092, Switzerland.
| | - Wolfgang Frey
- Karlsruhe Institute of Technology, KIT, Institute for Pulsed Power and Microwave Technology, IHM, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.
| | - Christian Gusbeth
- Karlsruhe Institute of Technology, KIT, Institute for Pulsed Power and Microwave Technology, IHM, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.
| | - Paolo S Ravaynia
- ETH Zurich, Department of Biosystems Science and Engineering, Bio Engineering Laboratory, Mattenstrasse 26, Basel 4058, Switzerland.
| | - Alexander Mathys
- ETH Zurich, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, IFNH, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, Zurich 8092, Switzerland.
| |
Collapse
|
4
|
G Proteins and GPCRs in C. elegans Development: A Story of Mutual Infidelity. J Dev Biol 2018; 6:jdb6040028. [PMID: 30477278 PMCID: PMC6316442 DOI: 10.3390/jdb6040028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022] Open
Abstract
Many vital processes during C. elegans development, especially the establishment and maintenance of cell polarity in embryogenesis, are controlled by complex signaling pathways. G protein-coupled receptors (GPCRs), such as the four Frizzled family Wnt receptors, are linchpins in regulating and orchestrating several of these mechanisms. However, despite being GPCRs, which usually couple to G proteins, these receptors do not seem to activate classical heterotrimeric G protein-mediated signaling cascades. The view on signaling during embryogenesis is further complicated by the fact that heterotrimeric G proteins do play essential roles in cell polarity during embryogenesis, but their activity is modulated in a predominantly GPCR-independent manner via G protein regulators such as GEFs GAPs and GDIs. Further, the triggered downstream effectors are not typical. Only very few GPCR-dependent and G protein-mediated signaling pathways have been unambiguously defined in this context. This unusual and highly intriguing concept of separating GPCR function and G-protein activity, which is not restricted to embryogenesis in C. elegans but can also be found in other organisms, allows for essential and multi-faceted ways of regulating cellular communication and response. Although its relevance cannot be debated, its impact is still poorly discussed, and C. elegans is an ideal model to understand the underlying principles.
Collapse
|
5
|
Vega-Cabrera LA, Pardo-López L. Membrane remodeling and organization: Elements common to prokaryotes and eukaryotes. IUBMB Life 2017; 69:55-62. [DOI: 10.1002/iub.1604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/15/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Luz A. Vega-Cabrera
- Instituto de Biotecnología, Universidad Nacional Autónoma de México; Apdo. Postal 510-3 Cuernavaca Morelos México
| | - Liliana Pardo-López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México; Apdo. Postal 510-3 Cuernavaca Morelos México
| |
Collapse
|
6
|
Abstract
A complex endomembrane system is one of the hallmarks of Eukaryotes. Vesicle trafficking between compartments is controlled by a diverse protein repertoire, including Rab GTPases. These small GTP-binding proteins contribute identity and specificity to the system, and by working as molecular switches, trigger multiple events in vesicle budding, transport, and fusion. A diverse collection of Rab GTPases already existed in the ancestral Eukaryote, yet, it is unclear how such elaborate repertoire emerged. A novel archaeal phylum, the Lokiarchaeota, revealed that several eukaryotic-like protein systems, including small GTPases, are present in Archaea. Here, we test the hypothesis that the Rab family of small GTPases predates the origin of Eukaryotes. Our bioinformatic pipeline detected multiple putative Rab-like proteins in several archaeal species. Our analyses revealed the presence and strict conservation of sequence features that distinguish eukaryotic Rabs from other small GTPases (Rab family motifs), mapping to the same regions in the structure as in eukaryotic Rabs. These mediate Rab-specific interactions with regulators of the REP/GDI (Rab Escort Protein/GDP dissociation Inhibitor) family. Sensitive structure-based methods further revealed the existence of REP/GDI-like genes in Archaea, involved in isoprenyl metabolism. Our analysis supports a scenario where Rabs differentiated into an independent family in Archaea, interacting with proteins involved in membrane biogenesis. These results further support the archaeal nature of the eukaryotic ancestor and provide a new insight into the intermediate stages and the evolutionary path toward the complex membrane-associated signaling circuits that characterize the Ras superfamily of small GTPases, and specifically Rab proteins.
Collapse
|
7
|
Stanley RJ, Thomas GMH. Activation of G Proteins by Guanine Nucleotide Exchange Factors Relies on GTPase Activity. PLoS One 2016; 11:e0151861. [PMID: 26986850 PMCID: PMC4795700 DOI: 10.1371/journal.pone.0151861] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/04/2016] [Indexed: 11/18/2022] Open
Abstract
G proteins are an important family of signalling molecules controlled by guanine nucleotide exchange and GTPase activity in what is commonly called an 'activation/inactivation cycle'. The molecular mechanism by which guanine nucleotide exchange factors (GEFs) catalyse the activation of monomeric G proteins is well-established, however the complete reversibility of this mechanism is often overlooked. Here, we use a theoretical approach to prove that GEFs are unable to positively control G protein systems at steady-state in the absence of GTPase activity. Instead, positive regulation of G proteins must be seen as a product of the competition between guanine nucleotide exchange and GTPase activity--emphasising a central role for GTPase activity beyond merely signal termination. We conclude that a more accurate description of the regulation of G proteins via these processes is as a 'balance/imbalance' mechanism. This result has implications for the understanding of intracellular signalling processes, and for experimental strategies that rely on modulating G protein systems.
Collapse
Affiliation(s)
- Rob J. Stanley
- CoMPLEX, University College London, London, United Kingdom
- Department of Cell & Developmental Biology, University College London, London, United Kingdom
| | - Geraint M. H. Thomas
- CoMPLEX, University College London, London, United Kingdom
- Department of Cell & Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
8
|
Klinger CM, Spang A, Dacks JB, Ettema TJG. Tracing the Archaeal Origins of Eukaryotic Membrane-Trafficking System Building Blocks. Mol Biol Evol 2016; 33:1528-41. [PMID: 26893300 DOI: 10.1093/molbev/msw034] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In contrast to prokaryotes, eukaryotic cells are characterized by a complex set of internal membrane-bound compartments. A subset of these, and the protein machineries that move material between them, define the membrane-trafficking system (MTS), the emergence of which represents a landmark in eukaryotic evolution. Unlike mitochondria and plastids, MTS organelles have autogenous origins. Much of the MTS machinery is composed of building blocks, including small GTPase, coiled-coil, beta-propeller + alpha-solenoid, and longin domains. Despite the identification of prokaryotic proteins containing these domains, only few represent direct orthologues, leaving the origins and early evolution of the MTS poorly understood. Here, we present an in-depth analysis of MTS building block homologues in the composite genome of Lokiarchaeum, the recently discovered archaeal sister clade of eukaryotes, yielding several key insights. We identify two previously unreported Eukaryotic Signature Proteins; orthologues of the Gtr/Rag family GTPases, involved in target of rapamycin complex signaling, and of the RLC7 dynein component. We could not identify golgin or SNARE (coiled-coil) or beta-propeller + alpha-solenoid orthologues, nor typical MTS domain fusions, suggesting that these either were lost from Lokiarchaeum or emerged later in eukaryotic evolution. Furthermore, our phylogenetic analyses of lokiarchaeal GTPases support a split into Ras-like and Arf-like superfamilies, with different prokaryotic antecedents, before the advent of eukaryotes. While no GTPase activating proteins or exchange factors were identified, we show that Lokiarchaeum encodes numerous roadblock domain proteins and putative longin domain proteins, confirming the latter's origin from Archaea. Altogether, our study provides new insights into the emergence and early evolution of the eukaryotic membrane-trafficking system.
Collapse
Affiliation(s)
| | - Anja Spang
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
An evolutionary link between capsular biogenesis and surface motility in bacteria. Nat Rev Microbiol 2015; 13:318-26. [PMID: 25895941 DOI: 10.1038/nrmicro3431] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Studying the evolution of macromolecular assemblies is important to improve our understanding of how complex cellular structures evolved, and to identify the functional building blocks that are involved. Recent studies suggest that the macromolecular complexes that are involved in two distinct processes in Myxococcus xanthus - surface motility and sporulation - are derived from an ancestral polysaccharide capsule assembly system. In this Opinion article, we argue that the available data suggest that the motility machinery evolved from this capsule assembly system following a gene duplication event, a change in carbohydrate polymer specificity and the acquisition of additional proteins by the motility complex, all of which are key features that distinguish the motility and sporulation systems. Furthermore, the presence of intermediates of these systems in bacterial genomes suggests a testable evolutionary model for their emergence and spread.
Collapse
|
10
|
Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJG. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 2015; 521:173-179. [PMID: 25945739 PMCID: PMC4444528 DOI: 10.1038/nature14447] [Citation(s) in RCA: 748] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/01/2015] [Indexed: 12/22/2022]
Abstract
The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of 'Lokiarchaeota', a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic 'starter-kit' to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes.
Collapse
Affiliation(s)
- Anja Spang
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Jimmy H Saw
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Steffen L Jørgensen
- Department of Biology, Centre for Geobiology, University of Bergen, N-5020 Bergen, Norway
| | | | - Joran Martijn
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Anders E Lind
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Roel van Eijk
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Christa Schleper
- Department of Biology, Centre for Geobiology, University of Bergen, N-5020 Bergen, Norway.,Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, A-1090 Vienna, Austria
| | - Lionel Guy
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| |
Collapse
|
11
|
Wuichet K, Søgaard-Andersen L. Evolution and diversity of the Ras superfamily of small GTPases in prokaryotes. Genome Biol Evol 2014; 7:57-70. [PMID: 25480683 PMCID: PMC4316618 DOI: 10.1093/gbe/evu264] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Ras superfamily of small GTPases are single domain nucleotide-dependent molecular switches that act as highly tuned regulators of complex signal transduction pathways. Originally identified in eukaryotes for their roles in fundamental cellular processes including proliferation, motility, polarity, nuclear transport, and vesicle transport, recent studies have revealed that single domain GTPases also control complex functions such as cell polarity, motility, predation, development and antibiotic resistance in bacteria. Here, we used a computational genomics approach to understand the abundance, diversity, and evolution of small GTPases in prokaryotes. We collected 520 small GTPase sequences present in 17% of 1,611 prokaryotic genomes analyzed that cover diverse lineages. We identified two discrete families of small GTPases in prokaryotes that show evidence of three distinct catalytic mechanisms. The MglA family includes MglA homologs, which are typically associated with the MglB GTPase activating protein, whereas members of the Rup (Ras superfamily GTPase of unknown function in prokaryotes) family are not predicted to interact with MglB homologs. System classification and genome context analyses support the involvement of small GTPases in diverse prokaryotic signal transduction pathways including two component systems, laying the foundation for future experimental characterization of these proteins. Phylogenetic analysis of prokaryotic and eukaryotic GTPases supports that the last universal common ancestor contained ancestral MglA and Rup family members. We propose that the MglA family was lost from the ancestral eukaryote and that the Ras superfamily members in extant eukaryotes are the result of vertical and horizontal gene transfer events of ancestral Rup GTPases.
Collapse
Affiliation(s)
- Kristin Wuichet
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
12
|
Sommer MS, Schleiff E. Protein targeting and transport as a necessary consequence of increased cellular complexity. Cold Spring Harb Perspect Biol 2014; 6:6/8/a016055. [PMID: 25085907 DOI: 10.1101/cshperspect.a016055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
With increasing intracellular complexity, a new cell-biological problem that is the allocation of cytoplasmically synthesized proteins to their final destinations within the cell emerged. A special challenge is thereby the translocation of proteins into or across cellular membranes. The underlying mechanisms are only in parts well understood, but it can be assumed that the course of cellular evolution had a deep impact on the design of the required molecular machines. In this article, we aim to summarize the current knowledge and concepts of the evolutionary development of protein trafficking as a necessary premise and consequence of increased cellular complexity.
Collapse
Affiliation(s)
- Maik S Sommer
- Institute for Molecular Biosciences, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany Centre of Membrane Proteomics, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
| |
Collapse
|
13
|
Newman LE, Zhou CJ, Mudigonda S, Mattheyses AL, Paradies E, Marobbio CMT, Kahn RA. The ARL2 GTPase is required for mitochondrial morphology, motility, and maintenance of ATP levels. PLoS One 2014; 9:e99270. [PMID: 24911211 PMCID: PMC4050054 DOI: 10.1371/journal.pone.0099270] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/13/2014] [Indexed: 02/06/2023] Open
Abstract
ARF-like 2 (ARL2) is a member of the ARF family and RAS superfamily of regulatory GTPases, predicted to be present in the last eukaryotic common ancestor, and essential in a number of model genetic systems. Though best studied as a regulator of tubulin folding, we previously demonstrated that ARL2 partially localizes to mitochondria. Here, we show that ARL2 is essential to a number of mitochondrial functions, including mitochondrial morphology, motility, and maintenance of ATP levels. We compare phenotypes resulting from ARL2 depletion and expression of dominant negative mutants and use these to demonstrate that the mitochondrial roles of ARL2 are distinct from its roles in tubulin folding. Testing of current models for ARL2 actions at mitochondria failed to support them. Rather, we found that knockdown of the ARL2 GTPase activating protein (GAP) ELMOD2 phenocopies two of three phenotypes of ARL2 siRNA, making it a likely effector for these actions. These results add new layers of complexity to ARL2 signaling, highlighting the need to deconvolve these different cell functions. We hypothesize that ARL2 plays essential roles inside mitochondria along with other cellular functions, at least in part to provide coupling of regulation between these essential cell processes.
Collapse
Affiliation(s)
- Laura E. Newman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Cheng-jing Zhou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Samatha Mudigonda
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Alexa L. Mattheyses
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Eleonora Paradies
- Consiglio Nazionale delle Ricerche Institute of Biomembranes and Bioenergetics, Bari, Italy
| | | | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
14
|
Saad IIF, Saha SB, Thomas G. The RAS subfamily Evolution - tracing evolution for its utmost exploitation. Bioinformation 2014; 10:293-8. [PMID: 24966537 PMCID: PMC4070039 DOI: 10.6026/97320630010293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 05/04/2014] [Indexed: 11/23/2022] Open
Abstract
In the development of multicellularity, signaling proteins has played a very important role. Among them, RAS family is one of the most widely studied protein family. However, evolutionary analysis has been carried out mainly on super family level leaving sub family information in scanty. Thus, a subfamily evolutionary study on RAS evolutionary expansion is imperative as it will aid in better drug designing against dreadful diseases like Cancer and other developmental diseases. The present study was aimed to understand RAS evolution on both holistic as well as reductive level. All human RAS family genes and protein were subjected to BLAST tools to find orthologs and paralogs with different parameters followed by phylogenetic tree generation. Our results clearly showed that H-RAS is the most primitive RAS in higher eukaryotes and then diverged into other RAS family members due to different gene modification events. Furthermore, a site specific selection pressure analysis was carried out using SELECTON server which showed that H-RAS, M-RAS and N-RAS are evolving faster than K-RAS and R-RAS. Thus, the results ascertain a new ground to cancer biologists to exploit negatively selected K-RAS and R-RAS as potent drug targets in cancer therapeutics.
Collapse
Affiliation(s)
- Ismail IF Saad
- Department of Zoology, Faculty of Science, Omar Al Mukhtar University, Al Bayda, Libya
| | - Saurav B Saha
- Department of Computational Biology and Bioinformatics, JSBB, SHIATS, Allahabad - 211007, India
| | - George Thomas
- Department of Molecular and Cellular Engineering, JSBB, SHIATS, Allahabad - 211007, India
| |
Collapse
|
15
|
Regulating the large Sec7 ARF guanine nucleotide exchange factors: the when, where and how of activation. Cell Mol Life Sci 2014; 71:3419-38. [PMID: 24728583 DOI: 10.1007/s00018-014-1602-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/27/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Eukaryotic cells require selective sorting and transport of cargo between intracellular compartments. This is accomplished at least in part by vesicles that bud from a donor compartment, sequestering a subset of resident protein "cargos" destined for transport to an acceptor compartment. A key step in vesicle formation and targeting is the recruitment of specific proteins that form a coat on the outside of the vesicle in a process requiring the activation of regulatory GTPases of the ARF family. Like all such GTPases, ARFs cycle between inactive, GDP-bound, and membrane-associated active, GTP-bound, conformations. And like most regulatory GTPases the activating step is slow and thought to be rate limiting in cells, requiring the use of ARF guanine nucleotide exchange factor (GEFs). ARF GEFs are characterized by the presence of a conserved, catalytic Sec7 domain, though they also contain motifs or additional domains that confer specificity to localization and regulation of activity. These domains have been used to define and classify five different sub-families of ARF GEFs. One of these, the BIG/GBF1 family, includes three proteins that are each key regulators of the secretory pathway. GEF activity initiates the coating of nascent vesicles via the localized generation of activated ARFs and thus these GEFs are the upstream regulators that define the site and timing of vesicle production. Paradoxically, while we have detailed molecular knowledge of how GEFs activate ARFs, we know very little about how GEFs are recruited and/or activated at the right time and place to initiate transport. This review summarizes the current knowledge of GEF regulation and explores the still uncertain mechanisms that position GEFs at "budding ready" membrane sites to generate highly localized activated ARFs.
Collapse
|
16
|
Koumandou VL, Wickstead B, Ginger ML, van der Giezen M, Dacks JB, Field MC. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit Rev Biochem Mol Biol 2014; 48:373-96. [PMID: 23895660 PMCID: PMC3791482 DOI: 10.3109/10409238.2013.821444] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself.
Collapse
Affiliation(s)
- V Lila Koumandou
- Biomedical Research Foundation, Academy of Athens, Soranou Efesiou 4, Athens 115 27, Greece
| | | | | | | | | | | |
Collapse
|
17
|
De Franceschi N, Wild K, Schlacht A, Dacks JB, Sinning I, Filippini F. Longin and GAF domains: structural evolution and adaptation to the subcellular trafficking machinery. Traffic 2013; 15:104-21. [PMID: 24107188 DOI: 10.1111/tra.12124] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/18/2013] [Accepted: 09/23/2013] [Indexed: 11/28/2022]
Abstract
Endomembrane trafficking is one of the most prominent cytological features of eukaryotes. Given their widespread distribution and specialization, coiled-coil domains, coatomer domains, small GTPases and Longin domains are considered primordial 'building blocks' of the membrane trafficking machineries. Longin domains are conserved across eukaryotes and were likely to be present in the Last Eukaryotic Common Ancestor. The Longin fold is based on the α-β-α sandwich architecture and a unique topology, possibly accounting for the special adaptation to the eukaryotic trafficking machinery. The ancient Per ARNT Sim (PAS) and cGMP-specific phosphodiesterases, Adenylyl cyclases and FhlA (GAF) family domains show a similar architecture, and the identification of prokaryotic counterparts of GAF domains involved in trafficking provides an additional connection for the endomembrane system back into the pre-eukaryotic world. Proteome-wide, comparative bioinformatic analyses of the domains reveal three binding regions (A, B and C) mediating either specific or conserved protein-protein interactions. While the A region mediates intra- and inter-molecular interactions, the B region is involved in binding small GTPases, thus providing an evolutionary connection among major building blocks in the endomembrane system. Finally, we propose that the peculiar interaction surface of the C region of the Longin domain allowed it to extensively integrate into the endomembrane trafficking machinery in the earliest stages of building the eukaryotic cell.
Collapse
Affiliation(s)
- Nicola De Franceschi
- Molecular Biology and Bioinformatics Unit, Department of Biology, University of Padova, Padova, Italy; Current address: Centre for Biotechnology, University of Turku, Turku, Finland
| | | | | | | | | | | |
Collapse
|
18
|
Zhang D, Iyer LM, He F, Aravind L. Discovery of Novel DENN Proteins: Implications for the Evolution of Eukaryotic Intracellular Membrane Structures and Human Disease. Front Genet 2012; 3:283. [PMID: 23248642 PMCID: PMC3521125 DOI: 10.3389/fgene.2012.00283] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 11/20/2012] [Indexed: 12/14/2022] Open
Abstract
The tripartite DENN module, comprised of a N-terminal longin domain, followed by DENN, and d-DENN domains, is a GDP-GTP exchange factor (GEFs) for Rab GTPases, which are regulators of practically all membrane trafficking events in eukaryotes. Using sequence and structure analysis we identify multiple novel homologs of the DENN module, many of which can be traced back to the ancestral eukaryote. These findings provide unexpected leads regarding key cellular processes such as autophagy, vesicle-vacuole interactions, chromosome segregation, and human disease. Of these, SMCR8, the folliculin interacting protein-1 and 2 (FNIP1 and FNIP2), nitrogen permease regulator 2 (NPR2), and NPR3 are proposed to function in recruiting Rab GTPases during different steps of autophagy, fusion of autophagosomes with the vacuole and regulation of cellular metabolism. Another novel DENN protein identified in this study is C9ORF72; expansions of the hexanucleotide GGGGCC in its first intron have been recently implicated in amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD). While this mutation is proposed to cause a RNA-level defect, the identification of C9ORF72 as a potential DENN-type GEF raises the possibility that at least part of the pathology might relate to a specific Rab-dependent vesicular trafficking process, as has been observed in the case of some other neurological conditions with similar phenotypes. We present evidence that the longin domain, such as those found in the DENN module, are likely to have been ultimately derived from the related domains found in prokaryotic GTPase-activating proteins of MglA-like GTPases. Thus, the origin of the longin domains from this ancient GTPase-interacting domain, concomitant with the radiation of GTPases, especially of the Rab clade, played an important role in the dynamics of eukaryotic intracellular membrane systems.
Collapse
Affiliation(s)
- Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA
| | | | | | | |
Collapse
|
19
|
Eliáš M, Klimeš V. Rho GTPases: deciphering the evolutionary history of a complex protein family. Methods Mol Biol 2012; 827:13-34. [PMID: 22144265 DOI: 10.1007/978-1-61779-442-1_2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Rho GTPases constitute a significant subgroup of the eukaryotic Ras superfamily of small GTPases implicated in the regulation of diverse cellular processes, such as the dynamics of the actin cytoskeleton, establishment, and maintenance of cell polarity and membrane trafficking. Whereas a few eukaryotes lack Rho genes, a majority of species typically bear multiple Rho paralogs, raising a question about the origin of the family and the paths of its diversification in individual eukaryotic lineages. In this chapter, we ruminate on several aspects of the evolutionary history of the Rho family and methodological challenges of its reconstruction. First, we provide an updated survey of Rho GTPases in diverse eukaryotic branches, demonstrating almost ubiquitous occurrence of Rho genes across the eukaryotic phylogeny most consistent with the presence of at least one Rho gene already in the last eukaryotic common ancestor. Second, we discuss the obstacles in reconstructing the history of gene duplications giving rise to the extant diversity of Rho paralogs in different species, and point to numerous limitations posed by the current phylogenetic methodology. Third, as a case study demonstrating various issues of data collection, phylogenetic analyses and interpretations of trees, we present an analysis of the Rho family in the fungal kingdom, revealing the existence of at least four separate paralogs (Cdc42, Rac, Rho1, and Rho4) in early fungi and subsequent potentially independent expansions of the family in different fungal subgroups. We conclude with the warning that the currently dominating perception of the Rho phylogeny is biased by the metazoan (and especially vertebrate) perspective, and a new, more global view is to be worked out when a better genome sampling and more adequate methods of phylogenetic inference are employed.
Collapse
Affiliation(s)
- Marek Eliáš
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | | |
Collapse
|
20
|
Bulyha I, Hot E, Huntley S, Søgaard-Andersen L. GTPases in bacterial cell polarity and signalling. Curr Opin Microbiol 2011; 14:726-33. [DOI: 10.1016/j.mib.2011.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 08/31/2011] [Accepted: 09/05/2011] [Indexed: 12/20/2022]
|
21
|
Zhang Y, Ducret A, Shaevitz J, Mignot T. From individual cell motility to collective behaviors: insights from a prokaryote, Myxococcus xanthus. FEMS Microbiol Rev 2011; 36:149-64. [PMID: 22091711 DOI: 10.1111/j.1574-6976.2011.00307.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/23/2011] [Accepted: 09/02/2011] [Indexed: 01/05/2023] Open
Abstract
In bird flocks, fish schools, and many other living organisms, regrouping among individuals of the same kin is frequently an advantageous strategy to survive, forage, and face predators. However, these behaviors are costly because the community must develop regulatory mechanisms to coordinate and adapt its response to rapid environmental changes. In principle, these regulatory mechanisms, involving communication between individuals, may also apply to cellular systems which must respond collectively during multicellular development. Dissecting the mechanisms at work requires amenable experimental systems, for example, developing bacteria. Myxococcus xanthus, a Gram-negative delatproteobacterium, is able to coordinate its motility in space and time to swarm, predate, and grow millimeter-size spore-filled fruiting bodies. A thorough understanding of the regulatory mechanisms first requires studying how individual cells move across solid surfaces and control their direction of movement, which was recently boosted by new cell biology techniques. In this review, we describe current molecular knowledge of the motility mechanism and its regulation as a lead-in to discuss how multicellular cooperation may have emerged from several layers of regulation: chemotaxis, cell-cell signaling, and the extracellular matrix. We suggest that Myxococcus is a powerful system to investigate collective principles that may also be relevant to other cellular systems.
Collapse
Affiliation(s)
- Yong Zhang
- Laboratoire de Chimie Bactérienne - CNRS UPR9043, Institut de Microbiologie de la Méditerranée, Université Aix-marseille, Marseille Cedex, France
| | | | | | | |
Collapse
|
22
|
Dittmar T, Zänker KS. Horizontal gene transfers with or without cell fusions in all categories of the living matter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 714:5-89. [PMID: 21506007 PMCID: PMC7120942 DOI: 10.1007/978-94-007-0782-5_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the history of widespread exchanges of genetic segments initiated over 3 billion years ago, to be part of their life style, by sphero-protoplastic cells, the ancestors of archaea, prokaryota, and eukaryota. These primordial cells shared a hostile anaerobic and overheated environment and competed for survival. "Coexist with, or subdue and conquer, expropriate its most useful possessions, or symbiose with it, your competitor" remain cellular life's basic rules. This author emphasizes the role of viruses, both in mediating cell fusions, such as the formation of the first eukaryotic cell(s) from a united crenarchaeon and prokaryota, and the transfer of host cell genes integrated into viral (phages) genomes. After rising above the Darwinian threshold, rigid rules of speciation and vertical inheritance in the three domains of life were established, but horizontal gene transfers with or without cell fusions were never abolished. The author proves with extensive, yet highly selective documentation, that not only unicellular microorganisms, but the most complex multicellular entities of the highest ranks resort to, and practice, cell fusions, and donate and accept horizontally (laterally) transferred genes. Cell fusions and horizontally exchanged genetic materials remain the fundamental attributes and inherent characteristics of the living matter, whether occurring accidentally or sought after intentionally. These events occur to cells stagnating for some 3 milliard years at a lower yet amazingly sophisticated level of evolution, and to cells achieving the highest degree of differentiation, and thus functioning in dependence on the support of a most advanced multicellular host, like those of the human brain. No living cell is completely exempt from gene drains or gene insertions.
Collapse
Affiliation(s)
- Thomas Dittmar
- Inst. Immunologie, Universität Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| | - Kurt S. Zänker
- Institute of Immunologie, University of Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| |
Collapse
|
23
|
A new fusion hypothesis for the origin of Eukarya: better than previous ones, but probably also wrong. Res Microbiol 2011; 162:77-91. [DOI: 10.1016/j.resmic.2010.10.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Anantharaman V, Abhiman S, de Souza RF, Aravind L. Comparative genomics uncovers novel structural and functional features of the heterotrimeric GTPase signaling system. Gene 2010; 475:63-78. [PMID: 21182906 DOI: 10.1016/j.gene.2010.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 12/01/2010] [Accepted: 12/06/2010] [Indexed: 11/18/2022]
Abstract
Though the heterotrimeric G-proteins signaling system is one of the best studied in eukaryotes, its provenance and its prevalence outside of model eukaryotes remains poorly understood. We utilized the wealth of sequence data from recently sequenced eukaryotic genomes to uncover robust G-protein signaling systems in several poorly studied eukaryotic lineages such as the parabasalids, heteroloboseans and stramenopiles. This indicated that the Gα subunit is likely to have separated from the ARF-like GTPases prior to the last eukaryotic common ancestor. We systematically identified the structure and sequence features associated with this divergence and found that most of the neomorphic positions in Gα form a ring of residues centered on the nucleotide binding site, several of which are likely to be critical for interactions with the RGS domain for its GAP function. We also present evidence that in some of the potentially early branching eukaryotic lineages, like Trichomonas, Gα is likely to function independently of the Gβγ subunits. We were able to identify previously unknown Gγ subunits in Naegleria, suggesting that the trimeric version was already present by the time of the divergence of the heteroloboseans from the remaining eukaryotes. Evolution of Gα subunits is dominated by several independent lineage-specific expansions (LSEs). In most of these cases there are concomitant, independent LSEs of RGS proteins along with an extraordinary diversification of their domain architectures. The diversity of RGS domains from Naegleria in particular, which has the largest complement of Gα and RGS proteins for any eukaryote, provides new insights into RGS function and evolution. We uncovered a new class of soluble ligand receptors of bacterial origin with RGS domains and an extraordinary diversity of membrane-linked, redox-associated, adhesion-dependent and small molecule-induced G-protein signaling networks that evolved in early-branching eukaryotes, independently of parallel systems in animals. Furthermore, this newly characterized diversity of RGS domains helps in defining their ancestral conserved interfaces with Gα and also those interfaces that are prone to extensive lineage-specific diversification and are thereby responsible for selectivity in Gα-RGS interactions. Several mushrooms show LSEs of Gαs but not of RGS proteins pointing to the probable differentiation of Gαs in conjunction with mating-type diversity. When combined with the characterization of the 7TM receptors (GPCRs), it becomes apparent that, through much of eukaryotic evolution, cells contained both 7TM receptors that acted as GEFs and those as GAPs (with C-terminal RGS domains) for Gαs. Only in some lineages like animals and stramenopiles the 7TM receptors were restricted to GEF only roles, probably due to selection imposed by the rate-constants of the Gαs that underwent lineage-specific expansion in them. In the alveolate lineage the 7TM receptors occur independently of heterotrimeric G-proteins, suggesting the prevalence of G-protein-independent signaling in these organisms.
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
25
|
Effects of site-directed mutagenesis of mglA on motility and swarming of Myxococcus xanthus. BMC Microbiol 2010; 10:295. [PMID: 21083931 PMCID: PMC3000849 DOI: 10.1186/1471-2180-10-295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 11/18/2010] [Indexed: 01/31/2023] Open
Abstract
Background The mglA gene from the bacterium Myxococcus xanthus encodes a 22kDa protein related to the Ras superfamily of monomeric GTPases. MglA is required for the normal function of A-motility (adventurous), S-motility (social), fruiting body morphogenesis, and sporulation. MglA and its homologs differ from all eukaryotic and other prokaryotic GTPases because they have a threonine (Thr78) in place of the highly conserved aspartate residue of the consensus PM3 (phosphate-magnesium binding) region. To identify residues critical for MglA function or potential protein interactions, and explore the function of Thr78, the phenotypes of 18 mglA mutants were characterized. Results Nine mutants, with mutations predicted to alter residues that bind the guanine base or coordinate magnesium, did not produce detectable MglA. As expected, these mutants were mot- dev- because MglA is essential for these processes. Of the remaining nine mutants, seven showed a wild-type distribution pattern for MglA but fell into two categories with regard to function. Five of the seven mutants exhibited mild phenotypes, but two mutants, T78D and P80A, abolished motility and development. The localization pattern of MglA was abolished in two mutants that were mot- spo- and dev-. These two mutants were predicted to alter surface residues at Asp52 and Thr54, which suggests that these residues are critical for proper localization and may define a protein interaction site. Improving the consensus match with Ras at Thr78 abolished function of MglA. Only the conservative serine substitution was tolerated at this position. Merodiploid constructs revealed that a subset of alleles, including mglAD52A, were dominant and also illustrated that changing the balance of MglA and its co-transcribed partner, MglB, affects A-motility. Conclusion Our results suggest that GTP binding is critical for stability of MglA because MglA does not accumulate in mutants that cannot bind GTP. The threonine in PM3 of MglA proteins represents a novel modification of the highly conserved GTPase consensus at this position. The requirement for a hydroxyl group at this position may indicate that MglA is subject to modification under certain conditions. Proper localization of MglA is critical for both motility and development and likely involves protein interactions mediated by residues Asp52 and Thr54.
Collapse
|
26
|
Bohnsack MT, Schleiff E. The evolution of protein targeting and translocation systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1115-30. [DOI: 10.1016/j.bbamcr.2010.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 05/26/2010] [Accepted: 06/11/2010] [Indexed: 11/28/2022]
|
27
|
Zhang Y, Franco M, Ducret A, Mignot T. A bacterial Ras-like small GTP-binding protein and its cognate GAP establish a dynamic spatial polarity axis to control directed motility. PLoS Biol 2010; 8:e1000430. [PMID: 20652021 PMCID: PMC2907295 DOI: 10.1371/journal.pbio.1000430] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 06/10/2010] [Indexed: 11/27/2022] Open
Abstract
Directional control of bacterial motility is regulated by dynamic polarity inversions driven by pole-to-pole oscillation of a Ras family small G-protein and its associated GTPase-activating protein. Regulated cell polarity is central to many cellular processes. We investigated the mechanisms that govern the rapid switching of cell polarity (reversals) during motility of the bacterium Myxococcus xanthus. Cellular reversals are mediated by pole-to-pole oscillations of motility proteins and the frequency of the oscillations is under the control of the Frz chemosensory system. However, the molecular mechanism that creates dynamic polarity remained to be characterized. In this work, we establish that polarization is regulated by the GTP cycle of a Ras-like GTPase, MglA. We initially sought an MglA regulator and purified a protein, MglB, which was found to activate GTP hydrolysis by MglA. Using live fluorescence microscopy, we show that MglA and MglB localize at opposite poles and oscillate oppositely when cells reverse. In absence of MglB, MglA-YFP accumulates at the lagging cell end, leading to a strikingly aberrant reversal cycle. Spatial control of MglA is achieved through the GAP activity of MglB because an MglA mutant that cannot hydrolyze GTP accumulates at the lagging cell end, despite the presence of MglB. Genetic and cell biological studies show that the MglA-GTP cycle controls dynamic polarity and the reversal switch. The study supports a model wherein a chemosensory signal transduction system (Frz) activates reversals by relieving a spatial inhibition at the back pole of the cells: reversals are allowed by Frz-activated switching of MglB to the opposite pole, allowing MglA-GTP to accumulate at the back of the cells and create the polarity switch. In summary, our results provide insight into how bacteria regulate their polarity dynamically, revealing unsuspected conserved regulations with eukaryots. Motile cells have evolved complex regulatory networks to respond to environmental cues and change their direction of movement appropriately. In this process, an arsenal of receptor-coupled small G-proteins acts as a cellular compass to dynamically polarize the leading edge and regulate the motility response. However, the precise mechanism of action of these G-proteins in controlling bacteria movement on solid surfaces has remained an enigma. We investigate this process in Gram negative Myxococcus xanthus cells. Surprisingly, we find that the Ras-like small G-protein MglA polarizes the cell by accumulating at the leading cell pole in its active GTP-bound form. This localization is dependent on MglB, a GTPase-activating protein that converts MglA to its inactive form specifically at the opposite, lagging cell pole. Furthermore, we show that a receptor-coupled signal transduction cascade can activate re-localization of MglA and MglB at opposite poles in a synchronous manner, resulting in inversion of the polarity axis and cell movement in the opposite direction. Thus, a simple, eukaryote-like signaling module also governs dynamic polarity mechanisms in bacteria, demonstrating broader conservation of these signaling systems than initially suspected.
Collapse
Affiliation(s)
- Yong Zhang
- Institut de Microbiologie de la Méditerranée–Université Aix-Marseille-Laboratoire de Chimie Bactérienne, Marseille, France
- State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan, China
| | - Michel Franco
- Institut de Pharmacologie Moléculaire et Cellulaire–Université de Nice-Sophia Antipolis, Valbonne, France
| | - Adrien Ducret
- Institut de Microbiologie de la Méditerranée–Université Aix-Marseille-Laboratoire de Chimie Bactérienne, Marseille, France
| | - Tâm Mignot
- Institut de Microbiologie de la Méditerranée–Université Aix-Marseille-Laboratoire de Chimie Bactérienne, Marseille, France
- * E-mail:
| |
Collapse
|
28
|
Jian X, Cavenagh M, Gruschus JM, Randazzo PA, Kahn RA. Modifications to the C-terminus of Arf1 alter cell functions and protein interactions. Traffic 2010; 11:732-42. [PMID: 20214751 DOI: 10.1111/j.1600-0854.2010.01054.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arf family proteins are approximately 21-kDa GTP-binding proteins that are critical regulators of membrane traffic and the actin cytoskeleton. Studies examining the complex signaling pathways underlying Arf action have relied on recombinant proteins comprised of Arf fused to epitope tags or proteins, such as glutathione S-transferase or green fluorescent protein, for both cell-based mammalian cell studies and bacterially expressed recombinant proteins for biochemical assays. However, the effects of such protein fusions on the biochemical properties relevant to the cellular function have been only incompletely studied at best. Here, we have characterized the effect of C-terminal tagging of Arf1 on (i) function in Saccharomyces cerevisiae, (ii) in vitro nucleotide exchange and (iii) interaction with guanine nucleotide exchange factors and GTPase-activating proteins. We found that the tagged Arfs were substantially impaired or altered in each assay, compared with the wild-type protein, and these changes are certain to alter actions in cells. We discuss the results related to the interpretation of experiments using these reagents and we propose that authors and editors consistently adopt a few simple rules for describing and discussing results obtained with Arf family members that can be readily applied to other proteins.
Collapse
Affiliation(s)
- Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bldg 37 Room 2042, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
29
|
Cavalier-Smith T. Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biol Direct 2010; 5:7. [PMID: 20132544 PMCID: PMC2837639 DOI: 10.1186/1745-6150-5-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 02/04/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The transition from prokaryotes to eukaryotes was the most radical change in cell organisation since life began, with the largest ever burst of gene duplication and novelty. According to the coevolutionary theory of eukaryote origins, the fundamental innovations were the concerted origins of the endomembrane system and cytoskeleton, subsequently recruited to form the cell nucleus and coevolving mitotic apparatus, with numerous genetic eukaryotic novelties inevitable consequences of this compartmentation and novel DNA segregation mechanism. Physical and mutational mechanisms of origin of the nucleus are seldom considered beyond the long-standing assumption that it involved wrapping pre-existing endomembranes around chromatin. Discussions on the origin of sex typically overlook its association with protozoan entry into dormant walled cysts and the likely simultaneous coevolutionary, not sequential, origin of mitosis and meiosis. RESULTS I elucidate nuclear and mitotic coevolution, explaining the origins of dicer and small centromeric RNAs for positionally controlling centromeric heterochromatin, and how 27 major features of the cell nucleus evolved in four logical stages, making both mechanisms and selective advantages explicit: two initial stages (origin of 30 nm chromatin fibres, enabling DNA compaction; and firmer attachment of endomembranes to heterochromatin) protected DNA and nascent RNA from shearing by novel molecular motors mediating vesicle transport, division, and cytoplasmic motility. Then octagonal nuclear pore complexes (NPCs) arguably evolved from COPII coated vesicle proteins trapped in clumps by Ran GTPase-mediated cisternal fusion that generated the fenestrated nuclear envelope, preventing lethal complete cisternal fusion, and allowing passive protein and RNA exchange. Finally, plugging NPC lumens by an FG-nucleoporin meshwork and adopting karyopherins for nucleocytoplasmic exchange conferred compartmentation advantages. These successive changes took place in naked growing cells, probably as indirect consequences of the origin of phagotrophy. The first eukaryote had 1-2 cilia and also walled resting cysts; I outline how encystation may have promoted the origin of meiotic sex. I also explain why many alternative ideas are inadequate. CONCLUSION Nuclear pore complexes are evolutionary chimaeras of endomembrane- and mitosis-related chromatin-associated proteins. The keys to understanding eukaryogenesis are a proper phylogenetic context and understanding organelle coevolution: how innovations in one cell component caused repercussions on others.
Collapse
|
30
|
Toward a model for Arf GTPases as regulators of traffic at the Golgi. FEBS Lett 2009; 583:3872-9. [PMID: 19879269 DOI: 10.1016/j.febslet.2009.10.066] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 10/25/2009] [Accepted: 10/26/2009] [Indexed: 12/19/2022]
Abstract
In this review, I summarize the likely roles played by ADP-ribosylation factor (Arf) proteins in the regulation of membrane traffic at the Golgi, from the perspective of the GTPase. The most glaring limitations to the development of a coherent molecular model are highlighted; including incomplete information on the initiation of Arf activation, identification of the "accessory proteins" required for carrier maturation and scission, and those required for directed traffic and fusion at the destination membrane. Though incomplete, the molecular model of carrier biogenesis has developed rapidly in recent years and promises richness in understanding this essential process.
Collapse
|
31
|
van Dam TJP, Rehmann H, Bos JL, Snel B. Phylogeny of the CDC25 homology domain reveals rapid differentiation of Ras pathways between early animals and fungi. Cell Signal 2009; 21:1579-85. [PMID: 19567266 DOI: 10.1016/j.cellsig.2009.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 06/22/2009] [Indexed: 11/24/2022]
Abstract
The members of the Ras-like superfamily of small GTP-binding proteins are molecular switches that are in general regulated in time and space by guanine nucleotide exchange factors and GTPase activating proteins. The Ras-like G-proteins Ras, Rap and Ral are regulated by a variety of guanine nucleotide exchange factors that are characterized by a CDC25 homology domain. Here we study the evolution of the Ras pathway by determining the evolutionary history of CDC25 homology domain coding sequences. We identified CDC25 homology domain coding sequences in animals, fungi and a wide range of protists, but not in plants. This suggests that the CDC25 homology domain originated in or before the last eukaryotic ancestor but was subsequently lost in plant. We provide evidence that at least seven different ancestral Ras guanine nucleotide exchange factors were present in the ancestor of fungi and animals. Differences between present day fungi and animals are the result of loss of ancestral Ras guanine nucleotide exchange factors early in fungal and animal evolution combined with lineage specific duplications and domain acquisitions. In addition, we identify Ral guanine exchange factors and Ral in early diverged fungi, dating the origin of Ral signaling back to before the divergence of animals and fungi. We conclude that the Ras signaling pathway evolved by gradual change as well as through differential sampling of the ancestral CDC25 homology domain repertoire by both fungi and animals. Finally, a comparison of the domain composition of the Ras guanine nucleotide exchange factors shows that domain addition and diversification occurred both prior to and after the fungal-animal split.
Collapse
Affiliation(s)
- Teunis J P van Dam
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
32
|
Yutin N, Wolf MY, Wolf YI, Koonin EV. The origins of phagocytosis and eukaryogenesis. Biol Direct 2009; 4:9. [PMID: 19245710 PMCID: PMC2651865 DOI: 10.1186/1745-6150-4-9] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 02/26/2009] [Indexed: 11/10/2022] Open
Abstract
Background Phagocytosis, that is, engulfment of large particles by eukaryotic cells, is found in diverse organisms and is often thought to be central to the very origin of the eukaryotic cell, in particular, for the acquisition of bacterial endosymbionts including the ancestor of the mitochondrion. Results Comparisons of the sets of proteins implicated in phagocytosis in different eukaryotes reveal extreme diversity, with very few highly conserved components that typically do not possess readily identifiable prokaryotic homologs. Nevertheless, phylogenetic analysis of those proteins for which such homologs do exist yields clues to the possible origin of phagocytosis. The central finding is that a subset of archaea encode actins that are not only monophyletic with eukaryotic actins but also share unique structural features with actin-related proteins (Arp) 2 and 3. All phagocytic processes are strictly dependent on remodeling of the actin cytoskeleton and the formation of branched filaments for which Arp2/3 are responsible. The presence of common structural features in Arp2/3 and the archaeal actins suggests that the common ancestors of the archaeal and eukaryotic actins were capable of forming branched filaments, like modern Arp2/3. The Rho family GTPases that are ubiquitous regulators of phagocytosis in eukaryotes appear to be of bacterial origin, so assuming that the host of the mitochondrial endosymbiont was an archaeon, the genes for these GTPases come via horizontal gene transfer from the endosymbiont or in an earlier event. Conclusion The present findings suggest a hypothetical scenario of eukaryogenesis under which the archaeal ancestor of eukaryotes had no cell wall (like modern Thermoplasma) but had an actin-based cytoskeleton including branched actin filaments that allowed this organism to produce actin-supported membrane protrusions. These protrusions would facilitate accidental, occasional engulfment of bacteria, one of which eventually became the mitochondrion. The acquisition of the endosymbiont triggered eukaryogenesis, in particular, the emergence of the endomembrane system that eventually led to the evolution of modern-type phagocytosis, independently in several eukaryotic lineages. Reviewers This article was reviewed by Simonetta Gribaldo, Gaspar Jekely, and Pierre Pontarotti. For the full reviews, please go to the Reviewers' Reports section.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | |
Collapse
|
33
|
Cavalier-Smith T. Predation and eukaryote cell origins: a coevolutionary perspective. Int J Biochem Cell Biol 2008; 41:307-22. [PMID: 18935970 DOI: 10.1016/j.biocel.2008.10.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/06/2008] [Accepted: 10/08/2008] [Indexed: 12/23/2022]
Abstract
Cells are of only two kinds: bacteria, with DNA segregated by surface membrane motors, dating back approximately 3.5Gy; and eukaryotes, which evolved from bacteria, possibly as recently as 800-850My ago. The last common ancestor of eukaryotes was a sexual phagotrophic protozoan with mitochondria, one or two centrioles and cilia. Conversion of bacteria (=prokaryotes) into a eukaryote involved approximately 60 major innovations. Numerous contradictory ideas about eukaryogenesis fail to explain fundamental features of eukaryotic cell biology or conflict with phylogeny. Data are best explained by the intracellular coevolutionary theory, with three basic tenets: (1) the eukaryotic cytoskeleton and endomembrane system originated through cooperatively enabling the evolution of phagotrophy; (2) phagocytosis internalised DNA-membrane attachments, unavoidably disrupting bacterial division; recovery entailed the evolution of the nucleus and mitotic cycle; (3) the symbiogenetic origin of mitochondria immediately followed the perfection of phagotrophy and intracellular digestion, contributing greater energy efficiency and group II introns as precursors of spliceosomal introns. Eukaryotes plus their archaebacterial sisters form the clade neomura, which evolved from a radically modified derivative of an actinobacterial posibacterium that had replaced the ancestral eubacterial murein peptidoglycan by N-linked glycoproteins, radically modified its DNA-handling enzymes, and evolved cotranslational protein secretion, but not the isoprenoid-ether lipids of archaebacteria. I focus on this phylogenetic background and on explaining how in response to novel phagotrophic selective pressures and ensuing genome internalisation this prekaryote evolved efficient digestion of prey proteins by retrotranslocation and 26S proteasomes, then internal digestion by phagocytosis, lysosomes, and peroxisomes, and eukaryotic vesicle trafficking and intracellular compartmentation.
Collapse
Affiliation(s)
- T Cavalier-Smith
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
34
|
Dacks JB, Peden AA, Field MC. Evolution of specificity in the eukaryotic endomembrane system. Int J Biochem Cell Biol 2008; 41:330-40. [PMID: 18835459 DOI: 10.1016/j.biocel.2008.08.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 08/26/2008] [Accepted: 08/31/2008] [Indexed: 11/25/2022]
Abstract
Two hundred years after Darwin's birth, our understanding of genetic mechanisms and cell biology has advanced to a level unimaginable in the 19th century. We now know that eukaryotic cells contain a huge variety of internal compartments, each with their own function, identity and history. For the compartments that together form the membrane-trafficking system, one of the central questions is how that identity is encoded and how it evolved. Here we review the key components involved in membrane-trafficking events, including SNAREs, Rabs, vesicle coats, and tethers and what is known about their evolutionary history. Our current understanding suggests a possible common mechanism by which the membrane-trafficking organelles might have evolved. This model of increased organellar complexity by gene duplication and co-evolution of multiple, interacting, specificity-encoding proteins could well be applicable to other non-endosymbiotic organelles as well. The application of basic evolutionary principles well beyond their original scope has been exceedingly powerful not only in reconstructing the history of cellular compartments, but for medical and applied research as well, and underlines the contributions of Darwin's ideas in modern biology.
Collapse
Affiliation(s)
- Joel B Dacks
- The Molteno Building, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | | | |
Collapse
|
35
|
Glansdorff N, Xu Y, Labedan B. The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct 2008; 3:29. [PMID: 18613974 PMCID: PMC2478661 DOI: 10.1186/1745-6150-3-29] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 07/09/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since the reclassification of all life forms in three Domains (Archaea, Bacteria, Eukarya), the identity of their alleged forerunner (Last Universal Common Ancestor or LUCA) has been the subject of extensive controversies: progenote or already complex organism, prokaryote or protoeukaryote, thermophile or mesophile, product of a protracted progression from simple replicators to complex cells or born in the cradle of "catalytically closed" entities? We present a critical survey of the topic and suggest a scenario. RESULTS LUCA does not appear to have been a simple, primitive, hyperthermophilic prokaryote but rather a complex community of protoeukaryotes with a RNA genome, adapted to a broad range of moderate temperatures, genetically redundant, morphologically and metabolically diverse. LUCA's genetic redundancy predicts loss of paralogous gene copies in divergent lineages to be a significant source of phylogenetic anomalies, i.e. instances where a protein tree departs from the SSU-rRNA genealogy; consequently, horizontal gene transfer may not have the rampant character assumed by many. Examining membrane lipids suggest LUCA had sn1,2 ester fatty acid lipids from which Archaea emerged from the outset as thermophilic by "thermoreduction," with a new type of membrane, composed of sn2,3 ether isoprenoid lipids; this occurred without major enzymatic reconversion. Bacteria emerged by reductive evolution from LUCA and some lineages further acquired extreme thermophily by convergent evolution. This scenario is compatible with the hypothesis that the RNA to DNA transition resulted from different viral invasions as proposed by Forterre. Beyond the controversy opposing "replication first" to metabolism first", the predictive arguments of theories on "catalytic closure" or "compositional heredity" heavily weigh in favour of LUCA's ancestors having emerged as complex, self-replicating entities from which a genetic code arose under natural selection. CONCLUSION Life was born complex and the LUCA displayed that heritage. It had the "body "of a mesophilic eukaryote well before maturing by endosymbiosis into an organism adapted to an atmosphere rich in oxygen. Abundant indications suggest reductive evolution of this complex and heterogeneous entity towards the "prokaryotic" Domains Archaea and Bacteria. The word "prokaryote" should be abandoned because epistemologically unsound. REVIEWERS This article was reviewed by Anthony Poole, Patrick Forterre, and Nicolas Galtier.
Collapse
Affiliation(s)
- Nicolas Glansdorff
- JM Wiame Research Institute for Microbiology and Vrije Universiteit Brussel, 1 ave E. Gryzon, B-1070 Brussels, Belgium.
| | | | | |
Collapse
|