1
|
Kim DH, Lee J, Suh Y, Chen PR, Lee K. Up-regulation of Melanophilin (MLPH) gene during avian adipogenesis and decreased fat pad weights with adipocyte hypotrophy in MLPH knockout quail. Poult Sci 2025; 104:104720. [PMID: 39729733 PMCID: PMC11730536 DOI: 10.1016/j.psj.2024.104720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024] Open
Abstract
Advanced genetic and nutritional strategies aimed at modulating fat deposition can significantly reduce production costs and enhance profitability in the poultry industry. Melanophilin (MLPH) is recognized as a key gene regulating pigmentation as shown by diluted hair and feather coloration in MLPH mutant animals, including avian models. However, the effects of MLPH during fat accretion have not been studied yet. Therefore, the objectives of the current study are to measure the temporal expression of the MLPH gene during the adipocyte differentiation in vitro and in vivo and to investigate the effect of MLPH loss on fat accretion and adipocyte sizes in vivo using MLPH knockout quail model. The current in vitro studies reveal that MLPH gene expression levels were considerably elevated during adipogenesis in avian cells [101-fold in DF-1, 28.5-fold in chicken embryonic fibroblasts (CEF) and 4-fold in quail embryonic fibroblasts (QEF), compared to the undifferentiated cells of each cell type, p < 0.05]. In addition, fractionated fat cells (FC) showed increased expression levels of MLPH (5.7-fold, p < 0.05) compared to stromal-vascular cells (SVC). Using the MLPH knockout quail, disruption of the MLPH gene resulted in significantly reduced body weight (BW) and subcutaneous fat (S. Fat) pad weights compared to the wild type (WT) (p < 0.05). Further analysis through sectioning and staining of the fat tissues revealed that the mutation in Rab binding domain (RBD) of quail MLPH resulted in decreased fat cell sizes (p < 0.01). Overall, our data clearly demonstrated that MLPH can be a potential adipogenic marker gene, and MLPH may be associated with fat accretion in the gene edited quail model, highlighting the important role of MLPH in adipogenesis.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, South Korea
| | - Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yeunsu Suh
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Paula R Chen
- USDA-ARS, Plant Genetics Research Unit, Columbia, MO 65211, USA
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Marcoli R, Jones DB, Massault C, Harrison PJ, Cate HS, Jerry DR. Barramundi (Lates calcarifer) rare coloration patterns: a multiomics approach to understand the "panda" phenotype. JOURNAL OF FISH BIOLOGY 2024; 105:1268-1279. [PMID: 39090072 DOI: 10.1111/jfb.15892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
The barramundi (Lates calcarifer), a significant aquaculture species, typically displays silver to bronze coloration. However, attention is now drawn to rare variants like the "panda" phenotype, characterized by blotch-like patterns of black (PB) and golden (PG) patches. This phenotype presents an opportunity to explore the molecular mechanisms underlying color variations in teleosts. Unlike stable color patterns in many fish, the "panda" variant demonstrates phenotypic plasticity, responding dynamically to unknown cues. We propose a complex interplay of genetic factors and epigenetic modifications, focusing on DNA methylation. Through a multiomics approach, we analyze transcriptomic and methylation patterns between PB and PG patches. Our study reveals differential gene expression related to melanosome trafficking and chromatophore differentiation. Although the specific gene responsible for the PB-PG difference remains elusive, candidate genes like asip1, asip2, mlph, and mreg have been identified. Methylation emerges as a potential contributor to the "panda" phenotype, with changes in gene promoters like hand2 and dynamin possibly influencing coloration. This research lays the groundwork for further exploration into rare barramundi color patterns, enhancing our understanding of color diversity in teleosts. Additionally, it underscores the "panda" phenotype's potential as a model for studying adult skin coloration.
Collapse
Affiliation(s)
- Roberta Marcoli
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, Queensland, Australia
| | - David B Jones
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, Queensland, Australia
| | - Cecile Massault
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, Queensland, Australia
| | - Paul J Harrison
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, Queensland, Australia
- Mainstream Aquaculture Group Pty Ltd, Werribee, Victoria, Australia
| | - Holly S Cate
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, Queensland, Australia
- Mainstream Aquaculture Group Pty Ltd, Werribee, Victoria, Australia
| | - Dean R Jerry
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, Queensland, Australia
- Tropical Futures Institute, James Cook University, Singapore, Singapore
| |
Collapse
|
3
|
Rubio AO, Stuckert AMM, Geralds B, Nielsen R, MacManes MD, Summers K. What Makes a Mimic? Orange, Red, and Black Color Production in the Mimic Poison Frog (Ranitomeya imitator). Genome Biol Evol 2024; 16:evae123. [PMID: 38874406 PMCID: PMC11255871 DOI: 10.1093/gbe/evae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
Aposematic organisms rely on their conspicuous appearance to signal that they are defended and unpalatable. Such phenotypes are strongly tied to survival and reproduction. Aposematic colors and patterns are highly variable; however, the genetic, biochemical, and physiological mechanisms producing this conspicuous coloration remain largely unidentified. Here, we identify genes potentially affecting color variation in two color morphs of Ranitomeya imitator: the orange-banded Sauce and the redheaded Varadero morphs. We examine gene expression in black and orange skin patches from the Sauce morph and black and red skin patches from the Varadero morph. We identified genes differentially expressed between skin patches, including those that are involved in melanin synthesis (e.g. mlana, pmel, tyrp1), iridophore development (e.g. paics, ppat, ak1), pteridine synthesis (e.g. gch1, pax3-a, xdh), and carotenoid metabolism (e.g. dgat2, rbp1, scarb2). In addition, using weighted correlation network analysis, we identified the top 50 genes with high connectivity from the most significant network associated with gene expression differences between color morphs. Of these 50 genes, 13 were known to be related to color production (gch1, gmps, gpr143, impdh1, mc1r, pax3-a, pax7, ppat, rab27a, rlbp1, tfec, trpm1, xdh).
Collapse
Affiliation(s)
- Andrew O Rubio
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Adam M M Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - BreAnn Geralds
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- School of Biological Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Matthew D MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Kyle Summers
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
4
|
Kim DH, Lee J, Ko JK, Lee K. Melanophilin regulates dendritogenesis in melanocytes for feather pigmentation. Commun Biol 2024; 7:592. [PMID: 38760591 PMCID: PMC11101434 DOI: 10.1038/s42003-024-06284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Limited studies using animal models with a few natural mutations in melanophilin (Mlph) provided partial functions of Mlph in melanosome trafficking. To investigate cellular functions of Mlph, especially ZnF motif of Mlph, we analyzed all three Mlph knockout (KO) quail lines, one and two base pair (bp) deletions as models for total KO, and three bp deletion causing deletion of one Cysteine (C84del) in the ZnF motif. All quail lines had diluted feather pigmentation with impaired dendritogenesis and melanosome transport in melanocytes. In vitro studies revealed capability of binding of the ZnF motif to PIP3, and impairment of PI3P binding and mislocalization of MLPH proteins with ZnF motif mutations. The shortened melanocyte dendrites by the C84del mutation were rescued by introducing WT Mlph in vitro. These results revealed the diluted feather pigmentation by Mlph mutations resulted from congregation of melanosomes in the cell bodies with impairment of the dendritogenesis and the transport of melanosomes to the cell periphery.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Jae-Kyun Ko
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology & Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Kosovsky GY, Glazko VI, Abramov OI, Glazko TT. Melanophilin Polymorphism in Ferrets of Different Color. DOKL BIOCHEM BIOPHYS 2023; 513:S12-S17. [PMID: 38189891 DOI: 10.1134/s1607672923700655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
In mammals, the main contribution to the variability of pigmentation is made by two groups of genes directly related to the metabolic pathways of pigment synthesis and controlling the transport of melanosomes in melanocytes to keratinocytes. In order to identify the genetic basis of pigmentation variants, the nucleotide sequences of the melanophilin gene were compared in two groups of ferrets-silver-colored and wild-type animals-using sequencing of 16 exons. In carriers of silver color, a single nucleotide deletion was detected in the 9th exon, leading to a shift in the reading frame and the formation of a stop codon downstream. The protein encoded by the mutant allele is almost completely devoid of the C terminal domain of the protein responsible for the contact of melanosomes with actin during their moving to the periphery of melanocytes, but it retains the leading domain involved in the formation of melanosomes. The combination of the preservation of the N domain and the defect of the C domain of the mutant protein for the first time makes it possible to explain the incomplete dominance of the wild-type protein in heterozygotes.
Collapse
Affiliation(s)
- G Yu Kosovsky
- Afanas'ev Research Institute of Fur-Bearing Animal Breeding and Rabbit Breeding, Rodniki Village, Ramenki district, city, Moscow oblast, Russia.
| | - V I Glazko
- Afanas'ev Research Institute of Fur-Bearing Animal Breeding and Rabbit Breeding, Rodniki Village, Ramenki district, city, Moscow oblast, Russia
| | - O I Abramov
- Afanas'ev Research Institute of Fur-Bearing Animal Breeding and Rabbit Breeding, Rodniki Village, Ramenki district, city, Moscow oblast, Russia
| | - T T Glazko
- Afanas'ev Research Institute of Fur-Bearing Animal Breeding and Rabbit Breeding, Rodniki Village, Ramenki district, city, Moscow oblast, Russia
| |
Collapse
|
6
|
Lederer I, Shahid B, Dao U, Brogdon A, Byrtus H, Delva M, Deva O, Hatfield P, Hertz M, Justice J, Mavor S, Pilbeam E, Rice Z, Simpson A, Temar H, Wynn R, Xhangolli J, Graves C, Seidel H. A frameshift variant in the melanophilin gene is associated with loss of pigment from shed skin in ball pythons ( Python regius ). MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000896. [PMID: 37637270 PMCID: PMC10448248 DOI: 10.17912/micropub.biology.000896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023]
Abstract
Melanophilin is a myosin adaptor required for transporting the pigment melanin within cells. Loss of melanophilin in fish, birds, and mammals causes pigmentation defects, but little is known about the role of melanophilin in non-avian reptiles. Here we show that a frameshift in the melanophilin gene in ball python ( P. regius ) is associated with loss of pigment from shed skin. This variant is predicted to remove the myosin-binding domain of melanophilin and thereby impair transport of melanin-containing organelles. Our study represents the first description of a melanophilin variant in a non-avian reptile and confirms the role of melanophilin across vertebrates.
Collapse
|
7
|
Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1250-1277. [PMID: 37017088 DOI: 10.1111/brv.12952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.
Collapse
Affiliation(s)
- Joel Elkin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC, 20052, USA
| | | | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
8
|
Thapa PC, Do DN, Manafiazar G, Miar Y. Coat color inheritance in American mink. BMC Genomics 2023; 24:234. [PMID: 37138242 PMCID: PMC10158361 DOI: 10.1186/s12864-023-09348-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/28/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Understanding the genetic mechanisms underlying coat color inheritance has always been intriguing irrespective of the animal species including American mink (Neogale vison). The study of color inheritance in American mink is imperative since fur color is a deterministic factor for the success of mink industry. However, there have been no studies during the past few decades using in-depth pedigree for analyzing the inheritance pattern of colors in American mink. METHODS In this study, we analyzed the pedigree of 23,282 mink extending up to 16 generations. All animals that were raised at the Canadian Center for Fur Animal Research (CCFAR) from 2003 to 2021 were used in this study. We utilized the Mendelian ratio and Chi-square test to investigate the inheritance of Dark (9,100), Pastel (5,161), Demi (4,312), and Mahogany (3,358) colors in American mink. RESULTS The Mendelian inheritance ratios of 1:1 and 3:1 indicated heterozygous allelic pairs responsible for all studied colors. Mating sire and dam of the same color resulted in the production of offspring with the same color most of the time. CONCLUSION Overall, the results suggested that color inheritance was complex and subjected to a high degree of diversity in American mink as the genes responsible for all four colors were found to be heterozygous.
Collapse
Affiliation(s)
- Persia Carol Thapa
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Ghader Manafiazar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
9
|
Zhang T, Li H, Larsen PF, Ba H, Shi H, Zhang H, Liu Z. The Genetic Diversity of Mink ( Neovison vison) Populations in China. Animals (Basel) 2023; 13:ani13091497. [PMID: 37174534 PMCID: PMC10177056 DOI: 10.3390/ani13091497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The American mink (Neovison vison) is a semiaquatic species of Mustelid native to North America that is now widespread in China. However, the knowledge of genetic diversity of mink in China is still limited. In this study, we investigated the genetic diversity and identified significant single nucleotide polymorphisms (SNPs) in mink populations of five different color types in three different mink farms in China. Using double-digest restriction site-associated DNA sequencing, we identified a total of 1.3 million SNPs. After filtering the SNPs, phylogenetic tree, Fst, principal component, and population structure analyses were performed. The results demonstrated that red mink and black mink grouped, with separate clustering of all other color types. The population divergence index (Fst) study confirmed that different mink populations were distinct (K = 4). Two populations with different coat colors were subjected to the selection signature analysis, and 2300 genes were found to have a clear selection signature. The genes with a selection signature were subjected to Gene Ontology (GO) categorization and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, the results revealed that the genes with a selection signature were enriched in the melanogenesis pathway. These study's findings have set the stage for improved breeding and conservation of genetic resources in real-world practical mink farming.
Collapse
Affiliation(s)
- Tietao Zhang
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Hu Li
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China
- Colleges of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Peter Foged Larsen
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Hengxing Ba
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130112, China
| | - Hongyu Shi
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China
- Colleges of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Haihua Zhang
- Colleges of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Zongyue Liu
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China
| |
Collapse
|
10
|
Wang H, Wen J, Li H, Zhu T, Zhao X, Zhang J, Zhang X, Tang C, Qu L, Gemingguli M. Candidate pigmentation genes related to feather color variation in an indigenous chicken breed revealed by whole genome data. Front Genet 2022; 13:985228. [PMID: 36479242 PMCID: PMC9720402 DOI: 10.3389/fgene.2022.985228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
Chicken plumage color is an inheritable phenotype that was naturally and artificially selected for during domestication. The Baicheng You chicken is an indigenous Chinese chicken breed presenting three main feather colors, lavender, black, and yellow plumages. To explore the genetic mechanisms underlying the pigmentation in Baicheng You chickens, we re-sequenced the whole genome of Baicheng You chicken with the three plumage colors. By analyzing the divergent regions of the genome among the chickens with different feather colors, we identified some candidate genomic regions associated with the feather colors in Baicheng You chickens. We found that EGR1, MLPH, RAB17, SOX5, and GRM5 genes were the potential genes for black, lavender, and yellow feathers. MLPH, GRM5, and SOX5 genes have been found to be related to plumage colors in birds. Our results showed that EGR1 is a most plausible candidate gene for black plumage, RAB17, MLPH, and SOX5 for lavender plumage, and GRM5 for yellow plumage in Baicheng You chicken.
Collapse
Affiliation(s)
- Huie Wang
- Xinjiang Production and Construction Corps, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, China
- College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar, China
| | - Junhui Wen
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumchi, China
| | - Tao Zhu
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiurong Zhao
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinxin Zhang
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinye Zhang
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chi Tang
- Xinjiang Production and Construction Corps, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, China
| | - Lujiang Qu
- Xinjiang Production and Construction Corps, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, China
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - M. Gemingguli
- Xinjiang Production and Construction Corps, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, China
- College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar, China
| |
Collapse
|
11
|
Valipour S, Karimi K, Do DN, Barrett D, Sargolzaei M, Plastow G, Wang Z, Miar Y. Genome-Wide Detection of Selection Signatures for Pelt Quality Traits and Coat Color Using Whole-Genome Sequencing Data in American Mink. Genes (Basel) 2022; 13:1939. [PMID: 36360176 PMCID: PMC9690368 DOI: 10.3390/genes13111939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Domestication and selection are the major driving forces responsible for creating genetic variability in farmed species. American mink has been under selection for more than 100 years for improved body size and pelt quality. This study aimed to identify the genomic regions subjected to selection for pelt quality traits, and coat color using the whole genome sequences of 100 mink raised in the Canadian Centre for Fur Animal Research (CCFAR) at Dalhousie Agriculture Campus (Truro, NS, Canada), and Millbank fur farm (Rockwood, ON, Canada). Measurements of three dried pelt characteristics (including pelt size (n = 35), overall quality of fur (n = 27), and nap size (n = 29)), and three coat color of Black, Stardust, and Pastel (Stardust_ Black (n = 38), and Pastel_Black (n = 41)) were used to assign animals to pairwise groups. Signatures of selection were detected using integrated measurement of fixation index (Fst), extended haplotype homozygosity (XP-EHH), and nucleotide diversity (θπ) tests. In total, overlapping top 1% of Fst and XP-EHH harbored 376 genes for pelt quality traits (110 for nap size, 163 for overall quality of fur, and 98 pelt size), and 194 genes for coat color (123 for Pastel_Black and 71 for Stardust_Black) were detected in different groups. Integrating results of Fst, and XP-EHH with the θπ test supported 19 strongly selected regions on chromosomes 3, 4, 5, 6, 7, 8, 9, and 10 that contained 33 candidate genes related to fur quality, hair follicle function, and pelt size traits. Gene ontology revealed numerous genes related to the hair cycle process and molting cycle process, epidermis development, Wnt signaling pathway and muscle development. This study provided the first map of putative selection signals related to pelt quality and coat color in American mink, which could be used as a reference for future studies attempting to identify genes associated with economically important traits in mink.
Collapse
Affiliation(s)
- Shafagh Valipour
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Karim Karimi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - David Barrett
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Select Sires Inc., Plain City, OH 43064, USA
| | - Graham Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
12
|
Gong Y, Zhao G, Yang H, Li Y, Tan M, Wang N, Ge J, Yang H, Feng L. Prevalence of Varied Coat Coloration in a Yellow-Throated Marten ( Martes flavigula) Population. Animals (Basel) 2021; 11:ani11102838. [PMID: 34679859 PMCID: PMC8532798 DOI: 10.3390/ani11102838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Abnormal coloration is very rare in any given population of wildlife; however, our research identified a yellow-throated marten population with a high ratio of this phenomenon for the first time. Across the main distribution of the species with relevant observational data, we observed abnormally-colored martens in only Northeast Tiger and Leopard National Park. Abnormal coloration had a variety of forms and individuals with white paws that accounted for a larger proportion of the overall population than normal individuals. This shows heritable variation in the region, which is worthy of further research. Abstract Mammalian coat color is determined by heritable variations such as disease, nutrition, and hormone levels. Variation in animal coat color is also considered an environmental indicator and provides clues for the study of population genetics and biogeography. Records of abnormal coloration in the wild are rare, not only because it is often selected against, but also because of the difficulties in detection of the phenomenon. We used long-term camera-trapping data to first report abnormal coat coloration in yellow-throated marten (Martes flavigula) in China. Six types of abnormal coloration were found only in the Northeast Tiger and Leopard National Park, Northeast China, which were not reported in other regions in China. A total of 268 videos of Martes flavigula contained normal coloration, 455 videos of individuals of the species contained abnormal coloration, 437 contained the ‘gloving’ type (martens with de-pigmented front toes, paws or lower forelimbs), while the remaining other 18 videos contained five types (different degrees of white-spotting and dilution). The higher relative abundance index (0.428, ‘gloving’ to 0.329, normal) and wide distribution area of the ‘gloving’ type indicated that this abnormal coat coloration type is usual in Northeast China, which may reflect genetic variability in the local population. These records will contribute to further research on animal coat color and its corresponding adaptive strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haitao Yang
- Correspondence: (H.Y.); (L.F.); Tel.: +86-188-1314-8633 (H.Y.); +86-186-0039-9715 (L.F.)
| | - Limin Feng
- Correspondence: (H.Y.); (L.F.); Tel.: +86-188-1314-8633 (H.Y.); +86-186-0039-9715 (L.F.)
| |
Collapse
|
13
|
Zhang H, Wu Z, Yang L, Zhang Z, Chen H, Ren J. Novel mutations in the Myo5a gene cause a dilute coat color phenotype in mice. FASEB J 2021; 35:e21261. [PMID: 33715225 DOI: 10.1096/fj.201903141rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 11/11/2022]
Abstract
C57BL/6 laboratory mice usually show black coat color. We observed a dilute (gray) coat color phenotype in progenies of two C57BL/6 mice. This phenotype is inherited in an autosomal recessive mode. To uncover the molecular mechanism underlying this naturally occurring phenotypic variation, we performed whole-genome sequencing (25×) on 10 offspring of the two founder mice. The whole-genome DNA sequencing and additional RNA-Seq data reveal that Myo5a is the gene responsible for the coat color dilution in C57BL/6 mice, and novel mutations in the Myo5a gene are likely causal. We further performed reverse transcription-quantitative PCR, and showed increased expression of truncated Myo5a transcripts encoding dysfunctional proteins and decreased expression of Myo5a full-length transcripts encoding functional proteins in mutant individuals. The decrease in full-length messenger RNA abundance was accompanied by reduced Myo5a protein level and deficient melanosome transport, a potential mechanistic link between the Myo5a mutations and the dilute color phenotype. This study not only advances our understanding of the molecular mechanisms of pigmentation in mice, but also provides a typical case of deciphering the molecular basis of phenotypic variation in mice by genomic analyses and subsequent functional work.
Collapse
Affiliation(s)
- Hui Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhongping Wu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lijuan Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhen Zhang
- College of Biotechnology, Guilin Medical University, Guilin, China
| | - Hao Chen
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jun Ren
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Analysis of MC1R, MITF, TYR, TYRP1, and MLPH Genes Polymorphism in Four Rabbit Breeds with Different Coat Colors. Animals (Basel) 2021; 11:ani11010081. [PMID: 33466315 PMCID: PMC7824738 DOI: 10.3390/ani11010081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Coat color is an important breed characteristic and economic trait for rabbits, and it is regulated by a few genes. In this study, the gene frequencies of some pigmentation genes were investigated in four Chinese native rabbit breeds with different coat colors. A total of 14 genetic variants were detected in the gene fragments of MC1R, MITF, TYR, TYRP1, and MLPH genes, and there was low-to-moderate polymorphism in the populations. The gene frequency showed significant differences among the four rabbit populations. The above results suggest that these genetic variations play an important role in regulating the coat color of rabbits. This study will provide potential molecular markers for the breeding of coat color traits in rabbits. Abstract Pigmentation genes such as MC1R, MITF, TYR, TYRP1, and MLPH play a major role in rabbit coat color. To understand the genotypic profile underlying coat color in indigenous Chinese rabbit breeds, portions of the above-mentioned genes were amplified and variations in them were analyzed by DNA sequencing. Based on the analysis of 24 Tianfu black rabbits, 24 Sichuan white rabbits, 24 Sichuan gray rabbits, and 24 Fujian yellow rabbits, two indels in MC1R, three SNPs in MITF, five SNPs (single nucleotide polymorphisms) in TYR, one SNP in TYRP1, and three SNPs in MLPH were discovered. These variations have low-to-moderate polymorphism, and there are significant differences in their distribution among the different breeds (p < 0.05). These results provide more information regarding the genetic background of these native rabbit breeds and reveal their high-quality genetic resources.
Collapse
|
15
|
Trapezov OV, Veprev SG, Koldaeva EM, Sergeev EG, Fomin SV, Fomina NS, Nekrasova MF. Homological Series in the Variability of the Coat Color in Fur Animals. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Grabolus D, Wacławik P, Zatoń-Dobrowolska M. Differences in melanin type and content among color variations in American mink (Neovison vison). CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coat colour is one of the most important qualitative traits of fur animals. Determining melanin pigments forming the basics of visible coat colour may contribute to a better understanding of the process of creating different coat colour variations in fur-bearing animals. This study aimed to (i) isolate pigment cells from the hair of American mink of 11 colour variations (standard brown, silverblue, palomino, black, wild type, sapphire, black cross, pearl, palomino cross, glow, and amber) using acid and alkali; and (ii) characterise the melanin pigments obtained. The purified pigment cells were observed under a light microscope and verified by spectrophotometry scanning and nuclear magnetic resonance spectroscopy. The method allowed for obtaining pure melanin specimens. Using acid and alkali to extract eumelanosomes did not affect their shape and structure; it also allowed for obtaining pheomelanin from the hair. The results have proven that the hair colour of the American mink is based on all types of melanin, and that its variations differ in terms of how much eumelanin and pheomelanin the hair contains.
Collapse
Affiliation(s)
- Dominika Grabolus
- Katedra Genetyki, University of Environmental and Life Sciences, Kożuchowska 7, Wrocław, Polska 51-631, Poland
- Katedra Genetyki, University of Environmental and Life Sciences, Kożuchowska 7, Wrocław, Polska 51-631, Poland
| | - Patrycja Wacławik
- Katedra Genetyki, University of Environmental and Life Sciences, Kożuchowska 7, Wrocław, Polska 51-631, Poland
- Katedra Genetyki, University of Environmental and Life Sciences, Kożuchowska 7, Wrocław, Polska 51-631, Poland
| | - Magdalena Zatoń-Dobrowolska
- Katedra Genetyki, University of Environmental and Life Sciences, Kożuchowska 7, Wrocław, Polska 51-631, Poland
- Katedra Genetyki, University of Environmental and Life Sciences, Kożuchowska 7, Wrocław, Polska 51-631, Poland
| |
Collapse
|
17
|
A Third MLPH Variant Causing Coat Color Dilution in Dogs. Genes (Basel) 2020; 11:genes11060639. [PMID: 32531980 PMCID: PMC7349360 DOI: 10.3390/genes11060639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/29/2022] Open
Abstract
Altered melanosome transport in melanocytes, resulting from variants in the melanophilin (MLPH) gene, are associated with inherited forms of coat color dilution in many species. In dogs, the MLPH gene corresponds to the D locus and two variants, c.-22G > A (d1) and c.705G > C (d2), leading to the dilution of coat color, as described. Here, we describe the independent investigations of dogs whose coat color dilution could not be explained by known variants, and who report a third MLPH variant, (c.667_668insC) (d3), which leads to a frameshift and premature stop codon (p.His223Profs*41). The d3 allele is found at low frequency in multiple dog breeds, as well as in wolves, wolf-dog hybrids, and indigenous dogs. Canids in which the d3 allele contributed to the grey (dilute) phenotype were d1/d3 compound heterozygotes or d3 homozygotes, and all non-dilute related dogs had one or two D alleles, consistent with a recessive inheritance. Similar to other loci responsible for coat colors in dogs, this, alongside likely additional allelic heterogeneity at the D locus, or other loci, must be considered when performing and interpreting genetic testing.
Collapse
|
18
|
Posbergh CJ, Staiger EA, Huson HJ. A Stop-Gain Mutation within MLPH Is Responsible for the Lilac Dilution Observed in Jacob Sheep. Genes (Basel) 2020; 11:genes11060618. [PMID: 32512769 PMCID: PMC7349772 DOI: 10.3390/genes11060618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022] Open
Abstract
A coat color dilution, called lilac, was observed within the Jacob sheep breed. This dilution results in sheep appearing gray, where black would normally occur. Pedigree analysis suggested an autosomal recessive inheritance. Whole-genome sequencing of a dilute case, a known carrier, and sixteen non-dilute sheep was used to identify the molecular variant responsible for the coat color change. Through investigation of the genes MLPH, MYO5A, and RAB27A, we discovered a nonsynonymous mutation within MLPH, which appeared to match the reported autosomal recessive nature of the lilac dilution. This mutation (NC_019458.2:g.3451931C>A) results in a premature stop codon being introduced early in the protein (NP_001139743.1:p.Glu14*), likely losing its function. Validation testing of additional lilac Jacob sheep and known carriers, unrelated to the original case, showed a complete concordance between the mutation and the dilution. This stop-gain mutation is likely the causative mutation for dilution within Jacob sheep.
Collapse
Affiliation(s)
- Christian J. Posbergh
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA;
- Correspondence: (C.J.P.); (H.J.H.)
| | - Elizabeth A. Staiger
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA;
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Heather J. Huson
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA;
- Correspondence: (C.J.P.); (H.J.H.)
| |
Collapse
|
19
|
Lee J, Kim DH, Lee K. Current Approaches and Applications in Avian Genome Editing. Int J Mol Sci 2020; 21:ijms21113937. [PMID: 32486292 PMCID: PMC7312999 DOI: 10.3390/ijms21113937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/02/2023] Open
Abstract
Advances in genome-editing technologies and sequencing of animal genomes enable researchers to generate genome-edited (GE) livestock as valuable animal models that benefit biological researches and biomedical and agricultural industries. As birds are an important species in biology and agriculture, their genome editing has gained significant interest and is mainly performed by using a primordial germ cell (PGC)-mediated method because pronuclear injection is not practical in the avian species. In this method, PGCs can be isolated, cultured, genetically edited in vitro, and injected into a recipient embryo to produce GE offspring. Recently, a couple of GE quail have been generated by using the newly developed adenovirus-mediated method. Without technically required in vitro procedures of the PGC-mediated method, direct injection of adenovirus into the avian blastoderm in the freshly laid eggs resulted in the production of germ-line chimera and GE offspring. As more approaches are available in avian genome editing, avian research in various fields will progress rapidly. In this review, we describe the development of avian genome editing and scientific and industrial applications of GE avian species.
Collapse
Affiliation(s)
- Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.L.); (D.-H.K.)
- The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.L.); (D.-H.K.)
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.L.); (D.-H.K.)
- The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-688-7963
| |
Collapse
|
20
|
Li J, Chen Y, Liu M, Chen Q, Zhou J, Bao G, Wu X. Association of Melanophilin (MLPH) gene polymorphism with coat colour in Rex rabbits. WORLD RABBIT SCIENCE 2020. [DOI: 10.4995/wrs.2020.12082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Rex rabbit, with multiple phenotypes and colourful fur, is an interesting model for assessing the effect of coat colour gene mutations on characteristic pigmentation phenotype. Based on previous study, the <em>melanophilin</em> (<em>MLPH</em>) gene is a positional candidate gene related coat colour dilution. The fur colours are a lighter shade, e.g. grey instead of black. We sequenced 1689 base pairs of the <em>MLPH</em> gene in Chinchilla and black Rex rabbit. A total of 13 polymorphisms were identified, including seven missense mutations. The rabbit <em>MLPH</em> gene has a very high GC content and the protein shows 64.87% identity to the orthologous human protein (lack of homologous amino acids encoded by human MLPH exon 9). Hardy-Weinberg test showed that, except for the g.606C>A single nucleotid polymorphism (SNP), all other SNPs were in Hardy-Weinberg equilibrium. Haplotype analysis revealed that the seven missense mutation SNPs of two strains of Rex rabbits formed 10 haplotypes, but there were only seven major types of haplotypes (haplotype frequency <em>P</em>>0.05). The major haplotypes of the Chinchilla and black Rex rabbits were H1/H2/H3/H4/H5 and H1/H2/H3/H6/H8, respectively. The special haplotypes of Chinchilla Rex rabbit (H4, H5, H7) were consistently associated with the Chinchilla phenotype. This study provides evidence that different coat colour formation may be caused by one or more mutations within <em>MLPH</em> gene in several Rex rabbit strains. The data on polymorphisms that are associated with the Chinchilla phenotype facilitate the breeding of rabbits with defined coat colours.
Collapse
|
21
|
Stuckert AMM, Moore E, Coyle KP, Davison I, MacManes MD, Roberts R, Summers K. Variation in pigmentation gene expression is associated with distinct aposematic color morphs in the poison frog Dendrobates auratus. BMC Evol Biol 2019; 19:85. [PMID: 30995908 PMCID: PMC6472079 DOI: 10.1186/s12862-019-1410-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/15/2019] [Indexed: 12/28/2022] Open
Abstract
Background Color and pattern phenotypes have clear implications for survival and reproduction in many species. However, the mechanisms that produce this coloration are still poorly characterized, especially at the genomic level. Here we have taken a transcriptomics-based approach to elucidate the underlying genetic mechanisms affecting color and pattern in a highly polytypic poison frog. We sequenced RNA from the skin from four different color morphs during the final stage of metamorphosis and assembled a de novo transcriptome. We then investigated differential gene expression, with an emphasis on examining candidate color genes from other taxa. Results Overall, we found differential expression of a suite of genes that control melanogenesis, melanocyte differentiation, and melanocyte proliferation (e.g., tyrp1, lef1, leo1, and mitf) as well as several differentially expressed genes involved in purine synthesis and iridophore development (e.g., arfgap1, arfgap2, airc, and gart). Conclusions Our results provide evidence that several gene networks known to affect color and pattern in vertebrates play a role in color and pattern variation in this species of poison frog. Electronic supplementary material The online version of this article (10.1186/s12862-019-1410-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam M M Stuckert
- Department of Biology, East Carolina University, Greenville, North Carolina, USA. .,Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, USA. .,Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA.
| | - Emily Moore
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Kaitlin P Coyle
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Ian Davison
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Matthew D MacManes
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, USA.,Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Reade Roberts
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Kyle Summers
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
22
|
Genome analysis identifies the mutant genes for common industrial Silverblue and Hedlund white coat colours in American mink. Sci Rep 2019; 9:4581. [PMID: 30872653 PMCID: PMC6418256 DOI: 10.1038/s41598-019-40918-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
The fur colour of American mink (Neovison vison) involves over 35 traits, but only three of these have been linked to specific genes. Despite being the most popular, coat colours Silverblue and Hedlund white remain uncharacterized genetically. The former is the first genetic mutant of fur colour identified in minks, while the latter is a commercially valuable phenotype that can be dyed easily. Here, we performed the whole genome sequencing for two American mink breeds with Silverblue and Hedlund white coats. We identified mutations in splice donor sites of genes coding melanophilin (MLPH) and microphthalmia-associated transcription factor (MITF) that regulate melanosome transport and neural-crest-derived melanocyte development, respectively. Both mutations cause mRNA splicing impairments that lead to a shift in open reading frames of MLPH and MITF. We conclude that our data should be useful for tracking economically valuable fur traits in mink breeding programs to contribute to global fur production.
Collapse
|
23
|
Demars J, Iannuccelli N, Utzeri VJ, Auvinet G, Riquet J, Fontanesi L, Allain D. New Insights into the Melanophilin ( MLPH) Gene Affecting Coat Color Dilution in Rabbits. Genes (Basel) 2018; 9:genes9090430. [PMID: 30142960 PMCID: PMC6162760 DOI: 10.3390/genes9090430] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 11/16/2022] Open
Abstract
Coat color dilution corresponds to a specific pigmentation phenotype that leads to a dilution of wild type pigments. It affects both eumelanin and pheomelanin containing melanosomes. The mode of inheritance of the dilution phenotype is autosomal recessive. Candidate gene approaches focused on the melanophilin (MLPH) gene highlighted two variants associated with the dilution phenotype in rabbits: The c.111-5C>A variant that is located in an acceptor splice site or the c.585delG variant, a frameshift mutation. On the transcript level, the skipping of two exons has been reported as the molecular mechanism responsible for the coat color dilution. To clarify, which of the two variants represents the causal variant, (i) we analyzed their allelic segregation by genotyping Castor and Chinchilla populations, and (ii) we evaluated their functional effects on the stability of MLPH transcripts in skin samples of animals with diluted or wild type coat color. Firstly, we showed that the c.585delG variant showed perfect association with the dilution phenotype in contrast to the intronic c.111-5C>A variant. Secondly, we identified three different MLPH isoforms including the wild type isoform, the exon-skipping isoform and a retained intron isoform. Thirdly, we observed a drastic and significant decrease of MLPH transcript levels in rabbits with a coat color dilution (p-values ranging from 10−03 to 10−06). Together, our results bring new insights into the coat color dilution trait.
Collapse
Affiliation(s)
- Julie Demars
- GenPhySE, INRA Animal Genetics, Toulouse Veterinary School (ENVT), Université de Toulouse, 31326 Castanet Tolosan, France.
| | - Nathalie Iannuccelli
- GenPhySE, INRA Animal Genetics, Toulouse Veterinary School (ENVT), Université de Toulouse, 31326 Castanet Tolosan, France.
| | - Valerio Joe Utzeri
- Department of Agricultural and Food Sciences (DISTAL), Division of Animal Sciences, University of Bologna, 40127 Bologna, Italy.
| | | | - Juliette Riquet
- GenPhySE, INRA Animal Genetics, Toulouse Veterinary School (ENVT), Université de Toulouse, 31326 Castanet Tolosan, France.
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences (DISTAL), Division of Animal Sciences, University of Bologna, 40127 Bologna, Italy.
| | - Daniel Allain
- GenPhySE, INRA Animal Genetics, Toulouse Veterinary School (ENVT), Université de Toulouse, 31326 Castanet Tolosan, France.
| |
Collapse
|
24
|
Bauer A, Kehl A, Jagannathan V, Leeb T. A novel MLPH variant in dogs with coat colour dilution. Anim Genet 2018; 49:94-97. [PMID: 29349785 DOI: 10.1111/age.12632] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 11/28/2022]
Abstract
Coat colour dilution may be the result of altered melanosome transport in melanocytes. Loss-of-function variants in the melanophilin gene (MLPH) cause a recessively inherited form of coat colour dilution in many mammalian and avian species including the dog. MLPH corresponds to the D locus in many domestic animals, and recessive alleles at this locus are frequently denoted with d. In this study, we investigated dilute coloured Chow Chows whose coat colour could not be explained by their genotype at the previously known MLPH:c.-22G>A variant. Whole genome sequencing of such a dilute Chow Chow revealed another variant in the MLPH gene: MLPH:c.705G>C. We propose to designate the corresponding mutant alleles at these two variants d1 and d2 . We performed an association study in a cohort of 15 dilute and 28 non-dilute Chow Chows. The dilute dogs were all either compound heterozygous d1 /d2 or homozygous d2 /d2 , whereas the non-dilute dogs carried at least one wildtype allele D. The d2 allele did not occur in 417 dogs from diverse other breeds. However, when we genotyped a Sloughi family, in which a dilute coloured puppy had been born out of non-dilute parents, we again observed perfect co-segregation of the newly discovered d2 allele with coat colour dilution. Finally, we identified a blue Thai Ridgeback with the d1 /d2 genotype. Thus, our data identify the MLPH:c.705G>C as a variant explaining a second canine dilution allele. Although relatively rare overall, this d2 allele is segregating in at least three dog breeds, Chow Chows, Sloughis and Thai Ridgebacks.
Collapse
Affiliation(s)
- A Bauer
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,DermFocus, University of Bern, 3001, Bern, Switzerland
| | - A Kehl
- Laboklin, 97688, Bad Kissingen, Germany
| | - V Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,DermFocus, University of Bern, 3001, Bern, Switzerland
| | - T Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,DermFocus, University of Bern, 3001, Bern, Switzerland
| |
Collapse
|
25
|
Song X, Xu C, Liu Z, Yue Z, Liu L, Yang T, Cong B, Yang F. Comparative Transcriptome Analysis of Mink (Neovison vison) Skin Reveals the Key Genes Involved in the Melanogenesis of Black and White Coat Colour. Sci Rep 2017; 7:12461. [PMID: 28963476 PMCID: PMC5622100 DOI: 10.1038/s41598-017-12754-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 09/14/2017] [Indexed: 11/24/2022] Open
Abstract
Farmed mink (Neovison vison) is one of the most important fur-bearing species worldwide, and coat colour is a crucial qualitative characteristic that contributes to the economic value of the fur. To identify additional genes that may play important roles in coat colour regulation, Illumina/Solexa high-throughput sequencing technology was used to catalogue the global gene expression profiles in mink skin with two different coat colours (black and white). RNA-seq analysis indicated that a total of 12,557 genes were differentially expressed in black versus white minks, with 3,530 genes up-regulated and 9,027 genes down-regulated in black minks. Significant differences were not observed in the expression of MC1R and TYR between the two different coat colours, and the expression of ASIP was not detected in the mink skin of either coat colour. The expression levels of KITLG, LEF1, DCT, TYRP1, PMEL, Myo5a, Rab27a and SLC7A11 were validated by qRT-PCR, and the results were consistent with RNA-seq analysis. This study provides several candidate genes that may be associated with the development of two coat colours in mink skin. These results will expand our understanding of the complex molecular mechanisms underlying skin physiology and melanogenesis in mink and will provide a foundation for future studies.
Collapse
Affiliation(s)
- Xingchao Song
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Chao Xu
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Zongyue Liu
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Zhigang Yue
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Linling Liu
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Tongao Yang
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Bo Cong
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Fuhe Yang
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| |
Collapse
|
26
|
Cirera S, Markakis MN, Kristiansen T, Vissenberg K, Fredholm M, Christensen K, Anistoroaei R. A large insertion in intron 2 of the TYRP1 gene associated with American Palomino phenotype in American mink. Mamm Genome 2016; 27:135-43. [DOI: 10.1007/s00335-016-9620-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/31/2016] [Indexed: 02/03/2023]
|
27
|
Li W, Sartelet A, Tamma N, Coppieters W, Georges M, Charlier C. Reverse genetic screen for loss-of-function mutations uncovers a frameshifting deletion in the melanophilin gene accountable for a distinctive coat color in Belgian Blue cattle. Anim Genet 2015; 47:110-3. [PMID: 26582259 DOI: 10.1111/age.12383] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2015] [Indexed: 11/30/2022]
Abstract
In the course of a reverse genetic screen in the Belgian Blue cattle breed, we uncovered a 10-bp deletion (c.87_96del) in the first coding exon of the melanophilin gene (MLPH), which introduces a premature stop codon (p.Glu32Aspfs*1) in the same exon, truncating 94% of the protein. Recessive damaging mutations in the MLPH gene are well known to cause skin, hair, coat or plumage color dilution phenotypes in numerous species, including human, mice, dog, cat, mink, rabbit, chicken and quail. Large-scale array genotyping undertaken to identify p.Glu32Aspfs*1 homozygous mutant animals revealed a mutation frequency of 5% in the breed and allowed for the identification of 10 homozygous mutants. As expression of a colored coat requires at least one wild-type allele at the co-dominant Roan locus encoded by the KIT ligand gene (KITLG), homozygous mutants for p.Ala227Asp corresponding with the missense mutation were excluded. The six remaining colored calves displayed a distinctive dilution phenotype as anticipated. This new coat color was named 'cool gray'. It is the first damaging mutation in the MLPH gene described in cattle and extends the already long list of species with diluted color due to recessive mutations in MLPH and broadens the color palette of gray in this breed.
Collapse
Affiliation(s)
- Wanbo Li
- GIGA-R and Faculty of Veterinary Medicine, University of Liège, 1 avenue de l'hôpital, 4000 Liège, Belgium
| | - Arnaud Sartelet
- Bovine Clinic, FARAH and Faculty of Veterinary Medicine, University of Liège, 20 boulevard de Colonster 4000 Liège, Belgium
| | - Nico Tamma
- GIGA-R and Faculty of Veterinary Medicine, University of Liège, 1 avenue de l'hôpital, 4000 Liège, Belgium
| | - Wouter Coppieters
- GIGA-R and Faculty of Veterinary Medicine, University of Liège, 1 avenue de l'hôpital, 4000 Liège, Belgium.,GIGA-Genomics platform, University of Liège, 1 avenue de l'hôpital, 4000 Liège, Belgium
| | - Michel Georges
- GIGA-R and Faculty of Veterinary Medicine, University of Liège, 1 avenue de l'hôpital, 4000 Liège, Belgium
| | - Carole Charlier
- GIGA-R and Faculty of Veterinary Medicine, University of Liège, 1 avenue de l'hôpital, 4000 Liège, Belgium
| |
Collapse
|
28
|
Fontanesi L, Scotti E, Allain D, Dall'Olio S. A frameshift mutation in themelanophilingene causes the dilute coat colour in rabbit (Oryctolagus cuniculus) breeds. Anim Genet 2013; 45:248-55. [DOI: 10.1111/age.12104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2013] [Indexed: 11/29/2022]
Affiliation(s)
- L. Fontanesi
- Division of Animal Sciences; Department of Agricultural and Food Sciences (DISTAL); University of Bologna; Viale Fanin 46 40127 Bologna Italy
- Centre for Genome Biology; University of Bologna; 40126 Bologna Italy
| | - E. Scotti
- Division of Animal Sciences; Department of Agricultural and Food Sciences (DISTAL); University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - D. Allain
- INRA; UR631; SAGA; CS52627 31326 Castanet Tolosan France
- INRA; UE 1372; GenESI; Le Magneraud; BP52 17700 Surgères France
| | - S. Dall'Olio
- Division of Animal Sciences; Department of Agricultural and Food Sciences (DISTAL); University of Bologna; Viale Fanin 46 40127 Bologna Italy
| |
Collapse
|