1
|
Jin P, Bai X. Exploring the roles and clinical potential of exosome-derived non-coding RNAs in glioma. IBRO Neurosci Rep 2025; 18:323-337. [PMID: 40034544 PMCID: PMC11872630 DOI: 10.1016/j.ibneur.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Non-coding accounts for 98 %-99 % of the human genome and performs many essential regulatory functions in eukaryotes, involved in cancer development and development. Non-coding RNAs are abundantly enriched in exosomes, which play a biological role as vectors. Some biofunctional non-coding RNAs are specifically designed as exosomes for the treatment of cancers such as glioma. Glioma is one of the most common primary tumors within the skull and has varying degrees of malignancy and histologic subtypes of grades I-IV. Gliomas are characterized by high malignancy and an abundant blood supply due to rapid cell proliferation and vascularization, often with a poor prognosis. Exosomal non-coding RNAs can be involved in the tumorigenesis process of glioma from multiple directions, such as angiogenesis, tumor proliferation, metastatic invasion, immune evasion, apoptosis, and autophagy. Therefore, non-coding RNAs in exosomes are suitable as markers or therapeutic targets for early diagnosis of diseases and for predicting the prognosis of a variety of diseases. Regulating exosome production and the level of exosomal non-coding RNA expression may be a new approach to prevent or eliminate glioma. In this review, we review the origin and characteristics of exosomal non-coding RNAs, and introduce the functional studies of exosomal non-coding RNAs in glioma and their potential clinical applications, in order to broaden new ideas for the treatment of glioma.
Collapse
Affiliation(s)
- Peng Jin
- Department of Neurosurgery, Hulunbuir People’s Hospital, Hulunbuir, Inner Mongolia Autonomous Region 021000, China
| | - Xue Bai
- Department of Intensive Care Unit, Hulunbuir People’s Hospital, No. 20, Shengli Street, Hailar District, Hulunbuir, Inner Mongolia Autonomous Region 021000, China
| |
Collapse
|
2
|
Montano C, Flores-Arenas C, Carpenter S. LncRNAs, nuclear architecture and the immune response. Nucleus 2024; 15:2350182. [PMID: 38738760 PMCID: PMC11093052 DOI: 10.1080/19491034.2024.2350182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
Long noncoding RNAs (LncRNAs) are key regulators of gene expression and can mediate their effects in both the nucleus and cytoplasm. Some of the best-characterized lncRNAs are localized within the nucleus, where they modulate the nuclear architecture and influence gene expression. In this review, we discuss the role of lncRNAs in nuclear architecture in the context of their gene regulatory functions in innate immunity. Here, we discuss various approaches to functionally characterize nuclear-localized lncRNAs and the challenges faced in the field.
Collapse
Affiliation(s)
- Christy Montano
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Cristina Flores-Arenas
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Susan Carpenter
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| |
Collapse
|
3
|
Tsai CC, Wang CY, Chang HH, Chang PTS, Chang CH, Chu TY, Hsu PC, Kuo CY. Diagnostics and Therapy for Malignant Tumors. Biomedicines 2024; 12:2659. [PMID: 39767566 PMCID: PMC11726849 DOI: 10.3390/biomedicines12122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Malignant tumors remain one of the most significant global health challenges and contribute to high mortality rates across various cancer types. The complex nature of these tumors requires multifaceted diagnostic and therapeutic approaches. This review explores current advancements in diagnostic methods, including molecular imaging, biomarkers, and liquid biopsies. It also delves into the evolution of therapeutic strategies, including surgery, chemotherapy, radiation therapy, and novel targeted therapies such as immunotherapy and gene therapy. Although significant progress has been made in the understanding of cancer biology, the future of oncology lies in the integration of precision medicine, improved diagnostic tools, and personalized therapeutic approaches that address tumor heterogeneity. This review aims to provide a comprehensive overview of the current state of cancer diagnostics and treatments while highlighting emerging trends and challenges that lie ahead.
Collapse
Affiliation(s)
- Chung-Che Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Chun-Yu Wang
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Hsu-Hung Chang
- Division of Nephrology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City 221, Taiwan;
| | | | - Chuan-Hsin Chang
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Tin Yi Chu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Po-Chih Hsu
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- Institute of Oral Medicine and Materials, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| |
Collapse
|
4
|
Leili FR, Shali N, Sheibani M, Jafarian MJ, Pashizeh F, Gerami R, Iraj F, Lashkarshekan AA. Detailed pathological role of non-coding RNAs (ncRNAs) in regulating drug resistance of glioblastoma, and update. Pathol Res Pract 2024; 263:155590. [PMID: 39326365 DOI: 10.1016/j.prp.2024.155590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Glioma is a kind of brain tumor that develops in the central nervous system and is classified based on its histology and molecular genetic features. The lifespan of patients does not exceed 22 months. One of the motives for the low effectiveness of glioma treatment is its radioresistance and chemoresistance. Noncoding RNAs (ncRNAs) are a diverse set of transcripts that do not undergo translation to become proteins in glioma. The ncRNAs have been identified as significant regulators of several biological processes in different cell types and tissues, and their abnormal function has been linked to glioma. They are known to impact important occurrences, including carcinogenesis, progression, and enhanced treatment resistance in glioma cells. The ncRNAs control cell proliferation, migration, epithelial-to-mesenchymal transition (EMT), invasion, and drug resistance in glioma cells. The main focus of this study is to inspect the involvement of ncRNAs in the drug resistance of glioma.
Collapse
Affiliation(s)
- Foad Rahmanpour Leili
- Department of Neurology Faculty of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Niloofar Shali
- Department of Clinical Biochemistry, School of Medicine, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Mehrnaz Sheibani
- Division of Pediatric Neurology, University of Tabriz, Tabriz, Iran
| | | | - Fatemeh Pashizeh
- Department of Immunology, School of Medicine, Shahid Sadoughi University of Medical Science, Yazd 8916188635, Iran
| | - Reza Gerami
- Department of Radiology, Faculty of Medicine, AJA University of Medical Science, Tehran, Iran.
| | | | | |
Collapse
|
5
|
Kousa YA, Singh S, Horvath A, Tomasso F, Nazarian J, Henderson L, Mansour TA. Transcriptomic Meta-analysis Identifies Long Non-Coding RNAs Mediating Zika's Oncolytic Impact in Glioblastoma Multiforme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.04.605859. [PMID: 39372798 PMCID: PMC11452190 DOI: 10.1101/2024.08.04.605859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Glioblastoma multiforme (GBM) is an aggressive and lethal form of brain cancer with few effective treatments. In this context, Zika virus has emerged as a promising therapeutic agent due to its ability to selectively infect and kill GBM cells. To elucidate these mechanisms and expand the landscape of oncolytic virotherapy, we pursued a transcriptomic meta-analysis comparing the molecular signatures of Zika infection in GBM and neuroblastoma (NBM). Over-representation analysis of dysregulated coding genes showed significant enrichment of tumor necrosis factor (TNF), NF-κB, and p53 signaling pathways. A refined list of long non-coding RNAs consistently dysregulated in Zika-infected GBMs was also developed. Functional review of these candidates revealed their potential regulatory role in Zika-mediated oncolysis. We performed validation of the less-researched targets in adult and pediatric GBM cell lines and found significant differential regulation, as predicted. Altogether, our results provide novel insights into the molecular mechanisms underlying the effect of Zika on GBM. We highlight potential therapeutic targets that could be further interrogated to improve the efficacy of tumor cell death and the utility of Zika as an adjuvant virotherapy for GBM and other related cancers.
Collapse
|
6
|
Gareev I, Encarnacion Ramirez MDJ, Nurmukhametov R, Ivliev D, Shumadalova A, Ilyasova T, Beilerli A, Wang C. The role and clinical relevance of long non-coding RNAs in glioma. Noncoding RNA Res 2023; 8:562-570. [PMID: 37602320 PMCID: PMC10432901 DOI: 10.1016/j.ncrna.2023.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023] Open
Abstract
Glioma represents a complex and heterogeneous disease, posing significant challenges to both clinicians and researchers. Despite notable advancements in glioma treatment, the overall survival rate for most glioma patients remains dishearteningly low. Hence, there is an urgent necessity to discover novel biomarkers and therapeutic targets specifically tailored for glioma. In recent years, long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression and have garnered attention for their involvement in the development and progression of various cancers, including glioma. The dysregulation of lncRNAs plays a critical role in glioma pathogenesis and influences clinical outcomes. Consequently, there is growing interest in exploring the potential of lncRNAs as diagnostic and prognostic biomarkers, as well as therapeutic targets. By understanding the functions and dysregulation of lncRNAs in glioma, researchers aim to unlock new avenues for the development of innovative treatment strategies catered to glioma patients. The identification and thorough characterization of lncRNAs hold the promise of novel therapeutic approaches that could potentially improve patient outcomes and enhance the management of glioma, ultimately striving for better prospects and enhanced quality of life for those affected by this challenging disease. The primary objective of this paper is to comprehensively review the current state of knowledge regarding lncRNA biology and their intricate roles in glioma. It also delves into the potential of lncRNAs as valuable diagnostic and prognostic indicators and explores their feasibility as promising targets for therapeutic interventions.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Manuel de Jesus Encarnacion Ramirez
- Department of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Renat Nurmukhametov
- Division of Spine Surgery, Central Clinical Hospital of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Denis Ivliev
- Department of Neurosurgery, Smolensk State Medical University of the Ministry of Health of the Russian Federation, Smolensk, Russia
| | - Alina Shumadalova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, Tyumen, Russia
| | - Chunlei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
7
|
Dashti F, Mirazimi SMA, Kazemioula G, Mohammadi M, Hosseini M, Razaghi Bahabadi Z, Mirazimi MS, Abadi MHJN, Shahini A, Afshari M, Mirzaei H. Long non-coding RNAs and melanoma: From diagnosis to therapy. Pathol Res Pract 2023; 241:154232. [PMID: 36528985 DOI: 10.1016/j.prp.2022.154232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
Although extremely rare, malignant melanoma is the deadliest type of skin malignancy with the inherent capability to invade other organs and metastasize to distant tissues. In 2021, it was estimated that approximately 106,110 patients may have received the diagnosis of melanoma, with a mortality rate of 7180. Surgery remains the common choice for treatment in patients with melanoma. Despite many advances in the treatment of melanoma, some patients, such as those who have received cytotoxic chemotherapeutic and immunotherapic agents, a significant number of patients may show inadequate treatment response following initiating these treatments. Non-coding RNAs, including lncRNAs, have become recently popular and attracted the attention of many researchers to make new insights into the pathogenesis of many diseases, particularly malignancies. LncRNAs have been thoroughly investigated in multiple cancers such as melanoma and have been shown to play a major role in regulating various physiological and pathological cellular processes. Considering their core regulatory function, these non-coding RNAs may be appropriate candidates for melanoma patients' diagnosis, prognosis, and treatment. In this review, we will cover all the current literature available for lncRNAs in melanoma and will discuss their potential benefits as diagnostic and/or prognostic markers or potent therapeutic targets in the treatment of melanoma patients.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Golnesa Kazemioula
- Department of Medical Genetics, School of Medicine,Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mohammadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marjan Hosseini
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Razaghi Bahabadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Mirazimi
- Department of Obstetrics & Gynocology,Isfahan School of Medicine,Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Afshari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Malek Abbaslou E, Farsad-Akhtar N, Rajabi A, Rasoolnezhad M, Safaralizadeh R. Overexpression of linc RNA-POU3F3 in gastric cancer tissues compared to adjacent non-tumor tissues and its association with clinicopathological characteristics. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
SOX2-Induced Linc-ROR Upregulation Inhibits Gastric Carcinoma Cell Proliferation and Metastasis Via the miR-580-3p/ANXA10 Pathway. Biochem Genet 2022; 61:1113-1127. [DOI: 10.1007/s10528-022-10300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022]
|
10
|
Dey Ghosh R, Guha Majumder S. Circulating Long Non-Coding RNAs Could Be the Potential Prognostic Biomarker for Liquid Biopsy for the Clinical Management of Oral Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:5590. [PMID: 36428681 PMCID: PMC9688117 DOI: 10.3390/cancers14225590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNA (lncRNA) have little or no coding potential. These transcripts are longer than 200 nucleotides. Since lncRNAs are master regulators of almost all biological processes, recent evidence proves that aberrantly expressed lncRNAs are pathogenic for oral squamous cell carcinoma (OSCC) and other diseases. LncRNAs influence chromatin modifications, transcriptional modifications, post-transcriptional modifications, genomic imprinting, cell proliferation, invasion, metastasis, and apoptosis. Consequently, they have an impact on the disease transformation, progression, and morbidity in OSCC. Therefore, circulating lncRNAs could be the potential cancer biomarker for the better clinical management (diagnosis, prognosis, and monitoring) of OSCC to provide advanced treatment strategies and clinical decisions. In this review, we report and discuss the recent understandings and perceptions of dysregulated lncRNAs with a focus on their clinical significance in OSCC-disease monitoring and treatment. Evidence clearly indicates that a specific lncRNA expression signature could act as an indicator for the early prediction of diagnosis and prognosis for the initiation, progression, recurrence, metastasis and other clinical prognostic-factors (overall survival, disease-free survival, etc.) in OSCC. The present review demonstrates the current knowledge that all potential lncRNA expression signatures are molecular biomarkers for the early prediction of prognosis in OSCC. Finally, the review provides information about the clinical significance, challenges and limitations of the clinical usage of circulating lncRNAs in a liquid biopsy method in early, pre-symptomatic, sub-clinical, accurate OSCC prognostication. More studies on lncRNA are required to unveil the biology of the inherent mechanisms involved in the process of the development of differential prognostic outcomes in OSCC.
Collapse
Affiliation(s)
- Ruma Dey Ghosh
- Molecular Biology Department, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata 700094, India
| | | |
Collapse
|
11
|
Jansen van Rensburg M, Crous A, Abrahamse H. Promoting Immortalized Adipose-Derived Stem Cell Transdifferentiation and Proliferation into Neuronal-Like Cells through Consecutive 525 nm and 825 nm Photobiomodulation. Stem Cells Int 2022; 2022:2744789. [PMID: 36106176 PMCID: PMC9467736 DOI: 10.1155/2022/2744789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Neuronal cells can be generated from adipose-derived stem cells (ADSCs) through biological or chemical inducers. Research has shown that this process may be optimized by the introduction of laser irradiation in the form of photobiomodulation (PBM) to cells. This in vitro study is aimed at generating neuronal-like cells with inducers, chemical or biological, and at furthermore treating these transdifferentiating cells with consecutive PBM of a 525 nm green (G) laser and 825 nm near-infrared (NIR) laser light with a fluence of 10 J/cm2. Cells were exposed to induction type 1 (IT1): 3-isobutyl-1-methylxanthine (IBMX) (0.5 mM)+indomethacin (200 μM)+insulin (5 μg/ml) for 14 days, preinduced with β-mercaptoethanol (BME) (1 mM) for two days, and then incubated with IT2: β-hydroxyanisole (BHA) (100 μM)+retinoic acid (RA) (10-6 M)+epidermal growth factor (EGF) (10 ng/ml)+basic fibroblast growth factor (bFGF) (10 ng/ml) for 14 days and preinduced with β-mercaptoethanol (BME) (1 mM) for two days and then incubated with indomethacin (200 μM)+RA (1 μM)+forskolin (10 μM) for 14 days. The results were evaluated through morphological observations, viability, proliferation, and migration studies, 24 h, 48 h, and 7 days post-PBM. The protein detection of an early neuronal marker, neuron-specific enolase (NSE), and late, ciliary neurotrophic factor (CNTF), was determined with enzyme-linked immunosorbent assays (ELISAs). The genetic expression was also explored through real-time PCR. Results indicated differentiation in all experimental groups; however, cells that were preinduced showed higher proliferation and a higher differentiation rate than the group that was not preinduced. Within the preinduced groups, results indicated that cells treated with IT2 and consecutive PBM upregulated differentiation the most morphologically and physiologically.
Collapse
Affiliation(s)
- Madeleen Jansen van Rensburg
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| |
Collapse
|
12
|
Thongthip S, Carlson A, Crossley MP, Schwer B. Relationships between genome-wide R-loop distribution and classes of recurrent DNA breaks in neural stem/progenitor cells. Sci Rep 2022; 12:13373. [PMID: 35927309 PMCID: PMC9352722 DOI: 10.1038/s41598-022-17452-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Recent studies revealed classes of recurrent DNA double-strand breaks (DSBs) in neural stem/progenitor cells, including transcription-associated, promoter-proximal breaks and recurrent DSB clusters in late-replicating, long neural genes that may give rise to somatic brain mosaicism. The mechanistic factors promoting these different classes of DSBs in neural stem/progenitor cells are not understood. Here, we elucidated the genome-wide landscape of RNA:DNA hybrid structures called “R-loops” in primary neural stem/progenitor cells undergoing aphidicolin-induced, mild replication stress to assess the potential contribution of R-loops to the different, recurrent classes of DNA break “hotspots”. We find that R-loops in neural stem/progenitor cells undergoing mild replication stress are present primarily in early-replicating, transcribed regions and in genes with promoter GC skew that are associated with cell lineage-specific processes. Surprisingly, most long, neural genes that form recurrent DSB clusters do not show R-loop formation under conditions of mild replication stress. Our findings are consistent with a role of R-loop-associated processes in promoter-proximal DNA break formation in highly transcribed, early replicating regions but suggest that R-loops do not drive replication stress-induced, recurrent DSB cluster formation in most long, neural genes.
Collapse
Affiliation(s)
- Supawat Thongthip
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA.,Weill Institute for Neuroscience, University of California, San Francisco, CA, USA.,Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Annika Carlson
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA.,Weill Institute for Neuroscience, University of California, San Francisco, CA, USA.,Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Magdalena P Crossley
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bjoern Schwer
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA. .,Bakar Aging Research Institute, University of California, San Francisco, CA, USA. .,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, USA. .,Weill Institute for Neuroscience, University of California, San Francisco, CA, USA. .,Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| |
Collapse
|
13
|
Wu X, Wang X, Wang J, Hao Y, Liu F, Wang X, Yang L, Lu Z. The Roles of Exosomes as Future Therapeutic Agents and Diagnostic Tools for Glioma. Front Oncol 2021; 11:733529. [PMID: 34722277 PMCID: PMC8548662 DOI: 10.3389/fonc.2021.733529] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022] Open
Abstract
Glioma is a common type of tumor originating in the brain. Glioma develops in the gluey supporting cells (glial cells) that surround and support nerve cells. Exosomes are extracellular vesicles that contain microRNAs, messenger RNA, and proteins. Exosomes are the most prominent mediators of intercellular communication, regulating, instructing, and re-educating their surrounding milieu targeting different organs. As exosomes' diameter is in the nano range, the ability to cross the blood-brain barrier, a crucial obstacle in developing therapeutics against brain diseases, including glioma, makes the exosomes a potential candidate for delivering therapeutic agents for targeting malignant glioma. This review communicates the current knowledge of exosomes' significant roles that make them crucial future therapeutic agents and diagnostic tools for glioma.
Collapse
Affiliation(s)
- Xiaoben Wu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xingbang Wang
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Jing Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingying Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fang Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Yang
- Department of Medical Engineering, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
14
|
Jiang L, Zhang L, Chen Q, Qiao S, Zhou F, Han M. LncRNA HEIH promotes cell proliferation, migration and invasion by suppressing miR-214-3p in gastric carcinoma. J Biochem 2021; 169:535-542. [PMID: 33226411 DOI: 10.1093/jb/mvaa134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to investigate the function of long non-coding RNA HEIH in gastric carcinoma (GC). Adjacent normal tissues and GC tissues were obtained from 72 patients. Real-time quantitative polymerase chain reaction (RT-qPCR) was utilized to measure the expression of HEIH in cancer tissues and cells. Cell Counting Kit-8 and transwell assays were employed to evaluate cell proliferation, migration and invasion. An Annexin V-fluorescein-isothiocyanate (FITC)/propidium iodide (PI) Apoptosis Detection Kit was used to evaluate the apoptosis ratio. RT-qPCR was used to detect the expression level of miR-214-3p. The expression of HEIH in GC tissues was higher than in adjacent normal tissues. The expression of HEIH was upregulated in MKN-45, NCL-N87, KATO III cell lines compared within normal gastric epithelial cells. Knockdown of lncRNA HEIH significantly decreased the number of migrated and invaded cells. Additionally, downregulation of HEIH could increase GC cell apoptosis compared with the non-specific control (NC) group. We also proved that miR-214-3p was the direct target of lncRNA HEIH, and that overexpression of miR-214-3p could reverse the effects of HEIH. Silencing of HEIH could suppress Gastric Carcinoma cell proliferation, migration and invasion by inhibiting miR-214-3p. Thus, HEIH might represent a novel biomarker and therapeutic target.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Orthopedics, Taizhou People's Hospital, 366 Taihu Road, Taizhou, Jiangsu, China
| | - Luyao Zhang
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou 215008, Jiangsu, China
| | - Qian Chen
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou 215008, Jiangsu, China
| | - Shigang Qiao
- Department of Anesthesiology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, No. 1 Lijiang Road, Suzhou 215000, China
| | - Feng Zhou
- Department of Ultrasonography, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, No. 1 Lijiang Road, Suzhou 215000, China
| | - Min Han
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, 16 Baita Road, Suzhou 215000, Jiangsu, China
| |
Collapse
|
15
|
Singh N. Role of mammalian long non-coding RNAs in normal and neuro oncological disorders. Genomics 2021; 113:3250-3273. [PMID: 34302945 DOI: 10.1016/j.ygeno.2021.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/09/2022]
Abstract
Long non-coding RNAs (lncRNAs) are expressed at lower levels than protein-coding genes but have a crucial role in gene regulation. LncRNA is distinct, they are being transcribed using RNA polymerase II, and their functionality depends on subcellular localization. Depending on their niche, they specifically interact with DNA, RNA, and proteins and modify chromatin function, regulate transcription at various stages, forms nuclear condensation bodies and nucleolar organization. lncRNAs may also change the stability and translation of cytoplasmic mRNAs and hamper signaling pathways. Thus, lncRNAs affect the physio-pathological states and lead to the development of various disorders, immune responses, and cancer. To date, ~40% of lncRNAs have been reported in the nervous system (NS) and are involved in the early development/differentiation of the NS to synaptogenesis. LncRNA expression patterns in the most common adult and pediatric tumor suggest them as potential biomarkers and provide a rationale for targeting them pharmaceutically. Here, we discuss the mechanisms of lncRNA synthesis, localization, and functions in transcriptional, post-transcriptional, and other forms of gene regulation, methods of lncRNA identification, and their potential therapeutic applications in neuro oncological disorders as explained by molecular mechanisms in other malignant disorders.
Collapse
Affiliation(s)
- Neetu Singh
- Molecular Biology Unit, Department of Centre for Advance Research, King George's Medical University, Lucknow, Uttar Pradesh 226 003, India.
| |
Collapse
|
16
|
Mahinfar P, Baradaran B, Davoudian S, Vahidian F, Cho WCS, Mansoori B. Long Non-Coding RNAs in Multidrug Resistance of Glioblastoma. Genes (Basel) 2021; 12:455. [PMID: 33806782 PMCID: PMC8004794 DOI: 10.3390/genes12030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma, also known as glioblastoma multiforme, is the most aggressive brain tumor in adults. Despite the huge advance in developing novel therapeutic strategies for patients with glioblastoma, the appearance of multidrug resistance (MDR) against the common chemotherapeutic agents, including temozolomide, is considered as one of the important causes for the failure of glioblastoma treatment. On the other hand, recent studies have demonstrated the critical roles of long non-coding RNAs (lncRNAs), particularly in the development of MDR in glioblastoma. Therefore, this article aimed to review lncRNA's contribution to the regulation of MDR and elucidate the underlying mechanisms in glioblastoma, which will open up new lines of inquiry in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Parvaneh Mahinfar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.B.); (F.V.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.B.); (F.V.)
| | - Sadaf Davoudian
- Humanitas Clinical and Research Center—IRCCS, 20089 Milan, Italy;
| | - Fatemeh Vahidian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.B.); (F.V.)
| | | | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.B.); (F.V.)
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
17
|
Wu K, Wang Q, Liu YL, Xiang Z, Wang QQ, Yin L, Liu SL. LncRNA POU3F3 Contributes to Dacarbazine Resistance of Human Melanoma Through the MiR-650/MGMT Axis. Front Oncol 2021; 11:643613. [PMID: 33816296 PMCID: PMC8010678 DOI: 10.3389/fonc.2021.643613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Alkylating agents are critical therapeutic options for melanoma, while dacarbazine (DTIC)-based chemotherapy showed poor sensitivity in clinical trials. Long non-coding RNAs (lncRNAs) were highlighted in the progression of malignant tumors in recent years, whereas little was known about their involvement in melanoma. Methods: The functional role and molecular mechanism of lncRNA POU3F3 were evaluated on DTIC-resistant melanoma cells. Further studies analyzed its clinical role in the disease progression of melanoma. Results: We observed elevated the expression of lncRNA POU3F3 in the DTIC-resistant melanoma cells. Gain-of-function assays showed that the overexpression of lncRNA POU3F3 maintained cell survival with DTIC treatment, while the knockdown of lncRNA POU3F3 restored cell sensitivity to DTIC. A positive correlation of the expression O6-methylguanine-DNA-methyltransferase (MGMT) was observed with lncRNA POU3F3 in vitro and in vivo. Bioinformatic analyses predicted that miR-650 was involved in the lncRNA POU3F3-regulated MGMT expression. Molecular analysis indicated that lncRNA POU3F3 worked as a competitive endogenous RNA to regulate the levels of miR-650, and the lncRNA POU3F3/miR-650 axis determined the transcription of MGMT in melanoma cells to a greater extent. Further clinical studies supported that lncRNA POU3F3 was a risk factor for the disease progression of melanoma. Conclusion: LncRNA POU3F3 upregulated the expression of MGMT by sponging miR-650, which is a crucial way for DTIC resistance in melanoma. Our results indicated that lncRNA POU3F3 was a valuable biomarker for the disease progression of melanoma.
Collapse
Affiliation(s)
- Kai Wu
- Department of Burns and Plastic Surgery, People's Liberation Army (PLA) 960 Hospital, Jinan, China
| | - Qiang Wang
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China.,Clinical Laboratory, Navy 971 Hospital of PLA, Qingdao, China
| | - Yu-Lin Liu
- Clinical Laboratory, Navy 971 Hospital of PLA, Qingdao, China
| | - Zhuo Xiang
- Pharmacy Department, Navy 971 Hospital of PLA, Qingdao, China
| | - Qing-Qing Wang
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
| | - Li Yin
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
| | - Shun-Li Liu
- Department of Burns and Plastic Surgery, People's Liberation Army (PLA) 960 Hospital, Jinan, China
| |
Collapse
|
18
|
Rincón-Riveros A, Lopez L, Villegas EV, Antonia Rodriguez J. Regulation of Antitumor Immune Responses by Exosomes Derived from Tumor and Immune Cells. Cancers (Basel) 2021; 13:847. [PMID: 33671415 PMCID: PMC7922229 DOI: 10.3390/cancers13040847] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes are lipid membrane-enclosed vesicles released by all cell types that act at the paracrine or endocrine level to favor cell differentiation, tissue homeostasis, organ remodeling and immune regulation. Their biosynthesis begins with a cell membrane invagination which generates an early endosome that matures to a late endosome. By inward budding of the late endosome membrane, a multivesicular body (MVB) with intraluminal vesicles (ILVs) is generated. The fusion of MVBs with the plasma membrane releases ILVs into the extracellular space as exosomes, ranging in size from 30 to 100 nm in diameter. The bilipid exosome membrane is rich in cholesterol, ceramides and phosphatidylserine and can be loaded with DNA, RNA, microRNAs, proteins and lipids. It has been demonstrated that exosome secretion is a common mechanism used by the tumor to generate an immunosuppressive microenvironment that favors cancer development and progression, allowing tumor escape from immune control. Due to their ability to transport proteins, lipids and nucleic acids from the cell that gave rise to them, exosomes can be used as a source of biomarkers with great potential for clinical applications in diagnostic, prognostic or therapeutic areas. This article will review the latest research findings on exosomes and their contribution to cancer development.
Collapse
Affiliation(s)
- Andrés Rincón-Riveros
- Bioinformatics and Systems Biology Group, Institute for Genetics, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Liliana Lopez
- Department of Statistics, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - E Victoria Villegas
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá 111221, Colombia;
| | | |
Collapse
|
19
|
Katsushima K, Jallo G, Eberhart CG, Perera RJ. Long non-coding RNAs in brain tumors. NAR Cancer 2021; 3:zcaa041. [PMID: 34316694 PMCID: PMC8210177 DOI: 10.1093/narcan/zcaa041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/09/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been found to be central players in the epigenetic, transcriptional and post-transcriptional regulation of gene expression. There is an accumulation of evidence on newly discovered lncRNAs, their molecular interactions and their roles in the development and progression of human brain tumors. LncRNAs can have either tumor suppressive or oncogenic functions in different brain cancers, making them attractive therapeutic targets and biomarkers for personalized therapy and precision diagnostics. Here, we summarize the current state of knowledge of the lncRNAs that have been implicated in brain cancer pathogenesis, particularly in gliomas and medulloblastomas. We discuss their epigenetic regulation as well as the prospects of using lncRNAs as diagnostic biomarkers and therapeutic targets in patients with brain tumors.
Collapse
Affiliation(s)
- Keisuke Katsushima
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD 21231, USA
| | - George Jallo
- Johns Hopkins All Children's Hospital, 600 5th St. South, St Petersburg, FL 33701, USA
| | - Charles G Eberhart
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD 21231, USA
| | - Ranjan J Perera
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD 21231, USA
| |
Collapse
|
20
|
Tutar Y. Short Commentary on “Targeting Long Non-Coding RNAs in Nervous System Cancers: New Insights in Prognosis, Diagnosis, and Therapy”. Curr Med Chem 2020; 27:7289-7292. [DOI: 10.2174/092986732742201105113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yusuf Tutar
- Division of Biochemistry, Basic Pharmaceutical Sciences Department, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
21
|
Wolf J, Auw-Haedrich C, Schlecht A, Boneva S, Mittelviefhaus H, Lapp T, Agostini H, Reinhard T, Schlunck G, Lange CAK. Transcriptional characterization of conjunctival melanoma identifies the cellular tumor microenvironment and prognostic gene signatures. Sci Rep 2020; 10:17022. [PMID: 33046735 PMCID: PMC7550331 DOI: 10.1038/s41598-020-72864-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
This study characterizes the transcriptome and the cellular tumor microenvironment (TME) of conjunctival melanoma (CM) and identifies prognostically relevant biomarkers. 12 formalin-fixed and paraffin-embedded CM were analyzed by MACE RNA sequencing, including six cases each with good or poor clinical outcome, the latter being defined by local recurrence and/or systemic metastases. Eight healthy conjunctival specimens served as controls. The TME of CM, as determined by bioinformatic cell type enrichment analysis, was characterized by the enrichment of melanocytes, pericytes and especially various immune cell types, such as plasmacytoid dendritic cells, natural killer T cells, B cells and mast cells. Differentially expressed genes between CM and control were mainly involved in inhibition of apoptosis, proteolysis and response to growth factors. POU3F3, BIRC5 and 7 were among the top expressed genes associated with inhibition of apoptosis. 20 genes, among them CENPK, INHA, USP33, CASP3, SNORA73B, AAR2, SNRNP48 and GPN1, were identified as prognostically relevant factors reaching high classification accuracy (area under the curve: 1.0). The present study provides new insights into the TME and the transcriptional profile of CM and additionally identifies new prognostic biomarkers. These results add new diagnostic tools and may lead to new options of targeted therapy for CM.
Collapse
Affiliation(s)
- Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Claudia Auw-Haedrich
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Anja Schlecht
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Stefaniya Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Hans Mittelviefhaus
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Thabo Lapp
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Clemens A K Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany.
| |
Collapse
|
22
|
Sangatsuda Y, Miura F, Araki H, Mizoguchi M, Hata N, Kuga D, Hatae R, Akagi Y, Amemiya T, Fujioka Y, Arai Y, Yoshida A, Shibata T, Yoshimoto K, Iihara K, Ito T. Base-resolution methylomes of gliomas bearing histone H3.3 mutations reveal a G34 mutant-specific signature shared with bone tumors. Sci Rep 2020; 10:16162. [PMID: 32999376 PMCID: PMC7527345 DOI: 10.1038/s41598-020-73116-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
Two recurrent mutations, K27M and G34R/V, in H3F3A, encoding non-canonical histone H3.3, are reported in pediatric and young adult gliomas, whereas G34W mutation is prevalent in bone tumors. In contrast to K27M mutation, it remains elusive how G34 mutations affect the epigenome. Here we performed whole-genome bisulfite sequencing of four G34R-mutated gliomas and the G34V-mutated glioma cell line KNS-42 for comparison with gliomas harboring K27M and no mutations in H3F3A and with G34W-mutated bone tumors. G34R-mutated gliomas exhibited lower global methylation levels, similar CpG island (CGI) methylation levels, and compromised hypermethylation of telomere-proximal CGIs, compared to the other two glioma subgroups. Hypermethylated regions specific to G34R-mutated gliomas were enriched for CGIs, including those of OLIG1, OLIG2, and canonical histone genes in the HIST1 cluster. They were notably hypermethylated in osteosarcomas with, but not without, G34W mutation. Independent component analysis revealed that G34 mutation-specific components shared a significant similarity between glioma and osteosarcoma, suggesting that G34 mutations exert characteristic methylomic effects regardless of the tumor tissue-of-origin. CRISPR/Cas9-mediated disruption of G34V-allele in KNS-42 cells led to demethylation of a subset of CGIs hypermethylated in G34R-mutated gliomas. These findings will provide a basis for elucidating epigenomic roles of G34 oncohistone in tumorigenesis.
Collapse
Affiliation(s)
- Yuhei Sangatsuda
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiromitsu Araki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yojiro Akagi
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takeo Amemiya
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.,Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Koji Iihara
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
23
|
Asgharzadeh S, Tafvizi F, Chaleshi V, Iravani S. Lack of association between LincRNA-Pou3f gene expression and clinicopathological features in gastric cancer tissue. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Zou J, Guo Y, Wei L, Yu F, Yu B, Xu A. Long Noncoding RNA POU3F3 and α-Synuclein in Plasma L1CAM Exosomes Combined with β-Glucocerebrosidase Activity: Potential Predictors of Parkinson's Disease. Neurotherapeutics 2020; 17:1104-1119. [PMID: 32236821 PMCID: PMC7609611 DOI: 10.1007/s13311-020-00842-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are implicated in the autophagic-lysosomal pathway (ALP) and are closely linked to Parkinson's disease (PD) pathology. β-Glucocerebrosidase (GCase) has also been reported to be correlated with α-synuclein (α-syn) proteostasis. However, lncRNAs and α-syn in neural-derived L1CAM exosomes and GCase activity in the plasma of PD patients have not been studied. This study used an ultrasensitive methodology, fluorescence nanoparticle tracking analysis (NTA), to measure plasma L1CAM exosomes and Quanterix Simoa to measure α-syn concentrations in L1CAM exosomes. Eighty-five healthy controls and 93 PD patients were enrolled, and several scales were used to rate the severity of PD. Receiver operating characteristic (ROC) curves were applied to map the diagnostic accuracy of categorizing PD patients and healthy subjects. We found increased Linc-POU3F3 and α-syn concentrations in L1CAM exosomes and decreased GCase activity in PD patients compared with controls. The three biomarkers displayed obvious differences among PD patients based on gender, H-Y stage, and UPDRS-III distribution. Interestingly, Linc-POU3F3 was significantly positively correlated with α-syn in L1CAM exosomes and inversely correlated with GCase activity in PD patients. Significant correlations were observed among L1CAM exosomal Linc-POU3F3 levels, GCase activity, and PD severity, including motor/cognitive dysfunction. Additionally, the combination of Linc-POU3F3 and α-syn in L1CAM exosomes and GCase activity could discriminate PD patients from controls. These results suggest that L1CAM exosomal Linc-POU3F3, L1CAM exosomal α-syn, and GCase activity may shed light on the mechanism underlying the autophagic-lysosomal system in the pathogenesis of PD and could be used to assess the severity of PD.
Collapse
Affiliation(s)
- Jing Zou
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
- Clinical Neuroscience Institute of Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Yue Guo
- Key Laboratory of Assisted Circulation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Lei Wei
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Fang Yu
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Bo Yu
- Department of Medicine, Lincoln Medical Center, Bronx, New York, 10451, USA
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China.
- Clinical Neuroscience Institute of Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China.
| |
Collapse
|
25
|
Tong Y, Yang L, Yu C, Zhu W, Zhou X, Xiong Y, Wang W, Ji F, He D, Cao X. Tumor-Secreted Exosomal lncRNA POU3F3 Promotes Cisplatin Resistance in ESCC by Inducing Fibroblast Differentiation into CAFs. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:1-13. [PMID: 32637576 PMCID: PMC7321817 DOI: 10.1016/j.omto.2020.05.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/27/2020] [Indexed: 12/30/2022]
Abstract
Cancer-associated fibroblasts (CAFs), an activated subpopulation of fibroblasts, occupy a central position in the tumor microenvironment and have been shown to promote chemoresistance in multiple cancer types by secreting inflammatory cytokines. Herein, we report that tumor-secreted exosomal long non-coding RNAs (lncRNAs) can regulate cisplatin resistance in esophageal squamous cell carcinoma (ESCC) through transformation of normal fibroblasts (NFs) to CAFs. Primary CAFs and matched NFs were isolated from tumor tissues and matched normal esophageal epithelial tissues of ESCC patients. Fluorescence microscopy and qRT-PCR were used to investigate the transportation of exosomal lncRNAs from ESCC cells to NFs. To identify the specific lncRNAs involved, 14 ESCC-related lncRNAs were measured in NFs after incubation with exosomes from ESCC cells. We demonstrated that lncRNA POU3F3 can be transferred from ESCC cells to NFs via exosomes and that it mediated fibroblast activation. Activated fibroblasts further promoted proliferation and cisplatin resistance of ESCC cells through secreting interleukin 6 (IL-6). Moreover, our clinical data showed that high levels of plasma exosomal lncRNA POU3F3 correlated significantly with lack of complete response and poor survival in ESCC patients. Therefore, these data demonstrate that lncRNA POU3F3 is involved in cisplatin resistance in ESCC and that this effect is mediated through exosomal lncRNA POU3F3-induced transformation of NFs to CAFs.
Collapse
Affiliation(s)
- Yusuo Tong
- Department of Radiation Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Lili Yang
- Department of Oncology Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Changhua Yu
- Department of Radiation Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Weiguo Zhu
- Department of Radiation Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xilei Zhou
- Department of Radiation Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Yaozu Xiong
- Department of Radiation Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Wanwei Wang
- Department of Radiation Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Fuzhi Ji
- Department of Radiation Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Dongcheng He
- Department of Radiation Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xiufeng Cao
- Department of Oncology Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Taikang Xianlin Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
26
|
Seles M, Hutterer GC, Foßelteder J, Svoboda M, Resel M, Barth DA, Pichler R, Bauernhofer T, Zigeuner RE, Pummer K, Slaby O, Klec C, Pichler M. Long Non-Coding RNA PANTR1 is Associated with Poor Prognosis and Influences Angiogenesis and Apoptosis in Clear-Cell Renal Cell Cancer. Cancers (Basel) 2020; 12:E1200. [PMID: 32397610 PMCID: PMC7281347 DOI: 10.3390/cancers12051200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
POU3F3 adjacent non-coding transcript 1 (PANTR1) is an oncogenic long non-coding RNA with significant influence on numerous cellular features in different types of cancer. No characterization of its role in renal cell carcinoma (RCC) is yet available. In this study, PANTR1 expression was confined to human brain and kidney tissue and was found significantly up-regulated in clear-cell renal cell carcinoma tissue (ccRCC) compared to non-cancerous kidney tissue in two independent cohorts (p < 0.001 for both cohorts). In uni- and multivariate Cox regression analysis, ccRCC patients with higher levels of PANTR1 showed significantly poorer disease-free survival in our own respective cohort (n = 175, hazard ratio: 4.3, 95% confidence interval: 1.45-12.75, p = 0.008) in accordance with significantly poorer overall survival in a large The Cancer Genome Atlas database (TCGA) cohort (n = 530, hazard ratio: 2.19, 95% confidence interval: 1.59-3.03, p ≤ 0.001). To study the underlying cellular mechanisms mediated by varying levels of PANTR1 in kidney cancer cells, we applied siRNA-mediated knock-down experiments in three independent ccRCC cell lines (RCC-FG, RCC-MF, 769-P). A decrease in PANTR1 levels led to significantly reduced cellular growth through activation of apoptosis in all tested cell lines. Moreover, as angiogenesis is a critical driver in ccRCC pathogenesis, we identified that PANTR1 expression is critical for in vitro tube formation and endothelial cell migration (p < 0.05). On the molecular level, knock-down of PANTR1 led to a decrease in Vascular Endothelial growth factor A (VEGF-A) and cell adhesion molecule laminin subunit gamma-2 (LAMC2) expression, corroborated by a positive correlation in RCC tissue (for VEGF-A R = 0.19, p < 0.0001, for LAMC2 R = 0.13, p = 0.0028). In conclusion, this study provides first evidence that PANTR1 has a relevant role in human RCC by influencing apoptosis and angiogenesis.
Collapse
Affiliation(s)
- Maximilian Seles
- Department of Urology, Medical University of Graz, 8036 Graz, Austria; (M.S.); (G.C.H.); (R.E.Z.); (K.P.)
| | - Georg C. Hutterer
- Department of Urology, Medical University of Graz, 8036 Graz, Austria; (M.S.); (G.C.H.); (R.E.Z.); (K.P.)
| | - Johannes Foßelteder
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.R.); (D.A.B.); (T.B.); (M.P.)
- “Non-coding RNAs and Genome Editing in Cancer” Research Unit, Medical University of Graz, 8036 Graz, Austria
| | - Marek Svoboda
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic; (M.S.); (O.S.)
| | - Margit Resel
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.R.); (D.A.B.); (T.B.); (M.P.)
- “Non-coding RNAs and Genome Editing in Cancer” Research Unit, Medical University of Graz, 8036 Graz, Austria
| | - Dominik A. Barth
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.R.); (D.A.B.); (T.B.); (M.P.)
- “Non-coding RNAs and Genome Editing in Cancer” Research Unit, Medical University of Graz, 8036 Graz, Austria
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Renate Pichler
- Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Thomas Bauernhofer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.R.); (D.A.B.); (T.B.); (M.P.)
| | - Richard E. Zigeuner
- Department of Urology, Medical University of Graz, 8036 Graz, Austria; (M.S.); (G.C.H.); (R.E.Z.); (K.P.)
| | - Karl Pummer
- Department of Urology, Medical University of Graz, 8036 Graz, Austria; (M.S.); (G.C.H.); (R.E.Z.); (K.P.)
| | - Ondrej Slaby
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic; (M.S.); (O.S.)
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Christiane Klec
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.R.); (D.A.B.); (T.B.); (M.P.)
- “Non-coding RNAs and Genome Editing in Cancer” Research Unit, Medical University of Graz, 8036 Graz, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.R.); (D.A.B.); (T.B.); (M.P.)
- “Non-coding RNAs and Genome Editing in Cancer” Research Unit, Medical University of Graz, 8036 Graz, Austria
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
27
|
Peng Y, Fang X, Yao H, Zhang Y, Shi J. MiR-146b-5p Regulates the Expression of Long Noncoding RNA MALAT1 and Its Effect on the Invasion and Proliferation of Papillary Thyroid Cancer. Cancer Biother Radiopharm 2020; 36:433-440. [PMID: 32343601 DOI: 10.1089/cbr.2019.3322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: The incidence of thyroid cancer has increased dramatically in recent decades due, in large part, to identifications of subclinical diseases. Literature on thyroid cancer has examined the pathogenesis of high invasive papillary thyroid cancer (PTC) and has improved the prevention and treatment of PTC. This study aims to investigate the effects of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on PTC migration and invasion, and clarify the regulatory mechanisms between miR-146b-5p and MALAT1. Materials and Methods: In this study, we examined the differential expression of MALAT1, miR-146b-5p, and DNA methyltransferases 3A (DNMT3A) in PTC tissues. The effect of MALAT1 on the proliferation and invasion ability of PTC cells was verified by constructing a sh-MALAT1 knockdown cell model. Correlations between MALAT1, miR-146b-5p, and DNMT3A were analyzed by the Pearson correlation method. Finally, we verified the regulatory relationship between miR-146b-5p and MALAT1 by the luciferase assay and rescue assay. Results: The expression of MALAT1 was upregulated in PTC tissues and cells, while a MALAT1 knockdown counteracted cellular activity, migration, and invasion of B-CPAP and K1 cells. The relationship between miR-146b-5p and DNMT3A was negative, while the relationship between miR-146b-5p and MALAT1 was positive. Both genes were separately detected using the Pearson correlation method. The luciferase assay and rescue assay demonstrated that a binding site in miR-146b-5p was existent in the 3' untranslated region of DNMT3A, while a knockdown of DNMT3A partially rescued si-miR-146b-5p induced proliferation, migration, and invasion effects on PTC cells. Conclusions: The MALAT1 gene is highly expressed in PTC, while the knockdown MALAT1 gene attenuates the cellular activity and invasive ability of PTC cells. The microRNA miR-146b-5p can promote a MALAT1 expression by negatively regulating DNMT3A in PTC.
Collapse
Affiliation(s)
- You Peng
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xiang Fang
- Department of Laboratory Medicine, and Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Hongli Yao
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Yu Zhang
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Jingjing Shi
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| |
Collapse
|
28
|
Xin Y, Zhang W, Mao C, Li J, Liu X, Zhao J, Xue J, Li J, Ren Y. LncRNA LINC01140 Inhibits Glioma Cell Migration and Invasion via Modulation of miR-199a-3p/ZHX1 Axis. Onco Targets Ther 2020; 13:1833-1844. [PMID: 32184618 PMCID: PMC7053821 DOI: 10.2147/ott.s230895] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Glioma is an aggressive tumor from the nervous system, which causes more than 70% of primary malignant brain tumors. Considering its severe malignancy, there is an urgent need to investigate more practical markers to understand the pathogenesis of glioma, and potential treatment methods for glioma patients. In the paper, we are focused on examining the roles of LINC01140, miR-199a-3p, and ZHX1 in the progression of gliomas, as well as their inner associations and modulation mechanisms. METHODS qRT-PCR was employed to examine the expression levels of LINC01140 and miR-199a-3p. We measured the expressions of ZHX1 via qRT-PCR and Western blotting. CCK8 assays, migration assays, and invasion assays were carried out to determine the cell viabilities and abilities of migration and invasion. We also conducted in vivo tumor growth experiments to investigate the roles of LINC01140 in glioma developments. RESULTS The expressions of LINC01140 were promoted in glioma. Silencing LINC01140 could inhibit glioma cell viabilities, migration, and invasion. In our experiments, miR-199a-3p was inhibited in glioma. LINC01140 negatively regulated the expressions of miR-199a-3p in glioma. MiR-199a-3p could target ZHX1 to inhibit its expression in glioma cells. CONCLUSION LINC01140 could promote glioma developments by modulating the miR-199a-3p/ZHX1 axis.
Collapse
Affiliation(s)
- Yanchao Xin
- Department of Neurosurgery, People’s Hospital of Jiaozuo City, Jiaozuo City, Henan Province454002, People’s Republic of China
| | - Wuzhong Zhang
- Department of Neurosurgery, People’s Hospital of Jiaozuo City, Jiaozuo City, Henan Province454002, People’s Republic of China
| | - Chongchong Mao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University in Henan Province, Zhengzhou City, Henan Province450052, People’s Republic of China
| | - Jianxin Li
- Department of Neurosurgery, People’s Hospital of Jiaozuo City, Jiaozuo City, Henan Province454002, People’s Republic of China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University in Henan Province, Zhengzhou City, Henan Province450052, People’s Republic of China
| | - Junbo Zhao
- Department of Neurosurgery, People’s Hospital of Jiaozuo City, Jiaozuo City, Henan Province454002, People’s Republic of China
| | - Junfeng Xue
- Department of Neurosurgery, People’s Hospital of Jiaozuo City, Jiaozuo City, Henan Province454002, People’s Republic of China
| | - Junqing Li
- Department of Neurosurgery, People’s Hospital of Jiaozuo City, Jiaozuo City, Henan Province454002, People’s Republic of China
| | - Yonglu Ren
- Department of Neurosurgery, People’s Hospital of Jiaozuo City, Jiaozuo City, Henan Province454002, People’s Republic of China
| |
Collapse
|
29
|
Malissovas N, Ninou E, Michail A, Politis PK. Targeting Long Non-Coding RNAs in Nervous System Cancers: New Insights in Prognosis, Diagnosis and Therapy. Curr Med Chem 2019; 26:5649-5663. [PMID: 30182849 DOI: 10.2174/0929867325666180831170227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/13/2018] [Accepted: 07/02/2018] [Indexed: 01/17/2023]
Abstract
Long non-coding RNAs (lncRNAs) constitute one of the most broad and diverse classes of cellular transcripts, playing key roles as regulatory molecules in many biological processes. Although the biology of lncRNAs is a new and emerging field of research, several studies have already shown that alterations in the expression of lncRNAs are associated with the development and progression of cancer in different organs and tissues, including central and peripheral nervous system. In this review, we summarize the oncogenic and tumor suppressive roles of lncRNAs in malignant tumors of the nervous system, such as glioma and neuroblastoma, focusing on their functional interactions with DNA, other RNA and protein molecules. We further discuss the potential use of lncRNAs as biomarkers for diagnosis, prognosis and tumor treatment. Gaining insight into the functional association between nervous system malignancies and lncRNAs could offer new perspectives to the development of promising therapeutic tools against cancer.
Collapse
Affiliation(s)
- Nikos Malissovas
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Elpinickie Ninou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Artemis Michail
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| |
Collapse
|
30
|
Chang S, Sun L, Feng G. SP1-mediated long noncoding RNA POU3F3 accelerates the cervical cancer through miR-127-5p/FOXD1. Biomed Pharmacother 2019; 117:109133. [PMID: 31252264 DOI: 10.1016/j.biopha.2019.109133] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence supports the critical roles of long noncoding RNA (lncRNA) in cervical cancer. However, the pathological roles of lncRNA POU3 F3 in the cervical cancer tumorigenesis are still elusive. POU3 F3 was validated to be up-regulated in the cervical cancer tissue specimens and cells comparing with normal controls. Moreover, the ectopic overexpression of POU3 F3 was closely correlated with poor prognosis. In vitro, POU3 F3 promoted the proliferation, invasion of cervical cancer cells. In vivo, POU3 F3 knockdown repressed the tumor growth of cervical cancer cells. The transcriptional expression of POU3 F3 was activated by the transcription factor SP1. Mechanically, POU3 F3 acted as the sponge to target miR-127-5p, while miR-127-5p bind with the 3'-UTR of FOXD1 gene. In conclusion, our data verifies that lncRNA POU3 F3, induced by transcription factor SP1, acts as an oncogene in the cervical cancer tumorigenesis via regulating miR-127-5p/FOXD1 axis, providing a possible therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Suwen Chang
- Department of Obstetrics and Gynecology, Yuhuangding Hospital, Yantai, Shandong Province, 264000, China
| | - Liping Sun
- Department of Obstetrics and Gynecology, Yuhuangding Hospital, Yantai, Shandong Province, 264000, China
| | - Guijiao Feng
- Department of Obstetrics and Gynecology, Yuhuangding Hospital, Yantai, Shandong Province, 264000, China.
| |
Collapse
|
31
|
Ye J, Zhu J, Chen H, Qian J, Zhang L, Wan Z, Chen F, Sun S, Li W, Luo C. A novel lncRNA-LINC01116 regulates tumorigenesis of glioma by targeting VEGFA. Int J Cancer 2019; 146:248-261. [PMID: 31144303 DOI: 10.1002/ijc.32483] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/16/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022]
Abstract
Brain glioma is the most common malignant tumor of the central nervous system, and one of the leading causes of death in patients with intracranial tumors. The clinical outcome of glioma is usually poor due to abundant vascularity, fast growth and susceptibility of invasion to normal brain tissues. Our microarray study showed that lncRNA-LINC01116 was significantly upregulated in glioma tissues and played an important role in cell proliferation, cycle, migration, invasion and angiogenesis. In addition, vascular endothelial growth factor (VEGFA) may be the major target genes in the downstream of lncRNA-LINC01116. Dual luciferase assay showed that LINC01116 and VEGFA both contained a miR-31-5p binding site, and LINC01116 could regulate the expression of VEGFA through competitive absorption of miR-31-5p. RNA immunoprecipitation indicated that LINC01116 and VEGFA were present in the miR-31-5p-RISC complex, and biotinylated miR-31-5p pull-down assay suggested that there was a competitive relationship between LINC01116 and VEGFA to bind with miR-31-5p. Collectively, our study has identified a novel lncRNA-LINC01116 and clarified the role and mechanism of LINC01116 in the tumorigenesis of glioma. LINC01116 may prove to be a potential target for the clinical diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Jingliang Ye
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Neurosurgery, 72 Group Military Hospital of CPLA, Huzhou, China
| | - Junle Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huairui Chen
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Qian
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiping Wan
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Chen
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuhan Sun
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Wen Li
- Center of Reproductive Medicine, Shanghai Changzheng Hospital, Shanghai, China
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Paulmurugan R, Malhotra M, Massoud TF. The protean world of non-coding RNAs in glioblastoma. J Mol Med (Berl) 2019; 97:909-925. [PMID: 31129756 DOI: 10.1007/s00109-019-01798-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/05/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022]
Abstract
Non-coding ribonucleic acids (ncRNAs) are a diverse group of RNA molecules that are mostly not translated into proteins following transcription. We review the role of ncRNAs in the pathobiology of glioblastoma (GBM), and their potential applications for GBM therapy. Significant advances in our understanding of the protean manifestations of ncRNAs have been made, allowing us to better decipher the molecular complexity of GBM. A large number of regulatory ncRNAs appear to have a greater influence on the molecular pathology of GBM than thought previously. Importantly, also, a range of therapeutic approaches are emerging whereby ncRNA-based systems may be used to molecularly target GBM. The most successful of these is RNA interference, and some of these strategies are being evaluated in ongoing clinical trials. However, a number of limitations exist in the clinical translation of ncRNA-based therapeutic systems, such as delivery mechanisms and cytotoxicity; concerted research endeavors are currently underway in an attempt to overcome these. Ongoing and future studies will determine the potential practical role for ncRNA-based therapeutic systems in the clinical management of GBM. These applications may be especially promising, given that current treatment options are limited and prognosis remains poor for this challenging malignancy.
Collapse
Affiliation(s)
- Ramasamy Paulmurugan
- Cellular Pathway Imaging Laboratory (CPIL), Molecular Imaging Program at Stanford, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94305, USA.
| | - Meenakshi Malhotra
- Laboratory of Experimental and Molecular Neuroimaging (LEMNI), Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Drive, Grant S-031, Stanford, CA, 94305-5105, USA
| | - Tarik F Massoud
- Laboratory of Experimental and Molecular Neuroimaging (LEMNI), Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Drive, Grant S-031, Stanford, CA, 94305-5105, USA.
| |
Collapse
|
33
|
Bountali A, Tonge DP, Mourtada-Maarabouni M. RNA sequencing reveals a key role for the long non-coding RNA MIAT in regulating neuroblastoma and glioblastoma cell fate. Int J Biol Macromol 2019; 130:878-891. [PMID: 30836187 DOI: 10.1016/j.ijbiomac.2019.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/29/2022]
Abstract
Myocardial Infarction Associated Transcript (MIAT) is a subnuclear lncRNA that interferes with alternative splicing and is associated with increased risk of various heart conditions and nervous system tumours. The current study aims to elucidate the role of MIAT in cell survival, apoptosis and migration in neuroblastoma and glioblastoma multiforme. To this end, MIAT was silenced by MIAT-specific siRNAs in neuroblastoma and glioblastoma cell lines, and RNA sequencing together with a series of functional assays were performed. The RNA sequencing has revealed that the expression of an outstanding number of genes is altered, including genes involved in cancer-related processes, such as cell growth and survival, apoptosis, reactive oxygen species (ROS) production and migration. Furthermore, the functional studies have confirmed the RNA sequencing leads, with our key findings suggesting that MIAT knockdown eliminates long-term survival and migration and increases basal apoptosis in neuroblastoma and glioblastoma cell lines. Taken together with the recent demonstration of the involvement of MIAT in glioblastoma, our observations suggest that MIAT could possess tumour-promoting properties, thereby acting as an oncogene, and has the potential to be used as a reliable biomarker for neuroblastoma and glioblastoma and be employed for prognostic, predictive and, potentially, therapeutic purposes for these cancers.
Collapse
Affiliation(s)
- Aikaterini Bountali
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, UK
| | - Daniel P Tonge
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, UK
| | - Mirna Mourtada-Maarabouni
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, UK.
| |
Collapse
|
34
|
Rynkeviciene R, Simiene J, Strainiene E, Stankevicius V, Usinskiene J, Miseikyte Kaubriene E, Meskinyte I, Cicenas J, Suziedelis K. Non-Coding RNAs in Glioma. Cancers (Basel) 2018; 11:cancers11010017. [PMID: 30583549 PMCID: PMC6356972 DOI: 10.3390/cancers11010017] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most aggressive brain tumor of the central nervous system. The ability of glioma cells to migrate, rapidly diffuse and invade normal adjacent tissue, their sustained proliferation, and heterogeneity contribute to an overall survival of approximately 15 months for most patients with high grade glioma. Numerous studies indicate that non-coding RNA species have critical functions across biological processes that regulate glioma initiation and progression. Recently, new data emerged, which shows that the cross-regulation between long non-coding RNAs and small non-coding RNAs contribute to phenotypic diversity of glioblastoma subclasses. In this paper, we review data of long non-coding RNA expression, which was evaluated in human glioma tissue samples during a five-year period. Thus, this review summarizes the following: (I) the role of non-coding RNAs in glioblastoma pathogenesis, (II) the potential application of non-coding RNA species in glioma-grading, (III) crosstalk between lncRNAs and miRNAs (IV) future perspectives of non-coding RNAs as biomarkers for glioma.
Collapse
Affiliation(s)
- Ryte Rynkeviciene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
| | - Julija Simiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio ave. 7, LT-08412 Vilnius, Lithuania.
| | - Egle Strainiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio ave. 11, LT-10122 Vilnius, Lithuania.
| | - Vaidotas Stankevicius
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biotechnology, Vilnius University, LT-10257 Vilnius, Lithuania.
| | - Jurgita Usinskiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
| | - Edita Miseikyte Kaubriene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Faculty of Medicine, Vilnius University, M.K. Cˇiurlionio 21, LT-03101 Vilnius, Lithuania.
| | - Ingrida Meskinyte
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, 3027 Bern, Switzerland.
| | - Jonas Cicenas
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, 3027 Bern, Switzerland.
- Energy and Biotechnology Engineering Institute, Aleksandro Stulginskio University, Studentų g. 11, LT-53361 Akademija, Lithuania.
| | - Kestutis Suziedelis
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio ave. 7, LT-08412 Vilnius, Lithuania.
| |
Collapse
|
35
|
Rahimnia H, Moradi A, Javid N, Fateri Y, Bahramian S, Roohinejad Z, Sabouri H, Jorjani E, Department of Biology, Gonbad Kavous University, Gonbad Kavous, Iran, Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran, Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran, Department of Biology, Gonbad Kavous University, Gonbad Kavous, Iran, Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran, Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran, *Correspondence: Eisa Jorjani, Department of Biology, Gonbad Kavous Univers, Department of Biology, Gonbad Kavous University, Gonbad Kavous, Iran. Overexpression of Long Non-Coding RNA POU3F3 in Esophageal Squamous Cell Carcinoma is Associated with TNM Stage and Family History. JOURNAL OF CLINICAL AND BASIC RESEARCH 2018. [DOI: 10.29252/jcbr.2.4.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
36
|
Li J, Zhu Y, Wang H, Ji X. Targeting Long Noncoding RNA in Glioma: A Pathway Perspective. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:431-441. [PMID: 30388617 PMCID: PMC6202792 DOI: 10.1016/j.omtn.2018.09.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/15/2018] [Accepted: 09/26/2018] [Indexed: 02/09/2023]
Abstract
Long noncoding RNAs (lncRNAs) participate extensively in biological processes of various cancers. The majority of these transcripts are uniquely expressed in differentiated tissues or specific cancer types. lncRNAs are aberrantly expressed in gliomas and exert diverse functions. In this article, we provided an overview of how lncRNAs regulate cellular processes in glioma, enumerated the lncRNAs that may act as glioma biomarkers, and showed their potential clinical implications.
Collapse
Affiliation(s)
- Junyang Li
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Yihao Zhu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China.
| | - Xiangjun Ji
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
37
|
Khan IN, Ullah N, Hussein D, Saini KS. Current and emerging biomarkers in tumors of the central nervous system: Possible diagnostic, prognostic and therapeutic applications. Semin Cancer Biol 2018; 52:85-102. [PMID: 28774835 DOI: 10.1016/j.semcancer.2017.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
Abstract
Recent investments in research associated with the discovery of specific tumor biomarkers important for efficient diagnosis and prognosis are beginning to bear fruit. Key biomarkers could potentially outweigh traditional radiological or pathological methods by enabling specificity of early detection, when coupled with tumor molecular profiling and clinical associations. Only few biomarkers are approved by regulatory authorities for Central Nervous System Tumors (CNSTs), despite the evaluation of a large number of CNST related markers during clinical trials. Traditional CNSTs biomarkers include 1p/19q co-deletion, O6-Methylguanine-DNA Methyltransferase Methylation, and mutations in IDH1/IDH2. Recently tested CNSTs biomarkers include VEGFR-2, EGFRvIII, IL2, PDGFR, MMPs, BRAF, STAT3, PTEN, TERT, AKT, NF2, and BCL2. Additional studies have highlighted new and novel MicroRNAs, circular RNAs and long non-coding RNAs as promising biomarkers. Studies on microvesicles pinpoint exosomes as promising, less invasive biomarkers that could be isolated from the serum of cancer patients. Furthermore, Cancer Stem Cells (CSCs) related molecules, such as CD133, SOX2 and Nestin, utilized as CNST biomarkers, might enable efficient monitoring of cancer progression, and/or surveillance of emerging drug resistant cells. Approved protocols that implement novel molecular markers in diagnostics, prognostics and drug development will herald a new era of precision and personalized neuro-oncology. This review summarizes and discusses putative CNST biomarkers that are under clinical development, and are ready to move into diagnostic, prognostic and therapeutic applications. Data presented here is predicted to aid in streamlining the process of biomarker's research and development.
Collapse
Affiliation(s)
- Ishaq N Khan
- PK-Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Najeeb Ullah
- Department of Anatomy, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan.
| | - Deema Hussein
- Neurooncology Translational Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Kulvinder S Saini
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Biotechnology, Eternal University, Baru Sahib, Himachal Pradesh 173101, India.
| |
Collapse
|
38
|
Pop S, Enciu AM, Necula LG, Tanase C. Long non-coding RNAs in brain tumours: Focus on recent epigenetic findings in glioma. J Cell Mol Med 2018; 22:4597-4610. [PMID: 30117678 PMCID: PMC6156469 DOI: 10.1111/jcmm.13781] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
Glioma biology is a major focus in tumour research, primarily due to the aggressiveness and high mortality rate of its most aggressive form, glioblastoma. Progress in understanding the molecular mechanisms behind poor prognosis of glioblastoma, regardless of treatment approaches, has changed the classification of brain tumours after nearly 100 years of relying on anatomopathological criteria. Expanding knowledge in genetic, epigenetic and translational medicine is also beginning to contribute to further elucidating molecular dysregulation in glioma. Long non‐coding RNAs (lncRNAs) and their main representatives, large intergenic non‐coding RNAs (lincRNAs), have recently been under scrutiny in glioma research, revealing novel mechanisms of pathogenesis and reinforcing others. Among those confirmed was the reactivation of events significant for foetal brain development and neuronal commitment. Novel mechanisms of tumour suppression and activation of stem‐like behaviour in tumour cells have also been examined. Interestingly, these processes involve lncRNAs that are present both during normal brain development and in brain malignancies and their reactivation might be explained by epigenetic mechanisms, which we discuss in detail in the present review. In addition, the review discusses the lncRNAs‐induced changes, as well as epigenetic changes that are consequential for tumour formation, affecting, in turn, the expression of various types of lncRNAs.
Collapse
Affiliation(s)
- Sevinci Pop
- "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Ana-Maria Enciu
- "Victor Babes" National Institute of Pathology, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Laura G Necula
- "Victor Babes" National Institute of Pathology, Bucharest, Romania.,"Stefan N. Nicolau" National Institute of Virology, Bucharest, Romania.,Faculty of Medicine, "Titu Maiorescu" University, Bucharest, Romania
| | - Cristiana Tanase
- "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Faculty of Medicine, "Titu Maiorescu" University, Bucharest, Romania
| |
Collapse
|
39
|
Li Y, Li Y, Wang D, Meng Q. Linc-POU3F3 is overexpressed in hepatocellular carcinoma and regulates cell proliferation, migration and invasion. Biomed Pharmacother 2018; 105:683-689. [PMID: 29906746 DOI: 10.1016/j.biopha.2018.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023] Open
Abstract
Linc-POU3F3 showed an up-regulated tendency and functioned as tumor promoter in glioma, esophageal cancer and colorectal cancer. There was no report about the expression pattern and clinical value of linc-POU3F3 in hepatocellular carcinoma. Thus, the purpose of our study is to explore the clinical significance and biological role of linc-POU3F3 in hepatocellular carcinoma. Our results suggested that levels of linc-POU3F3 were dramatically increased in hepatocellular carcinoma tissues and cell lines compared with paired normal hepatic tissues and normal hepatic cell line, respectively. Levels of linc-POU3F3 were positively correlated with clinical stage, tumor size, vascular invasion and metastasis. Moreover, high-expression of linc-POU3F3 was an independent prognostic factor for hepatocellular carcinoma patients. The gain- and loss-of-function experiments showed that linc-POU3F3 expression significantly promoted tumor cell proliferation, migration and invasion. In addition, linc-POU3F3 expression was negatively correlated with POU3F3 mRNA and protein expressions in hepatocellular carcinoma tissues, and negatively regulated POU3F3 mRNA and protein expressions in hepatocellular carcinoma cells. In conclusion, our study supports the first evidence that linc-POU3F3 plays an oncogenic role in hepatocellular carcinoma, and represents a potential therapeutic strategy for hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Yichun Li
- Department of Hepatobiliary Surgery, Jining No.1 People's Hospital, Jining 272000, Shandong, China
| | - Yannan Li
- Department of General Surgery, Jining Traditional Chinese Medicine Hospital, Jining 272000, Shandong, China
| | - Dan Wang
- Department of Gynecology, Jining No.1 People's Hospital, Jining 272000, Shandong, China
| | - Qingdong Meng
- Department of General Surgery, Shandong Institute of Parasitic Diseases, Third Affiliated Hospital of Shandong Academy of Medical Sciences, No.11 Taibai Road Middle, Jining 272000, Shandong, China.
| |
Collapse
|
40
|
Zhou Q, Hu W, Zhu W, Zhang F, Lin-Lin L, Liu C, Songyang YY, Sun CC, Li D. Long non coding RNA XIST as a prognostic cancer marker - A meta-analysis. Clin Chim Acta 2018; 482:1-7. [PMID: 29577911 DOI: 10.1016/j.cca.2018.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND The X inactivate-specific transcript (XIST), derived from XIST gene, is aberrantly expressed in various cancers. High-expression of XIST is related to poor clinical outcome. This meta-analysis evaluated the potential role of XIST as novel predictor of prognosis in human cancer. MATERIALS AND METHODS This meta-analysis collected eligible studies about XIST and tumor prognosis through retrieving keywords in Web of Science, PubMed, Embase and the CNKI database, from 1993 to August 21, 2017. The quantitative meta-analysis was carried out with Stata SE12.0 and RevMan3.23 software. The aim was to determine whether XIST expression is associated with cancer prognosis and clinicopathology. RESULTS A total of 858 patients from 10 eligible studies were included in the final meta-analysis. Overall, a significant negative association between XIST and overall survival (OS) time (HR = 2.62, 95% CI: 2.18-3.14) was observed. Statistical significance was also showed in subgroup meta-analysis stratified by the country, sample size, follow-up and publication year. It was reported that increased XIST was positively related to advanced clinical TNM stage (OR = 4.03, 95% CI: 2.22-7.30), lymph node metastasis (LNM) (OR = 2.70, 95% CI: 1.73-4.21), distant metastasis (DM) (OR = 2.61, 95% CI: 1.57-4.33) and tumor size (OR = 3.10, 95% CI: 2.24-4.30). CONCLUSIONS LncRNA XIST may serve as a potential biomarker to predict solid tumor prognosis. This molecule can be effectively used to predict the clinical and pathological features of cancers.
Collapse
Affiliation(s)
- Qun Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Wei Hu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Wei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Feng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Li Lin-Lin
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Cong Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Yi-Yan Songyang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Cheng-Cao Sun
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, PR China.
| | - Dejia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, PR China.
| |
Collapse
|
41
|
BRAF-activated lncRNA predicts gastrointestinal cancer patient prognosis: a meta-analysis. Oncotarget 2018; 8:6295-6303. [PMID: 28009984 PMCID: PMC5351632 DOI: 10.18632/oncotarget.14061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022] Open
Abstract
BRAF activated non-coding RNA (BANCR) is often dysregulated in cancer. We performed a meta-analysis to clarify its functions as a prognostic indicator in malignant tumors. We searched the PubMed, Medline, OVID, Cochrane Library, and Web of Science databases to identify BANCR-related studies. Nine original studies and 898 total patients were included in the meta-analysis. Hazard ratios (HR) and 95% confidence intervals (CI) were extracted from the included studies to determine the relationship between BANCR expression and patient overall survival (OS). Odds ratios (OR) were calculated using RevMan 5.3 software to assess associations between BANCR expression and pathological parameters. High BANCR expression correlated with lymph node metastasis (LNM) (OR = 3.41, 95% CI: 1.82-6.37, P = 0.0001), distant metastasis (DM) (OR = 2.98, 95% CI: 1.76-5.07, P < 0.0001), tumor stage (OR = 3.11, 95% CI: 1.89-5.12, Z = 3.25, P < 0.0001), and poor OS (pooled HR = 1.98, 95% CI: 1.20-3.27, P = 0.008) in gastrointestinal (GI) cancer patients, but not in non-GI cancer patients. Our results support the notion that BANCR as a promising prognostic biomarker in Chinese patients with GI cancer.
Collapse
|
42
|
Zhou J, Xiang W, Li S, Hu Q, Peng T, Chen L, Ming Y. Association between long non-coding RNAs expression and pathogenesis and progression of gliomas. Oncol Lett 2018. [PMID: 29541171 PMCID: PMC5835862 DOI: 10.3892/ol.2018.7875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The incidence rate of gliomas is the highest among primary brain tumors. Although the understanding of the molecular pathology of glioma has improved during the previous two decades, effective therapies are not yet available to treat these tumors. Previous studies have indicated that long non-coding RNAs (lncRNAs) have a close association with glioma, suggesting that lncRNAs may be potential targets for the development of novel treatments for glioma. The present review summarized the latest studies on the dysregulation of lncRNAs in glioma, and discussed their potential use in the diagnosis, prognosis and therapies of glioma. The emergence of lncRNAs has revealed an additional facet to glioma oncogenesis. An improved understanding of their functions is important to advance lncRNA-based diagnosis, prognosis and therapeutic interventions of glioma.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shenjie Li
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qi Hu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tao Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yang Ming
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
43
|
Molecular Determinants of Malignant Brain Cancers: From Intracellular Alterations to Invasion Mediated by Extracellular Vesicles. Int J Mol Sci 2017; 18:ijms18122774. [PMID: 29261132 PMCID: PMC5751372 DOI: 10.3390/ijms18122774] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma cells invade the surrounding brain parenchyma, by migrating along the blood vessels, thus promoting cancer growth. The biological bases of these activities are grounded in profound alterations of the metabolism and the structural organization of the cells, which consequently acquire the ability to modify the surrounding microenvironment, by altering the extracellular matrix and affecting the properties of the other cells present in the brain, such as normal glial-, endothelial- and immune-cells. Most of the effects on the surrounding environment are probably exerted through the release of a variety of extracellular vesicles (EVs), which contain many different classes of molecules, from genetic material to defined species of lipids and enzymes. EV-associated molecules can be either released into the extracellular matrix (ECM) and/or transferred to neighboring cells: as a consequence, both deep modifications of the recipient cell phenotype and digestion of ECM components are obtained, thus causing cancer propagation, as well as a general brain dysfunction. In this review, we first analyze the main intracellular and extracellular transformations required for glioma cell invasion into the brain parenchyma; then we discuss how these events may be attributed, at least in part, to EVs that, like the pawns of a dramatic chess game with cancer, open the way to the tumor cells themselves.
Collapse
|
44
|
Fan YH, Wu MJ, Jiang Y, Ye M, Lu SG, Wu L, Zhu XG. Long non-coding RNA HULC as a potential prognostic biomarker in human cancers: a meta-analysis. Oncotarget 2017; 8:21410-21417. [PMID: 28199963 PMCID: PMC5400593 DOI: 10.18632/oncotarget.15247] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/17/2017] [Indexed: 01/01/2023] Open
Abstract
Since the long non-coding RNA HULC (Highly Upregulated in Liver Cancer) is dysregulated in many cancers, we performed a meta-analysis to determine its prognostic potential in malignant tumors. We searched electronic databases, including PubMed, Medline, OVID, Cochrane Library and Web of Science from inception until August 14, 2016 and identified seven studies with 730 cancer patients for the meta-analysis. We analyzed the hazard ratios (HRs) and 95% confidence intervals (CIs) to determine the relationship between HULC expression and overall survival (OS). We also using RevMan5.3 software to calculate odds ratio (ORs) to assess the association between HULC expression and pathological parameters, including lymph node metastasis (LNM), distant metastasis (DM) and the tumor stage. Our analysis showed that higher HULC expression was associated with OS (HR= 0.50, 95% CI: 0.35-0.70, P <0.00001), LNM (OR=0.20, 95 % CI 0.06-0.64), DM (OR=0.27, 95% CI: 0.13-0.54) and the tumor stage (OR=0.39, 95 % CI 0.25-0.64). These meta-analysis data demonstrate that higher HULC expression can be a useful prognostic biomarker in human cancers.
Collapse
Affiliation(s)
- Yang-Hua Fan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Miao-Jing Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Yuan Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Minhua Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Shi-Gang Lu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Xin-Gen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| |
Collapse
|
45
|
Wang XP, Shan C, Deng XL, Li LY, Ma W. Long non-coding RNA PAR5 inhibits the proliferation and progression of glioma through interaction with EZH2. Oncol Rep 2017; 38:3177-3186. [PMID: 29048683 DOI: 10.3892/or.2017.5986] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/01/2017] [Indexed: 11/06/2022] Open
Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNAs) may be involved in modulating various aspects of tumor biology and serve as potential therapeutic targets as well as novel biomarkers in the treatment of glioma. The present study investigated the role of lncRNA, Prader Willi/Angelman region RNA 5 (PAR5; also known as PWAR5), in glioma and its clinical significance in glioma cases. The expression levels of PAR5 were determined in clinical samples and U87, U251 cells using real-time reverse transcription quantitative polymerase chain reaction (qRT-PCR) analysis. The effects of PAR5 on cell proliferation, migration and invasion were determined using in vitro assays. RNA immunoprecipitation (RIP) and RNA pull-down assays, as well as the evauation of the expression of various oncogenes were carried out to reveal the underlying mechanisms. We found that PAR5 was significantly downregulated in glioma tissues and cell lines. Furthermore, PAR5 expression was negatively correlated with tumor size, World Health Organization (WHO) grade and Karnofsky performance score (KPS). Patients with low PAR5 expression in tumors had a worse overall survival compared to those with higher expression. Finally, in vitro restoration of PAR5 expression inhibited human glioma cell proliferation, invasion and migration by binding to EZH2 and regulating oncogene expression. This finding may provide a therapeutic approach for the future treatment of glioma.
Collapse
Affiliation(s)
- Xiang-Peng Wang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Cai Shan
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xing-Li Deng
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650050, P.R. China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650050, P.R. China
| |
Collapse
|
46
|
Identifying Novel Glioma-Associated Noncoding RNAs by Their Expression Profiles. Int J Genomics 2017; 2017:2312318. [PMID: 29138748 PMCID: PMC5613369 DOI: 10.1155/2017/2312318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) play a significant role in cancer development as regulators of protein-coding genes. Their dysregulation was in some extent already associated with glioma, the most aggressive primary brain tumours in adults. The correct diagnosis and treatment selection due to high tumour heterogeneity might be difficult and inadequate, resulting in poor prognosis. Studies of expression patterns of noncoding RNAs (ncRNAs) could provide useful insight in glioma molecular development. We used the qPCR approach to screen and investigate the expression of lncRNAs that were previously deregulated in other cancer types. The study showed altered expression levels for numerous lncRNAs across histologically different glioma samples. Validation of few lncRNAs showed association of expression levels with histological subtype and/or malignancy grade. We also observed deregulated and subtype-distinctive expression for four lncRNA-associated miRNAs. Expression of few lncRNAs and miRNA was also associated with patients' survival, showing potential prognostic value. Several ncRNAs, some already related to glioma and some, to the best of our knowledge, investigated for the first time, might be of greater importance in glioma molecular development and progression. Finding the subtype-specific lncRNA and/or miRNA expression patterns may contribute additional information for a more objective classification.
Collapse
|
47
|
Fan Y, Yan T, Chai Y, Jiang Y, Zhu X. Long noncoding RNA HOTTIP as an independent prognostic marker in cancer. Clin Chim Acta 2017; 482:224-230. [PMID: 28778381 DOI: 10.1016/j.cca.2017.07.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND It has been reported that HOXA transcript at the distal tip (HOTTIP) is dysregulated in various cancers. We performed this meta-analysis to clarify its promising functions as a prognosis marker in malignant tumors. METHODS The electronic databases, including PubMed, Medline, OVID, Cochrane Library, and Web of Science were searched from inception to September 23, 2016. The hazard ratio (HR) and 95% confidence interval (CI) were calculated to explore the relationship between HOTTIP expression and overall survival (OS), which were extracted from the eligible studies. The odds ratio (OR) was calculated to assess the association between HOTTIP expression and pathological parameters by using RevMan5.3 software. RESULTS Seven studies were included in the study, with a total of 652 patients. The pooled HR suggested that high HOTTIP expression was significantly correlated with poor OS (HR=2.16, 95% CI: 1.69-2.76, P<0.00001) in cancer patients without obvious heterogeneity. The results showed there was a significant difference in the incidence of lymph node metastasis (LNM) between high HOTTIP expression group and low HOTTIP expression group (OR=2.30, 95% CI: 1.58-3.35, P<0.0001). A similar result was observed in the association between HOTTIP expression and distant metastasis (DM), the odds ratio was 3.30 (95% CI: 1.78-6.12, P=0.0001) without obvious heterogeneity. In addition, high HOTTIP expression was significantly associated with high tumor stage (OR=3.30, 95% CI: 0.25-0.64) without heterogeneity. CONCLUSIONS This meta-analysis demonstrated that high HOTTIP expression significantly predicts poor OS, lymph node metastasis, distant metastasis and tumor stage, suggesting that high HOTTIP expression may serve as a novel biomarker for poor prognosis in cancers.
Collapse
Affiliation(s)
- Yanghua Fan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China; Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, People's Republic of China
| | - Tengfeng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, People's Republic of China
| | - Yi Chai
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, People's Republic of China
| | - Yuan Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, People's Republic of China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, People's Republic of China.
| |
Collapse
|
48
|
Ma PJ, Guan QK, Meng L, Qin N, Zhao J, Jin BZ. Long non-coding RNA TUG1 as a potential prognostic biomarker in human cancers: a meta-analysis. Oncotarget 2017; 8:62454-62462. [PMID: 28977959 PMCID: PMC5617519 DOI: 10.18632/oncotarget.19099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/29/2017] [Indexed: 01/06/2023] Open
Abstract
LncRNA taurine upregulated gene 1 (TUG1) is reportedly dysregulated in various cancers. We performed this meta-analysis to clarify the usefulness of TUG1 as a prognostic marker in malignant tumors. The PubMed, Medline, OVID, Cochrane Library, and Web of Science databases were searched from inception to Jan 11, 2017. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to explore the relationship between TUG1 expression and overall survival (OS). Odds ratios (ORs) were calculated to assess the association between TUG1 expression and pathological parameters. Thirteen original studies covering 1,274 cancer patients were included in this meta-analysis. The pooled HR suggested that high TUG1 expression correlated with poor OS (pooled HR=1.41, 95% CI: 1.01-1.98) in cancer types other than non-small cell lung cancer. TUG1 expression was also related to distant metastasis (OR=3.24, 95% CI: 1.18-8.93), large tumor size (OR=4.07, 95% CI: 1.08-15.28) and advanced tumor stage (OR=3.45, 95% CI: 2.19-5.44). Begg’s funnel plot and Egger’s test showed no evidence of obvious asymmetry for overall survival or tumor stage. Thus high TUG1 expression appears predictive of poor OS, distant metastasis, advanced tumor stage and large tumor size. This suggests TUG1 expression could serve as a biomarker for poor prognosis in cancers.
Collapse
Affiliation(s)
- Peng-Ju Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, Henan Province, People's Republic of China
| | - Qing-Kai Guan
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, Henan Province, People's Republic of China
| | - Lei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, Henan Province, People's Republic of China
| | - Nan Qin
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, Henan Province, People's Republic of China
| | - Jia Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, Henan Province, People's Republic of China
| | - Bao-Zhe Jin
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, Henan Province, People's Republic of China
| |
Collapse
|
49
|
Lang HL, Hu GW, Zhang B, Kuang W, Chen Y, Wu L, Xu GH. Glioma cells enhance angiogenesis and inhibit endothelial cell apoptosis through the release of exosomes that contain long non-coding RNA CCAT2. Oncol Rep 2017; 38:785-798. [PMID: 28656228 PMCID: PMC5562059 DOI: 10.3892/or.2017.5742] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 06/07/2017] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a key event in the progression of gliomas. Exosomes, as signaling extracellular organelles, modulate the tumor microenvironment and promote angiogenesis and tumor progression. We previously demonstrated that long intergenic non-coding RNA CCAT2 (linc-CCAT2) was overexpressed in glioma tissues and functioned to promote glioma progression. Therefore, this study aimed to explore an underlying mechanism of glioma cell-affected angiogenesis. First, qRT-PCR was used to determine the expression level of linc-CCAT2 in 4 glioma cell lines and 293T cells, and the results revealed that the U87-MG cells exhibited the highest expression level. Subsequently, the pro-angiogenesis function of exosomes that were derived from negative control shRNA-treated U87-MG cells (ncU87-Exo) and linc-CCAT2 shRNA-treated U87-MG cells (shU87-Exo) was evaluated in vitro and in vivo. We found that ncU87-Exo, which was enriched in linc-CCAT2, could be taken up by HUVECs. ncU87-Exo improved the linc-CCAT2 expression level in HUVECs and more strongly promoted HUVEC migration, proliferation, tubular-like structure formation in vitro and arteriole formation in vivo as well as inhibited HUVEC apoptosis induced by hypoxia. Further mechanistic studies revealed that ncU87-Exo could upregulate VEGFA and TGFβ expression in HUVECs as well as promote Bcl-2 expression and inhibit Bax and caspase-3 expression. Finally, gain-/loss-of-function studies revealed that the overexpression of linc-CCAT2 in HUVECs activated VEGFA and TGFβ, promoted angiogenesis, promoted Bcl-2 expression and inhibited Bax and caspase-3 expression, thus decreasing apoptosis. Downregulation of linc-CCAT2 revealed the opposite effect. Thus, our results revealed a new exosome-mediated mechanism by which glioma cells could promote angiogenesis through the transfer of linc-CCAT2 by exosomes to endothelial cells. Moreover, we suggest that exosomes and linc-CCAT2 are putative therapeutic targets in glioma.
Collapse
Affiliation(s)
- Hai-Li Lang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guo-Wen Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bo Zhang
- Department of Neurosurgery, Traditional Chinese Medicine Hospital of Pingxiang City, Pingxiang, Jiangxi 337000, P.R. China
| | - Wei Kuang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yong Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guo-Hai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
50
|
Abstract
Long noncoding RNAs (lncRNAs) are a relatively well-characterized class of noncoding RNA (ncRNA) molecules, involved in the regulation of various cell processes, including transcription, intracellular trafficking, and chromosome remodeling. Their deregulation has been associated with the development and progression of various cancer types, the fact which makes them suitable as biomarkers for cancer diagnosis and prognosis. In recent years, detection of cancer-associated lncRNAs in body fluids of cancer patients has proven itself as an especially valuable method to effectively diagnose cancer. Cancer diagnosis and prognosis employing circulating lncRNAs are preferential when compared to classical biopsies of tumor tissues, especially due to their noninvasiveness, and have great potential for routine usage in clinical practice. Thus, this review focuses on summarizing the perspectives of lncRNAs as biomarkers in cancer, based on evaluating their expression profiles determined in body fluids of cancer patients.
Collapse
|