1
|
Gatasheh MK, Murugan N, Krishnamoorthy R, Alshuniaber MA, Malathi J, Umashankar V, Ramalingam G, Veeraraghavan VP, Jayaraman S. Identification, prioritization, and evaluation of RlpA protein as a target against multidrug-resistant Pseudomonas aeruginosa. Acta Trop 2024; 255:107216. [PMID: 38636584 DOI: 10.1016/j.actatropica.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
According to the World Health Organization, infectious diseases, particularly those caused by multidrug-resistant bacteria (MDR), are projected to claim the lives of 15 million people by 2050. Septicemia carries a higher morbidity and mortality rate than infections caused by susceptible Pseudomonas aeruginosa, and MDR-mediated ocular infections can lead to impaired vision and blindness. To identify and develop a potential drug against MDR P. aeruginosa, we employed in silico reverse genetics-based target mining, drug prioritization, and evaluation. Rare Lipoprotein A (RlpA) was selected as the target protein, and its crystal structure was geometrically optimized. Molecular docking and virtual screening analyses revealed that RlpA exhibits strong binding affinity with 11 compounds. Among these, 3-chlorophthalic acid was evaluated, and subsequent in vitro assays demonstrated significant anti-Pseudomonas activity with negligible cytotoxicity. The compound was further evaluated against both drug-susceptible and MDR P. aeruginosa strains in vitro, with cytotoxicity assessed using an MTT assay. The study demonstrated that 3-chlorophthalic acid exhibits potent anti-Pseudomonas activity with minimal toxicity to host cells. Consequently, this compound emerges as a promising candidate against MDR P. aeruginosa, warranting further investigation.
Collapse
Affiliation(s)
- Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nandagopal Murugan
- Department of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, 6000 06, India
| | - Rajapandiyan Krishnamoorthy
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammad A Alshuniaber
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Jambulingam Malathi
- Department of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, 6000 06, India
| | - Vetrivel Umashankar
- Centre for Bioinformatics, Vision Research Foundation, Sankara Nethralaya, Chennai 600 006, India
| | - Gopinath Ramalingam
- Department of Microbiology, Government Theni Medical College and Hospital, Theni, Tamil Na-du 625512, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| |
Collapse
|
2
|
Dempsey MP, Conrady CD. The Host-Pathogen Interplay: A Tale of Two Stories within the Cornea and Posterior Segment. Microorganisms 2023; 11:2074. [PMID: 37630634 PMCID: PMC10460047 DOI: 10.3390/microorganisms11082074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Ocular infectious diseases are an important cause of potentially preventable vision loss and blindness. In the following manuscript, we will review ocular immunology and the pathogenesis of herpesviruses and Pseudomonas aeruginosa infections of the cornea and posterior segment. We will highlight areas of future research and what is currently known to promote bench-to-bedside discoveries to improve clinical outcomes of these debilitating ocular diseases.
Collapse
Affiliation(s)
- Michael P. Dempsey
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Christopher D. Conrady
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
3
|
Pulusu CP, Manivannan B, Raman SS, Singh S, Khamari B, Lama M, Peketi ASK, Datta C, Prasad KN, Nagaraja V, Pradeep BE. Localized outbreaks of Pseudomonas aeruginosa belonging to international high-risk clones in a south Indian hospital. J Med Microbiol 2022; 71. [PMID: 35286253 DOI: 10.1099/jmm.0.001500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Pseudomonas aeruginosa is now considered as a major bacterial pathogen associated with hospital infections. Frequently, multidrug-resistant (MDR) and extensively drug-resistant (XDR) P. aeruginosa are being encountered. Unusual increase in the P. aeruginosa infections led to the suspicion of outbreaks in the urology ward and cardiothoracic and vascular surgery intensive care unit (CTVS-ICU).Hypothesis. We hypothesize that the localized outbreaks may have originated from environmental sources within the hospital premises. An alternative possibility is the transmission from a previously infected patient or hospital attendant. Understanding the drug-resistance profile and genome characteristics of these clinical samples would determine the likely source of infection and spread.Aim. To perform epidemiological and molecular investigations on the suspected outbreaks of P. aeruginosa in the study centre and identify potential sources of infection.Methodology. Fourteen drug-resistant P. aeruginosa isolated from patients of the urology ward, CTVS-ICU and tap waters collected during the suspected outbreaks were subjected to microbiological and genomic analysis. Comparative genome (CG) analysis of these 14 study genomes with 284 complete P. aeruginosa genomes was performed.Results. Multilocus sequence typing analysis revealed that the isolates belonged to five different sequence types (ST235, ST357, ST639, ST654 and ST1203) and clustered into three distinct groups while two CTVS-ICU isolates remained as singletons. Genome analysis distinguished that the outbreaks in the urology ward and CTVS-ICU are independent, epidemiologically unrelated to each other and with the tap-water isolates.Conclusion. This study highlights the presence of distinct, clonally unrelated, drug-resistant P. aeruginosa within a hospital setting. The genome analysis of the two localized outbreaks revealed their distinct genetic background and phylogenetically unrelated origin. Vigilant screening and effective implementation of infection control measures led to the successful containment of potential environmental reservoirs of P. aeruginosa within the premises.
Collapse
Affiliation(s)
- Chanakya Pachi Pulusu
- AMR Laboratory, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, India
| | - Bhavani Manivannan
- AMR Laboratory, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, India
| | - Sai Suguna Raman
- Infection Control, Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthigram, India
| | - Sanjay Singh
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Balaram Khamari
- AMR Laboratory, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, India
| | - Manmath Lama
- AMR Laboratory, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, India
| | - Arun Sai Kumar Peketi
- AMR Laboratory, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, India
| | - Chandreyee Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Kashi Nath Prasad
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.,Department of Microbiology, Apollo Medics Super Speciality Hospital, Lucknow, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, India
| | | |
Collapse
|
4
|
Zhu Y, Huang WE, Yang Q. Clinical Perspective of Antimicrobial Resistance in Bacteria. Infect Drug Resist 2022; 15:735-746. [PMID: 35264857 PMCID: PMC8899096 DOI: 10.2147/idr.s345574] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/18/2022] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a global clinical problem in recent years. With the discovery of antibiotics, infections were not a deadly problem for clinicians as they used to be. However, worldwide AMR comes with the overuse/misuse of antibiotics and the spread of resistance is deteriorated by a multitude of mobile genetic elements and relevant resistant genes. This review provides an overview of the current situation, mechanism, epidemiology, detection methods and clinical treatment for antimicrobial resistant genes in clinical important bacteria including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), penicillin-resistant Streptococcus pneumoniae (PRSP), extended-spectrum β-lactamase-producing Enterobacteriaceae, acquired AmpC β-lactamase-producing Enterobacteriaceae, carbapenemase-producing Enterobacteriaceae (CPE), multidrug-resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Qiwen Yang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Correspondence: Qiwen Yang; Wei E Huang, Email ;
| |
Collapse
|
5
|
Irum S, Naz K, Ullah N, Mustafa Z, Ali A, Arslan M, Khalid K, Andleeb S. Antimicrobial Resistance and Genomic Characterization of Six New Sequence Types in Multidrug-Resistant Pseudomonas aeruginosa Clinical Isolates from Pakistan. Antibiotics (Basel) 2021; 10:antibiotics10111386. [PMID: 34827324 PMCID: PMC8615273 DOI: 10.3390/antibiotics10111386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 01/13/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a major bacterial pathogen associated with a variety of infections with high mortality rates. Most of the clinical P. aeruginosa isolates belong to a limited number of genetic subgroups characterized by multiple housekeeping genes’ sequences (usually 5–7) through the Multi-Locus Sequence Typing (MLST) scheme. The emergence and dissemination of novel multidrug-resistant (MDR) sequence types (ST) in P. aeruginosa pose serious clinical concerns. We performed whole-genome sequencing on a cohort (n = 160) of MDR P. aeruginosa isolates collected from a tertiary care hospital lab in Pakistan and found six isolates belonging to six unique MLST allelic profiles. The genomes were submitted to the PubMLST database and new ST numbers (ST3493, ST3494, ST3472, ST3489, ST3491, and ST3492) were assigned to the respective allele combinations. MLST and core-genome-based phylogenetic analysis confirmed the divergence of these isolates and positioned them in separate branches. Analysis of the resistome of the new STs isolates revealed the presence of genes blaOXA-50, blaPAO, blaPDC, blaVIM-2, aph(3′)-IIb, aac(6′)-II, aac(3)-Id, fosA, catB7, dfrB2, crpP, merP and a number of missense and frame-shift mutations in chromosomal genes conferring resistance to various antipseudomonal antibiotics. The exoS, exoT, pvdE, rhlI, rhlR, lasA, lasB, lasI, and lasR genes were the most prevalent virulence-related genes among the new ST isolates. The different genotypic features revealed the adaptation of these new clones to a variety of infections by various mutations in genes affecting antimicrobial resistance, quorum sensing and biofilm formation. Close monitoring of these antibiotic-resistant pathogens and surveillance mechanisms needs to be adopted to reduce their spread to the healthcare facilities of Pakistan. We believe that these strains can be used as reference strains for future comparative analysis of isolates belonging to the same STs.
Collapse
Affiliation(s)
- Sidra Irum
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan; (S.I.); (K.N.); (N.U.); (Z.M.); (A.A.); (K.K.)
| | - Kanwal Naz
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan; (S.I.); (K.N.); (N.U.); (Z.M.); (A.A.); (K.K.)
| | - Nimat Ullah
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan; (S.I.); (K.N.); (N.U.); (Z.M.); (A.A.); (K.K.)
| | - Zeeshan Mustafa
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan; (S.I.); (K.N.); (N.U.); (Z.M.); (A.A.); (K.K.)
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan; (S.I.); (K.N.); (N.U.); (Z.M.); (A.A.); (K.K.)
| | - Muhammad Arslan
- Pakistan Institute of Medical Sciences (PIMS), Islamabad 44000, Pakistan;
| | - Kashaf Khalid
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan; (S.I.); (K.N.); (N.U.); (Z.M.); (A.A.); (K.K.)
| | - Saadia Andleeb
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan; (S.I.); (K.N.); (N.U.); (Z.M.); (A.A.); (K.K.)
- Correspondence: or
| |
Collapse
|
6
|
Subedi D, Vijay AK, Willcox M. Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: an ocular perspective. Clin Exp Optom 2021; 101:162-171. [DOI: 10.1111/cxo.12621] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/18/2017] [Accepted: 06/19/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Dinesh Subedi
- School of Optometry and Vision Science, Faculty of Science, The University of New South Wales, Sydney, New South Wales, Australia,
| | - Ajay Kumar Vijay
- School of Optometry and Vision Science, Faculty of Science, The University of New South Wales, Sydney, New South Wales, Australia,
| | - Mark Willcox
- School of Optometry and Vision Science, Faculty of Science, The University of New South Wales, Sydney, New South Wales, Australia,
| |
Collapse
|
7
|
Kandasamy K, Thirumalmuthu K, Prajna NV, Lalitha P, Mohankumar V, Devarajan B. Comparative genomics of ocular Pseudomonas aeruginosa strains from keratitis patients with different clinical outcomes. Genomics 2020; 112:4769-4776. [DOI: 10.1016/j.ygeno.2020.08.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022]
|
8
|
Comparative genomics of clinical strains of Pseudomonas aeruginosa strains isolated from different geographic sites. Sci Rep 2018; 8:15668. [PMID: 30353070 PMCID: PMC6199293 DOI: 10.1038/s41598-018-34020-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022] Open
Abstract
The large and complex genome of Pseudomonas aeruginosa, which consists of significant portions (up to 20%) of transferable genetic elements contributes to the rapid development of antibiotic resistance. The whole genome sequences of 22 strains isolated from eye and cystic fibrosis patients in Australia and India between 1992 and 2007 were used to compare genomic divergence and phylogenetic relationships as well as genes for antibiotic resistance and virulence factors. Analysis of the pangenome indicated a large variation in the size of accessory genome amongst 22 stains and the size of the accessory genome correlated with number of genomic islands, insertion sequences and prophages. The strains were diverse in terms of sequence type and dissimilar to that of global epidemic P. aeruginosa clones. Of the eye isolates, 62% clustered together within a single lineage. Indian eye isolates possessed genes associated with resistance to aminoglycoside, beta-lactams, sulphonamide, quaternary ammonium compounds, tetracycline, trimethoprims and chloramphenicols. These genes were, however, absent in Australian isolates regardless of source. Overall, our results provide valuable information for understanding the genomic diversity of P. aeruginosa isolated from two different infection types and countries.
Collapse
|
9
|
|
10
|
Hyun JE, Chung TH, Hwang CY. Identification of VIM-2 metallo-β-lactamase-producing Pseudomonas aeruginosa
isolated from dogs with pyoderma and otitis in Korea. Vet Dermatol 2018; 29:186-e68. [DOI: 10.1111/vde.12534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Jae-Eun Hyun
- Laboratory of Veterinary Dermatology and the Research Institute for Veterinary Science; College of Veterinary Medicine; Seoul National University; Seoul 08826 Korea
| | - Tae-Ho Chung
- Department of Companion Animal and Animal Resources Science; Joongbu University; Chungnam 32713 Korea
| | - Cheol-Yong Hwang
- Laboratory of Veterinary Dermatology and the Research Institute for Veterinary Science; College of Veterinary Medicine; Seoul National University; Seoul 08826 Korea
| |
Collapse
|
11
|
Murugan N, Malathi J, Therese KL, Madhavan HN. Application of six multiplex PCR's among 200 clinical isolates of Pseudomonas aeruginosa for the detection of 20 drug resistance encoding genes. Kaohsiung J Med Sci 2017; 34:79-88. [PMID: 29413231 DOI: 10.1016/j.kjms.2017.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/11/2017] [Accepted: 09/21/2017] [Indexed: 11/28/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a menacing opportunistic, nosocomial pathogen; become a growing concern as conventional antimicrobial therapy is now futile against it. Multi-drug resistant P. aeruginosa (MDRPA) has distinctive resistance mechanisms such as production of β-lactamases, repression of porin genes and over-expression of efflux pumps. The focus of this study is to standardize and application of multiplex PCR (mPCR) to detect the presence of betalactamase genes encoding blaTem, blaOXA, blaCTX-M-15, blaVim, blaGes, blaVeb, blaDIM, AmpC and Efflux pump genes encoding Mex A,B-oprM, Mex C,D-oprJ, Mex X,Y-oprN, oprD, nfxB, MexR. A total of 200 clinical isolates of P. aeruginosa were tested for the presence of the above mentioned genes genotypically through mPCR and characterized by phenotypic methods for ESBL and MBL production. Out of 200 isolates, 163 (81.5%) nfxB regulator gene, 102 (51%) MexA, 96 (48%) MexC, 93 (46.5%) MexB, 86 (43%) MexD, 81 (40.5%) OprM, 74 (37%) OprJ, 72 (36%) OprD and MexR, 53 (26.5%) Mex X and OprN, 49 (24.5%) MexY gene. Betalactamase genes 145 (72.5%) blaTem, 67 (33.5%) blaOXA, 35 (17.5%) blaVim, 25(12.50%), 23 (11.50%) blaVeb, 21 (11.5%) blaGes, 14 (7%) Ctx-m and 10 (5%) AmpC and 5 (2.5%) blaDim-1 gene were tested positive by mPCR. Phenotypically 38 (19%) and 29 (14.5%) out of 200 tested positive for ESBL and MBL production. Application of this mPCR on clinical specimens is fast, accurate, specific and low-cost reliable tool for the screening, where culture negative Eubacterial PCR positive cases for an early molecular detection of drug resistance mechanism assisting the clinician to treat the disease with appropriate antibiotic selection.
Collapse
Affiliation(s)
- Nandagopal Murugan
- Dept of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India; School of Chemical & Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India.
| | - Jambulingam Malathi
- Dept of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India.
| | - K Lily Therese
- Dept of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Hajib NarahariRao Madhavan
- Dept of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| |
Collapse
|
12
|
Murugan N, Malathi J, Umashankar V, Madhavan HNR. Virulence genome analysis of Pseudomonas aeruginosa VRFPA10 recovered from patient with scleritis. GENOMICS DATA 2017; 12:1-3. [PMID: 28217443 PMCID: PMC5302140 DOI: 10.1016/j.gdata.2017.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/04/2017] [Accepted: 02/05/2017] [Indexed: 11/14/2022]
Abstract
Infectious keratitis is a major cause of blindness, next to cataract and majority of cases are mainly caused by gram negative bacterium Pseudomonas aeruginosa (P. aeruginosa). In this study, we investigated a P. aeruginosa VRFPA10 genome which exhibited susceptibility to commonly used drugs in vitro but the patient had poor prognosis due to its hyper virulent nature. Genomic analysis of VRFPA10 deciphered multiple virulence factors and P.aeruginosa Genomic Islands (PAGIs) VRFPA10 genome which correlated with hyper virulence nature of the organism. The genome sequence has been deposited in DDBJ/EMBL/GenBank under the accession numbers LFMZ01000001-LFMZ01000044.
Collapse
Affiliation(s)
- Nandagopal Murugan
- Dept of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu 6000 06, India; Scholar, School of Chemical & Biotechnology, SASTRA University, Thanjavur, Tamil Nadu 613401, India
| | - Jambulingam Malathi
- Dept of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu 6000 06, India
| | - Vetrivel Umashankar
- Centre for Bioinformatics, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu 6000 06, India
| | - Hajib Narahari Rao Madhavan
- Dept of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu 6000 06, India
| |
Collapse
|
13
|
N M, J M, V U, H N M. Unraveling genomic and phenotypic nature of multidrug-resistant (MDR) Pseudomonas aeruginosa VRFPA04 isolated from keratitis patient. Microbiol Res 2016; 193:140-149. [PMID: 27825482 DOI: 10.1016/j.micres.2016.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/29/2016] [Accepted: 10/08/2016] [Indexed: 02/07/2023]
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa VRFPA04, obtained from a keratitis patient was found to exhibit resistance to betalactam (Penicillins, cephalosporins, including carbapenems, except aztreonam), aminoglycosides, quinolone group of drugs and susceptible to colistin. The complete genome sequencing of the ocular isolate to measure and ascertain the degree of multidrug resistance in VRFPA04 strain resulted in 6,818,030bp (6.8Mb) genome sizes, which happen to be the third largest genome available in the Genbank to date. Two chromosomally integrated class I integrons carrying blaVIM-2 carbapenemase gene, multiple secretory systems consisting of types I-VI and VIII proteins and ocular virulence factors exo-T, Y, U and exotoxin A, a gene that inhibits protein synthesis which could have caused corneal cell death and Phytohormone auxin biosynthetic protein were detected in the genome of VRFPA04 Genome. In addition, 58 Regions of Genomic Plasticity (RGPs) regions, multiple phage genomes, genomic islands, CRISPR genes and RND family efflux pumps, such as MexCD-OprJ and MexEF-OprN and its regulators, MexT and MexR, were unraveled in VRFPA04. Thus, the current study reveals the virulence factors and resistome nature of an ocular isolate P aeruginosa VRFPA04 genome.
Collapse
Affiliation(s)
- Murugan N
- Dept of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, 6000 06, India; School of Chemical & Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, 613401, India
| | - Malathi J
- Dept of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, 6000 06, India.
| | - Umashankar V
- Centre for Bioinformatics, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, 6000 06, India
| | - Madhavan H N
- Dept of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, 6000 06, India
| |
Collapse
|