1
|
Lai KP, Boncan DAT, Qin X, Chan TF, Tse WKF. Roles and occurrences of microbiota in the osmoregulatory organs, gills and gut, in marine medaka upon hypotonic stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101285. [PMID: 39002350 DOI: 10.1016/j.cbd.2024.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Gills and gut are the two primary osmoregulatory organs in fish. Recently, studies have expanded beyond the osmoregulatory mechanisms of these organs to explore the microbiota communities inhabiting them. It is now known that microbial communities in both organs shift in response to osmotic stress. However, there are limited studies identifying the major contributors and co-occurrence among these microbiota in both organs under seawater and freshwater transfer conditions. The current data mining report performed a bioinformatics analysis on two previous published datasets from our group, aiming to provide insights into host-bacteria relationships under osmotic stress. We divided the samples into four groups: control seawater gills (LSW); control seawater gut (TSW); freshwater transfer gills (LFW); and freshwater transfer gut (TFW). Our results showed that LSW had higher diversities, richness, and evenness compared to TSW. However, both the LFW and LSW did not show any significant differences after the freshwater transfer experiment. We further applied co-occurrence network analysis and, for the first time, reported on the interactions of taxa shaping the community structure in these two organs. Moreover, we identified enriched ectoine biosynthesis in seawater samples, suggesting its potential role in seawater environments. Increased mRNA expression levels of Na+/K+-atpase, and cftr, were observed in gills after 6 h of ectoine treatment. These findings provide a foundation for future studies on host-bacteria interactions under osmotic stress.
Collapse
Affiliation(s)
- Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Delbert Almerick T Boncan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xian Qin
- Department of Chemistry, City University of Hong Kong, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
2
|
Zhao C, Liu Y, Zhang P, Xia X, Yang Y. Alternative splicing plays a nonredundant role in greater amberjack (Seriola dumerili) in acclimation to ambient salinity fluctuations. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106549. [PMID: 38733739 DOI: 10.1016/j.marenvres.2024.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Alternative splicing (AS) is an important post-transcriptional mechanism for adaptation of fish to environmental stress. Here, we performed a genome-wide investigation to AS dynamics in greater amberjack (Seriola dumerili), an economical marine teleost, in response to hypo- (10 ppt) and hyper-salinity (40 ppt) stresses. Totally, 2267-2611 differentially spliced events were identified in gills and kidney upon the exposure to undesired salinity regimes. In gills, genes involved in energy metabolism, stimulus response and epithelial cell differentiation were differentially spliced in response to salinity variation, while sodium ion transport and cellular amide metabolism were enhanced in kidney to combat the adverse impacts of salinity changes. Most of these differentially spliced genes were not differentially expressed, and AS was found to regulate different biological processes from differential gene expression, indicative of the functionally nonredundant role of AS in modulating salinity acclimation in greater amberjack. Together, our study highlights the important contribution of post-transcriptional mechanisms to the adaptation of fish to ambient salinity fluctuations and provides theoretical guidance for the conservation of marine fishery resources against increasingly environmental challenges.
Collapse
Affiliation(s)
- Chunyu Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Yuqi Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Panpan Zhang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Xinhui Xia
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Kladchenko E, Gostyukhina O, Soldatov A, Rychkova V, Andreyeva A. Functional changes in hemocytes and antioxidant activity in gills of the ark clam Anadara kagoshimensis (Bivalvia: Arcidae) induced by salinity fluctuations. Comp Biochem Physiol B Biochem Mol Biol 2022; 264:110810. [DOI: 10.1016/j.cbpb.2022.110810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
4
|
Dawood MAO, Alkafafy M, Sewilam H. The antioxidant responses of gills, intestines and livers and blood immunity of common carp (Cyprinus carpio) exposed to salinity and temperature stressors. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:397-408. [PMID: 35171388 PMCID: PMC9005402 DOI: 10.1007/s10695-022-01052-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/20/2022] [Indexed: 05/14/2023]
Abstract
Aquaculture activity is affected by various environmental factors, including water salinity and high temperatures. The present study investigated the impact of using varying water salinity (0, 5, 10, 15 and 20 ppt) on the growth behavior, immune responses and antioxidative responses of common carp. Fish were raised under optimal conditions except for water salinity for 8 weeks; fish were then subjected to high-temperature stress (32 °C) for 48 h. The results indicated a reduced final weight (FBW), weight gain (WG), specific growth rate (SGR), condition factor (CF), feed intake and feed efficiency ratio (FER) in common carp reared in 15 and 20 ppt (p < 0.05). The lowest FBW, WG, SGR, CF, feed intake and FER values were observed in fish reared in 20 ppt water salinity (p < 0.05). In gills, the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were markedly decreased, but malondialdehyde (MDA) levels increased in fish challenged with 15 and 20 ppt before they were subjected to heat stress (p < 0.05). After heat stress, the SOD, CAT and GPx were decreased, and the MDA increased in fish reared in varying salinity levels (p < 0.05). Before heat stress, the intestinal SOD, CAT and GPx markers were decreased by 15 and 20 ppt, while the MDA level was increased by 15 and 20 ppt (p < 0.05). Generally, heat stress lowered the SOD, CAT and GPx activity in the intestines and liver tissues but increased MDA levels in common carp stressed by varying salinity levels (p < 0.05). The most decreased lysozyme activity, SOD, CAT and GPx and increased MDA levels were observed in common carp exposed to 20 ppt before and after heat stress (p < 0.05). After heat stress, fish exposed to 15 and 20 ppt had lower NBT than the remaining groups, and fish exposed to 20 ppt had the lowest values (p < 0.05). Overall, the heat stress markedly suppressed the antioxidant and immune responses of common carp reared in hypersalinity conditions.
Collapse
Affiliation(s)
- Mahmoud A. O. Dawood
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
- The Center for Applied Research On the Environment and Sustainability, The American University in Cairo, Cairo, 11835 Egypt
| | - Mohamed Alkafafy
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Hani Sewilam
- The Center for Applied Research On the Environment and Sustainability, The American University in Cairo, Cairo, 11835 Egypt
- Department of Engineering Hydrology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Gao J, Xu G, Xu P. Full-length transcriptomic analysis reveals osmoregulatory mechanisms in Coilia nasus eyes reared under hypotonic and hyperosmotic stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149333. [PMID: 34352462 DOI: 10.1016/j.scitotenv.2021.149333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
In recent years, sea-level rise, caused by global warming, will trigger salinity changes. This will threaten the survival of aquatic animals. Till now, the osmoregulatory mechanism of Coilia nasus eyes has not been yet explored. Oxford Nanopore Technologies (ONT) sequencing was performed in C. nasus eyes during hypotonic and hyperosmotic stress for the first time. 22.5G clean reads and 26,884 full-length non-redundant sequences were generated via ONT sequencing. AS events, APA, TF, and LncRNA were identified. During hypotonic stress, 46 up-regulated DEGs and 28 down-regulated DEGs were identified. During hypertonic stress, 190 up-regulated DEGs and 182 down-regulated DEGs were identified. These DEGs were associated with immune, metabolism, and transport responses. The expression of these DEGs indicated that apoptosis and inflammation were triggered during hypotonic and hyperosmotic stress. To resist hypotonic stress, polyamines metabolism and transport of Na+ and Cl- from inter-cellular to extra-cellular were activated. During hyperosmotic stress, amino acids metabolism and transport of myo-inositol and Na+ from extra-cellular to inter-cellular were activated, while Cl- transport was inhibited. Moreover, different transcript isoforms generated from the same gene performed different expression patterns during hypotonic and hypertonic stress. These findings will be beneficial to understand osmoregulatory mechanism of C. nasus eyes, and can also improve our insights on the adaptation of aquatic animals to environmental changes.
Collapse
Affiliation(s)
- Jun Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| |
Collapse
|
6
|
Lin G, Zheng M, Li S, Xie J, Fang W, Gao D, Huang J, Lu J. Response of gut microbiota and immune function to hypoosmotic stress in the yellowfin seabream (Acanthopagrus latus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140976. [PMID: 32736105 DOI: 10.1016/j.scitotenv.2020.140976] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Osmotic stress is associated with heightened immune functions and altered microbiota in the fish intestine. In this study, we explored the effects of hypoosmotic stress on the intestine of euryhaline yellowfin seabream (Acanthopagrus latus) after acute exposure to brackish water, low-saline water, and freshwater environments. The results showed that hypoosmotic stress reshaped the composition of the microbial community and altered the gene expression in the intestine. Probiotics Lactobacillus and Pseudomonas showed higher relative abundance in a brackish water environment, whereas pathogenic bacteria, including Vibrio and Aeromonas, were more abundant in the freshwater environment. At the transcriptional level, osmoregulation-related genes were identified as up/down regulated differentially expressed genes (DEGs) as well as a series of immune-related DEGs associated with pathogen recognition, antimicrobial ability, pro-inflammatory cytokines, cell apoptosis, and antioxidant defense. Physiological analysis showed that Na+ K+-ATPase activity was significantly inhibited by hypoosmotic stress in freshwater. Meanwhile, the intestinal antioxidant defense system of yellowfin seabream was challenged. Correlation network analysis demonstrated the close interactions among intestinal microbes, differentially expressed genes, and physiological parameters. This study provides the critical insights into the function of the intestine fish encountering hypoosmotic stress.
Collapse
Affiliation(s)
- Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Min Zheng
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Jingui Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Jing Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| |
Collapse
|
7
|
Characterization and molecular evolution of claudin genes in the Pungitius sinensis. J Comp Physiol B 2020; 190:749-759. [PMID: 32778926 DOI: 10.1007/s00360-020-01301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Claudins are a family of integrated membrane-bound proteins involving in paracellular tightness, barrier forming, ion permeability, and substrate selection at tight junctions of chordate epithelial and endothelial cells. Here, 39 putative claudin genes were identified in the Pungitius sinensis based on the high throughput RNA-seq. Conservative motif distribution in each group suggested functional relevance. Divergence of duplicated genes implied the species' adaptation to the environment. In addition, selective pressure analyses identified one site, which may accelerate functional divergence in this protein family. Pesticides cause environmental pollution and have a serious impact on aquatic organisms when entering the water. The expression pattern of most claudin genes was affected by organophosphorus pesticide, indicating that they may be involved in the immune regulation of organisms and the detoxification of xenobiotics. Protein-protein network analyses also exhibited 439 interactions, which implied the functional diversity. It will provide some references for the functional study on claudin genes.
Collapse
|
8
|
Liu Z, Ma A, Zhang J, Yang S, Cui W, Xia D, Qu J. Cloning and molecular characterization of PRL and PRLR from turbot (Scophthalmus maximus) and their expressions in response to short-term and long-term low salt stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:501-517. [PMID: 31970604 DOI: 10.1007/s10695-019-00699-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
The pituitary hormone prolactin (PRL) regulates salt and water homeostasis by altering ion retention and water uptake through peripheral osmoregulatory organs. To understand the role of PRL and its receptor (PRLR) in hypoosmoregulation of turbot (Scophthalmus maximus), we characterized the PRL and PRLR gene and analyzed the tissue distribution of the two genes and their gene transcriptional patterns in the main expressed tissues under long-term and short-term low salt stress. The PRL cDNA is 1486 bp in length, incorporating an ORF of 636 bp with a putative primary structure of 211 residues. And the PRLR cDNA is 2849 bp in length, incorporating an ORF of 1944 bp with a putative primary structure of 647 residues. The deduced amino acid sequences of these two genes shared highly conserved structures with those from other teleosts. Quantitative real-time PCR results showed that PRL transcripts were strongly expressed in the pituitary and very weakly in brain, but were hardly expressed in other tissues. PRLR transcripts were most abundant in the kidney, to a lesser extent in the gill, intestine, brain, and spleen, and at low levels in the pituitary and other tissues examined. The expression of PRL in the pituitary increased after short-term or long-term low salt stress, and the highest expression level appeared 12 h after stress (P < 0.05). And there is no significant difference between both low salt group (5 ppt and 10 ppt) at each sampling point. The variation of PRLR expression in gill under short-term low salt stress is similar to that of PRL gene in pituitary, with highest value in 12 h (P < 0.05). However, the expression under long-term low salt stress was significantly higher than control group even than 12 h group under 5 ppt (P < 0.05). The expression of PRLR in the kidney increased first and then decreased after low salt stress, and the highest value also appeared in 12 h after stress and there was no significant difference between the salinity groups. After long-term low salt stress, the expression level also increased significantly (P < 0.05), but it was flat with 24 h, which was lower than 12 h. The variation of PRLR expression in the intestine was basically consistent with that in the kidney. The difference was that the expression level of 24 h after stress in the 5 ppt group was significantly higher than that of the 10 ppt group (P < 0.05). After a comprehensive analysis of the expression levels of the two genes, it can be found that the expression level increased and peaked at 12 h after short-term low salt stress, indicating that this time point is the key point for the regulation of turbot in response to low salt stress. This also provides very important information for studying the osmotic regulation of turbot. In addition, our results also showed that the expression of PRLR was stable in the kidney and intestine after long-term low salt stress, while the expression in the gill was much higher than short-term stress. It suggested that PRL and its receptors mainly exert osmotic regulation function in the gill under long-term low salt stress. At the same time, such a result also brings a hint for the low salt selection of turbot, focusing on the regulation of ion transport in the gill.
Collapse
Affiliation(s)
- Zhifeng Liu
- Yellow Sea Fisheries Research Institute, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Aijun Ma
- Yellow Sea Fisheries Research Institute, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, Shandong, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Jinsheng Zhang
- Yellow Sea Fisheries Research Institute, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Shuangshuang Yang
- Yellow Sea Fisheries Research Institute, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenxiao Cui
- Yellow Sea Fisheries Research Institute, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Dandan Xia
- Yellow Sea Fisheries Research Institute, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jiangbo Qu
- Yantai Tianyuan Aquatic Limited Corporation, Yantai, 264003, China
| |
Collapse
|
9
|
Lin G, Zheng M, Gao D, Li S, Fang W, Huang J, Xie J, Liu J, Liu Y, Li Z, Lu J. Hypoosmotic stress induced tissue-specific immune responses of yellowfin seabream (Acanthopagrus latus) revealed by transcriptomic analysis. FISH & SHELLFISH IMMUNOLOGY 2020; 99:473-482. [PMID: 32070785 DOI: 10.1016/j.fsi.2020.02.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Salinity is a limiting factor for many marine organisms, including fishes. The shift in the ambient salinity can cause osmotic stress and arouse immune responses in fish. In this study, yellowfin seabream (Acanthopagrus latus), a euryhaline marine teleost, was used to investigate immune responses of different tissues (gill, liver, and muscle) under hypoosmotic stress. Comparative transcriptomic and physiological analyses of three tissues were conducted after fish exposed to the fresh water (FW, salinity = 0 ppt), low-saline water (LW, salinity = 3 ppt), and brackish water (BW, salinity = 6 ppt) for 8 days. The results showed that hypoosmotic stress dramatically altered the gene expression of three tissues in yellowfin seabream; The investigation of differentially expressed genes (DEGs) related to osmoregulation and immune response indicated that T cell-mediate immunity pathways were essential to tackle such stress. In terms of tissues, gill was found to be the most sensitive tissue under hypoosmotic stress by enhancing of Na+K+-ATPase activity and preventing the loss of Na+ and K+; Liver, on the other hand, was under the most sever oxidative stress indicated by the fluctuation of SOD, CAT activities and the MDA content; In contrast, muscle had the least osmoregulation and immune related response. We also identified several potential candidate genes, which may serve as gene indicators to identify the stressor. Overall, this study provides preliminary mechanistic insights into hypoosmotic stress adaption of aquatic organism.
Collapse
Affiliation(s)
- Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Min Zheng
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Jing Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Jingui Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Jingxiong Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yijing Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Zhaohong Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| |
Collapse
|
10
|
Liu S, Wang Y, Chen J, Wang Q, Chang O, Zeng W, Bergmann SM, Li Y, Yin J, Wen H. Establishment of a cell line from egg of rare minnow Gobiocypris rarus for propagation of grass carp reovirus genotype II. Microb Pathog 2019; 136:103715. [PMID: 31491550 DOI: 10.1016/j.micpath.2019.103715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022]
Abstract
The rare minnow, Gobiocypris rarus, is small experimental fish proven to be sensitive to Grass Carp Reovirus (GCRV) infection. In present study we established a new cell (GrE) from eggs of G. rarus. GrE cells grew well at 28 °C in M199 medium containing 10% fetal bovine serum, and has been subcultured for over 70 passages. Chromosome analysis indicated that 40% of the cells were diploid 2n = 66 while the chromosome number of the fish is 2n = 50. Viral replication in GrE cells was confirmed by transmission electron microscopy, immunofluorescence assays and virus titration experiments. GrE cells and Cyenopharyngodon idellus kidney cells were infected with two GCRV genotypes while the virus copies of GCRV II in GrE peaked at 2.25 × 105 on 12th dpi. In vivo challenge experiments using GCRV I and II isolates at generations 1 and 20 indicated that GCRV II reproduce similar symptoms and histopathological changes of the disease in the rare minnow. These results indicated that GrE is permissive for GCRV genotype II propagation and can be used for pathogenesis studies and vaccine development of the predominant genotype of GCRV.
Collapse
Affiliation(s)
- Shixu Liu
- Key Lab of Fishery Drug Development, Ministry of Agriculture, Key Lab of Aquatic Animal Immune Technology, Peal River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China; College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Yingying Wang
- Key Lab of Fishery Drug Development, Ministry of Agriculture, Key Lab of Aquatic Animal Immune Technology, Peal River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jiaming Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Qing Wang
- Key Lab of Fishery Drug Development, Ministry of Agriculture, Key Lab of Aquatic Animal Immune Technology, Peal River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Ouqin Chang
- Key Lab of Fishery Drug Development, Ministry of Agriculture, Key Lab of Aquatic Animal Immune Technology, Peal River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Weiwei Zeng
- Key Lab of Fishery Drug Development, Ministry of Agriculture, Key Lab of Aquatic Animal Immune Technology, Peal River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Sven M Bergmann
- Institute of Infectology, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 17493, Greifswald, Insel Riems, Germany
| | - Yingying Li
- Key Lab of Fishery Drug Development, Ministry of Agriculture, Key Lab of Aquatic Animal Immune Technology, Peal River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jiyuan Yin
- Key Lab of Fishery Drug Development, Ministry of Agriculture, Key Lab of Aquatic Animal Immune Technology, Peal River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Hong Wen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
11
|
Fish kidney cells show higher tolerance to hyperosmolality than amphibian. AQUACULTURE AND FISHERIES 2018. [DOI: 10.1016/j.aaf.2018.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Liu XF, Wu YH, Wei SN, Wang N, Li YZ, Zhang NW, Li PF, Qin QW, Chen SL. Establishment and characterization of a brain-cell line from kelp grouper Epinephelus moara. JOURNAL OF FISH BIOLOGY 2018; 92:298-307. [PMID: 29333652 DOI: 10.1111/jfb.13471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
A new brain-cell line, EMB, was developed from kelp grouper Epinephelus moara, a cultured marine fish. The EMB cells were subcultured for more than 60 passages. The cells were cultured in Leibovitz's L-15 medium (L15) supplemented with antibiotics, foetal bovine serum (FBS), 2-mercaptoethanol (2-ME) and basic fibroblast growth factor (bFGF). The cells could grow at 18-30° C, with the maximum growth between 24 and 30° C. The optimum FBS concentration for the cells growth ranged between 15 and 20%. Chromosome analysis indicated that the modal chromosome number was 48 in the cells at passage 45. After being transfected with pEGFP-N3 plasmid, the cells could successfully express green fluorescence protein (GFP), implying that this cell line can be used for transgenic studies. A significant cytopathic effect (CPE) was observed in the cells after infection with Singapore grouper iridovirus (SGIV) or red spotted grouper nervous necrosis virus (RGNNV) and the viral replication was confirmed by quantitative real-time PCR (qrt-PCR) assay, which suggested EMB's application potential for studies of SGIV and RGNNV.
Collapse
Affiliation(s)
- X F Liu
- Yellow Sea Fisheries Research Institute, CAFS, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- College of Marine Life, Ocean University of China, Qingdao 266003, China
| | - Y H Wu
- Yellow Sea Fisheries Research Institute, CAFS, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
| | - S N Wei
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - N Wang
- Yellow Sea Fisheries Research Institute, CAFS, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
| | - Y Z Li
- Yellow Sea Fisheries Research Institute, CAFS, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
| | - N W Zhang
- Yellow Sea Fisheries Research Institute, CAFS, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
| | - P F Li
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Q W Qin
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - S L Chen
- Yellow Sea Fisheries Research Institute, CAFS, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
13
|
Wang R, Zhang N, Wang R, Wang S, Wang N. Two skin cell lines from wild-type and albino Japanese flounder (Paralichthys olivaceus): establishment, characterization, virus susceptibility, efficient transfection, and application to albinism study. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1477-1486. [PMID: 28698966 DOI: 10.1007/s10695-017-0386-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
In order to provide an applicable cell platform to study fish pathology and skin pigmentation, two cell lines derived from skin tissues of wild-type and albino Japanese flounder were established and named JFSK_wt and JFSK_alb, respectively. These two cell lines were cultured for 45 passages within approximately 300 days. JFSK_wt and JFSK_alb cells were maintained in Dulbecco's Modified Eagle's Medium and Ham's F-12 Nutrient Mixture (DMEM/F12) supplemented with antibiotics, fetal bovine serum (FBS), 2-mercaptoethanol (2-Me), N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES), and basic fibroblast growth factor (bFGF). The optimal growth temperature for JFSK_wt and JFSK_alb cells was 24 °C, and microscopically, the two cell lines were composed of fibroblast-like cells. Chromosomal analysis revealed that JFSK_wt and JFSK_alb cells had an identical diploid karyotype with 2n = 48t. Results of viral inoculation assays revealed that both cell lines shared similar patterns of viral susceptibility to nervous necrosis virus (NNV). High transfection efficiency was observed in JFSK_wt and JFSK_alb cells transfected with a pEGFP-N3 reporter plasmid and Cy3-siRNA. The detection of dermal marker Dermo-1 showed that these two cells were both derived from the dermis. Finally, three genes involved in the melanogenesis pathway, including adenylate cyclase type 5 (adcy5), microphthalmia-associated transcription factor (mitf), and endothelin B receptor (ednrb), were downregulated in JFSK_alb versus JFSK_wt cells. Thus, the two cell lines, sampled from skin tissue of wild-type and albino Japanese flounder will be not only helpful for fish pathogen research but also beneficial for albinism-related gene function studies.
Collapse
Affiliation(s)
- Ruoqing Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Nianwei Zhang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Renkai Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Shengpeng Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
| | - Na Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
| |
Collapse
|
14
|
Hasan MM, DeFaveri J, Kuure S, Dash SN, Lehtonen S, Merilä J, McCairns RJS. Kidney morphology and candidate gene expression shows plasticity in sticklebacks adapted to divergent osmotic environments. J Exp Biol 2017; 220:2175-2186. [DOI: 10.1242/jeb.146027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 03/27/2017] [Indexed: 01/09/2023]
Abstract
Novel physiological challenges in different environments can promote the evolution of divergent phenotypes, either through plastic or genetic changes. Environmental salinity serves as a key barrier to the distribution of nearly all aquatic organisms, and species diversification is likely to be enabled by adaptation to alternative osmotic environments. The threespine stickleback (Gasterosteus aculeatus) is a euryhaline species with populations found both in marine and freshwater environments. It has evolved both highly plastic and locally adapted phenotypes due to salinity-derived selection, but the physiological and genetic basis of adaptation to salinity is not fully understood. We integrated comparative cellular morphology of the kidney, a key organ for osmoregulation, and candidate gene expression to explore the underpinnings of evolved variation in osmotic plasticity within two populations of sticklebacks from distinct salinity zones in the Baltic Sea: the high salinity Kattegat, representative of the ancestral marine habitat, and the low salinity Bay of Bothnia. A common-garden experiment revealed that kidney morphology in the ancestral high salinity population had a highly plastic response to salinity conditions, whereas this plastic response was reduced in the low salinity population. Candidate gene expression in kidney tissue revealed a similar pattern of population-specific differences, with a higher degree of plasticity in the native high salinity population. Together these results suggest that renal cellular morphology has become canalized to low salinity, and that these structural differences may have functional implications for osmoregulation.
Collapse
Affiliation(s)
- M. Mehedi Hasan
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Jacquelin DeFaveri
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Satu Kuure
- Institute of Biotechnology & Laboratory Animal Centre, University of Helsinki, Helsinki, Finland
| | - Surjya N. Dash
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Sanna Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - R. J. Scott McCairns
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
- ESE, Ecology and Ecosystem Health, INRA, Agrocampus Ouest, 35042 Rennes, France
| |
Collapse
|