1
|
Wang N, Ye Z, Ma T. TIPS: a novel pathway-guided joint model for transcriptome-wide association studies. Brief Bioinform 2024; 25:bbae587. [PMID: 39550224 PMCID: PMC11568880 DOI: 10.1093/bib/bbae587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024] Open
Abstract
In the past two decades, genome-wide association studies (GWAS) have pinpointed numerous SNPs linked to human diseases and traits, yet many of these SNPs are in non-coding regions and hard to interpret. Transcriptome-wide association studies (TWAS) integrate GWAS and expression reference panels to identify the associations at gene level with tissue specificity, potentially improving the interpretability. However, the list of individual genes identified from univariate TWAS contains little unifying biological theme, leaving the underlying mechanisms largely elusive. In this paper, we propose a novel multivariate TWAS method that Incorporates Pathway or gene Set information, namely TIPS, to identify genes and pathways most associated with complex polygenic traits. We jointly modeled the imputation and association steps in TWAS, incorporated a sparse group lasso penalty in the model to induce selection at both gene and pathway levels and developed an expectation-maximization algorithm to estimate the parameters for the penalized likelihood. We applied our method to three different complex traits: systolic and diastolic blood pressure, as well as a brain aging biomarker white matter brain age gap in UK Biobank and identified critical biologically relevant pathways and genes associated with these traits. These pathways cannot be detected by traditional univariate TWAS + pathway enrichment analysis approach, showing the power of our model. We also conducted comprehensive simulations with varying heritability levels and genetic architectures and showed our method outperformed other established TWAS methods in feature selection, statistical power, and prediction. The R package that implements TIPS is available at https://github.com/nwang123/TIPS.
Collapse
Affiliation(s)
- Neng Wang
- Department of Mathematics, University of Maryland, College Park, MD 20742, United States
- Department of Epidemiology and Biostatistics, University of Maryland, College Park, MD 20742, United States
| | - Zhenyao Ye
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, MD 21201, United States
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
2
|
García-Martín E, Sánchez-Gómez FJ, Amo G, García Menaya J, Cordobés C, Ayuso P, Plaza Serón MC, Blanca M, Campo P, Esguevillas G, Pajares MA, G Agúndez JA, Pérez-Sala D. Asthma and allergic rhinitis associate with the rs2229542 variant that induces a p.Lys90Glu mutation and compromises AKR1B1 protein levels. Hum Mutat 2018; 39:1081-1091. [PMID: 29726087 DOI: 10.1002/humu.23548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/11/2018] [Accepted: 04/30/2018] [Indexed: 12/20/2022]
Abstract
Asthma and rhinitis are two of the main clinical manifestations of allergy, in which increased reactive oxygen or electrophilic species can play a pathogenic role. Aldose reductase (AKR1B1) is involved in aldehyde detoxification and redox balance. Recent evidence from animal models points to a role of AKR1B1 in asthma and rhinitis, but its involvement in human allergy has not been addressed. Here, the putative association of allergic rhinitis and asthma with AKR1B1 variants has been explored by analysis of single-strand variants on the AKR1B1 gene sequence in 526 healthy subjects and 515 patients with allergic rhinitis, 366 of whom also had asthma. We found that the rs2229542 variant, introducing the p.Lys90Glu mutation, was significantly more frequent in allergic patients than in healthy subjects. Additionally, in cells transfected with expression vectors carrying the wild-type or the p.Lys90Glu variant of AKR1B1, the mutant consistently attained lower protein levels than the wild-type and showed a compromised thermal stability. Taken together, our results show that the rs2229542 variant associates with asthma and rhinitis, and hampers AKR1B1 protein levels and stability. This unveils a connection between the genetic variability of aldose reductase and allergic processes.
Collapse
Affiliation(s)
| | - Francisco J Sánchez-Gómez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, C.S.I.C., Madrid, Spain
| | - Gemma Amo
- Departamento de Farmacología, Universidad de Extremadura, Cáceres, Spain
| | | | | | - Pedro Ayuso
- Allergy Unit, IBIMA-Regional University Hospital of Málaga, UMA, Málaga, Spain
| | | | - Miguel Blanca
- Servicio de Alergología, Hospital Infanta Leonor, Madrid, Spain
| | - Paloma Campo
- Allergy Unit, IBIMA-Regional University Hospital of Málaga, UMA, Málaga, Spain
| | - Gara Esguevillas
- Departamento de Farmacología, Universidad de Extremadura, Cáceres, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, C.S.I.C., Madrid, Spain.,Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - José A G Agúndez
- Departamento de Farmacología, Universidad de Extremadura, Cáceres, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, C.S.I.C., Madrid, Spain
| |
Collapse
|
3
|
Li YY, Wang H, Yang XX, Geng HY, Gong G, Lu XZ. AR C-106T gene polymorphism and diabetic nephropathy in the Eastern Asians with T2DM: A meta-analysis including 2120 subjects. Diabetes Res Clin Pract 2017. [PMID: 28651212 DOI: 10.1016/j.diabres.2017.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aldose reductase (AR) gene C-106T polymorphism may be associated with diabetic nephropathy (DN) susceptibility, but the results of individual studies remain controversial. OBJECTIVE AND METHODS To explore the relationship between AR gene C-106T gene polymorphism and DN in the Eastern Asians with type 2 diabetes mellitus (T2DM) population, we conducted a meta-analysis of 2120 participants from 5 studies. Pooled odds ratio (ORs) and the corresponding 95% confidence interval (95% CI) were evaluated by either a fixed or random-effects models. RESULTS AR C-106T gene polymorphism was significantly associated with DN in the Eastern Asians population with T2DM under allelic (OR: 1.81, 95% CI: 1.30-2.52, P=0.0005), recessive (OR: 1.88, 95% CI: 1.20-2.97, P=0.006), dominant (OR: 9.22, 95% CI: 2.73-31.12, P=0.0003), homozygous (OR:2.27, 95% CI: 1.43-3.61, P=0.0005), heterozygous (OR: 5.75, 95% CI: 1.96-16.81, P=0.001), and additive genetic models (OR: 2.27, 95% CI: 1.48-3.48, P=0.0002). CONCLUSIONS In the Eastern Asians with T2DM, the AR gene C-106T gene polymorphism is correlated with an increased risk of DN. The Eastern Asians with the T allele of AR gene C-106T gene polymorphism might be susceptible to DN.
Collapse
Affiliation(s)
- Yan-Yan Li
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Hui Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xin-Xing Yang
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hong-Yu Geng
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ge Gong
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xin-Zheng Lu
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
4
|
Wang Y, Wang X, Li Z, Chen L, Zhou L, Li C, Ouyang DS. Two Single Nucleotide Polymorphisms (rs2431697 and rs2910164) of miR-146a Are Associated with Risk of Coronary Artery Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14050514. [PMID: 28489066 PMCID: PMC5451965 DOI: 10.3390/ijerph14050514] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/20/2017] [Accepted: 04/28/2017] [Indexed: 12/25/2022]
Abstract
The coronary artery disease (CAD) is one of the most severe cardiovascular diseases. MicroRNA-146a (miR-146a) influences the pathology of cardiovascular diseases. Two single nucleotide polymorphisms (SNPs) of miR-146a (rs2431697 and rs2910164) have been reported to alter the function or expression of microRNA. The purpose of this study is to evaluate the association between miR-146a gene polymorphism and the risk of CAD in the Chinese population. A total of 353 CAD patients and 368 controls were recruited, and SNPs were analyzed by the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and Sequenom MassARRAY system. The gene frequencies of rs2431697 and rs2910164 were significantly different between the two groups. The mutant type (T allele) of rs2431697 and wild type (C allele) of rs2910164 were more frequent in CAD patients. T allele carriers in rs2431697 had an increased CAD risk, while G allele of rs2910164 decreased the risk of CAD significantly. In conclusion, we found that the T allele of rs2431697 was a risk factor of CAD in the Chinese population. Meanwhile, we demonstrated that the G allele of rs2910164 decreased the susceptibility of CAD.
Collapse
Affiliation(s)
- Yaqin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Xintong Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Zhenyu Li
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Lulu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Luping Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Chaopeng Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Dong-Sheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| |
Collapse
|
5
|
Aslan HE, Beydemir Ş. Phenolic compounds: The inhibition effect on polyol pathway enzymes. Chem Biol Interact 2017; 266:47-55. [DOI: 10.1016/j.cbi.2017.01.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
|