1
|
Liu X, Liu T, Ren X, Zhu X, Tan Y, Guan X, Bai X. Cloning of Toll3 and Toll4 and association analysis among their SNP haplotypes and disease resistance in red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2025; 161:110269. [PMID: 40064215 DOI: 10.1016/j.fsi.2025.110269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
With the expansion of the culture scale of red swamp crayfish (Procambarus clarkii), the high incidence of diseases has seriously threatened the development of its industry. In this study, PcToll3 and PcToll4 were respectively cloned and explored SNPs among the germplasm populations, which had been identified relating to disease resistance in crayfish based on our previous study. A total of 3036 bp and 2820 bp of the open reading frame of PcToll3 and PcToll4 encoded 1011 and 939 amino acids, respectively. They were specially expressed in haemolymph, and significantly up-regulated expression after stimulation by Vibrio parahaemolyticus, Aeromonas hydrophila and white spot syndrome virus. It was found that the expression of downstream genes PcALF, PcCru, PcIMD, PcMyD88, and PcNF-κB were repressed after interference of PcToll3 and/or PcToll4. Totally, 16 and 19 SNPs in the coding region of PcToll3 and PcToll4 were mined, and the favoured haplotypes and the combinations of them were classified according to the associated SNPs with the disease resistance in crayfish. The haplotypes of Toll3-Hap1, Toll4-Hap1 and the combination of Toll3+Toll4-Hap1 were further validated that they had the stronger disease resistance comparing to others haplotypes, and the related KASP markers were developed for further breeding application. This study will advance our understanding of the function of the two Toll genes in crayfish, and provide the markers for the molecular breeding.
Collapse
Affiliation(s)
- Xuewei Liu
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tiantian Liu
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Ren
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xintao Zhu
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunfei Tan
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyu Guan
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
2
|
Betancourt JL, Rodríguez-Ramos T, Dixon B. Pattern recognition receptors in Crustacea: immunological roles under environmental stress. Front Immunol 2024; 15:1474512. [PMID: 39611155 PMCID: PMC11602452 DOI: 10.3389/fimmu.2024.1474512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Innate immunity is the first line of defense against infections and the only known available strategy for invertebrates. Crustaceans, being mostly aquatic invertebrates, are constantly exposed to potential pathogens in the surrounding water. Their immune system abolishes most microbes that enter and are recognized as a threat. However, the stress produced by high population densities and abiotic changes, in aquaculture, disrupts the host-pathogen balance, leading to severe economic losses in this industry. Consequently, crustacean immunology has become a prime area of research where significant progress has been made. This review provides our current understanding of the key pattern recognition receptors in crustaceans, with special focus on Decapoda, and their roles in triggering an immune response. We discuss recent developments in the field of signal transduction pathways such as Toll-like receptors (TLRs) and the immune deficiency (IMD) pathway, and examine the role of antimicrobial peptides (AMPs) in pathogen defense. Additionally, we analyze how environmental stressors-such as temperature fluctuations, ammonia levels, and pollution-impact immune responses and increase susceptibility to diseases. Finally, we highlight future research directions, emphasizing the need to explore the interactions between environmental stressors and immune signaling pathways and to develop strategies to enhance immune responses in crustaceans within aquaculture settings. Altogether, these advancements deepen our understanding of pathogen recognition in invertebrates and the specific defense mechanisms employed by crustaceans, particularly in response to infections triggered by pathogens under abiotic stressors.
Collapse
Affiliation(s)
| | | | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
3
|
Zhang SP, Zhang J, Wang QH, Ye Y, Zhang DZ, Liu QN, Tang BP, Dai LS. Ferritin Heavy-like subunit is involved in the innate immune defense of the red swamp crayfish Procambarus clarkii. Front Immunol 2024; 15:1411936. [PMID: 39108270 PMCID: PMC11300234 DOI: 10.3389/fimmu.2024.1411936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/08/2024] [Indexed: 09/17/2024] Open
Abstract
Iron-binding proteins, known as ferritins, play pivotal roles in immunological response, detoxification, and iron storage. Despite their significance to organisms, little is known about how they affect the immunological system of the red swamp crayfish (Procambarus clarkii). In our previous research, one ferritin subunit was completely discovered as an H-like subunit (PcFeH) from P. clarkii. The full-length cDNA of PcFerH is 1779 bp, including a 5'-UTR (untranslated region, UTR) of 89 bp, 3'-UTR (untranslated region, UTR) of 1180 bp and an ORF (open reading frame, ORF) of 510 bp encoding a polypeptide of 169 amino acids that contains a signal peptide and a Ferritin domain. The deduced PcFerH protein sequence has highly identity with other crayfish. PcFerH protein's estimated tertiary structure is quite comparable to animal structure. The PcFerH is close to Cherax quadricarinatus, according to phylogenetic analysis. All the organs examined showed widespread expression of PcFerH mRNA, with the ovary exhibiting the highest levels of expression. Additionally, in crayfish muscles, intestines, and gills, the mRNA transcript of PcFerH was noticeably up-regulated, after LPS and Poly I:C challenge. The expression of downstream genes in the immunological signaling system was suppressed when the PcFerH gene was knocked down. All of these findings suggested that PcFerH played a vital role in regulating the expression of downstream effectors in the immunological signaling pathway of crayfish.
Collapse
Affiliation(s)
- Si-Pei Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jie Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Qing-Hao Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Yang Ye
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Gu Y, Zhu L, Wang X, Li H, Hou L, Kong X. Research progress of pattern recognition receptors in red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109028. [PMID: 37633345 DOI: 10.1016/j.fsi.2023.109028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Though Procambarus clarkii (red swamp crayfish) is a lower invertebrate, it has nonetheless developed a complex innate immune system. The crayfish farming industry has suffered considerable economic losses in recent years as a consequence of bacterial and viral diseases. Hence, perhaps the most effective ways to prevent microbial infections in P. clarkii are to examine and elucidate its innate immunity. The first step in the immune response is to recognize pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs). PRRs are expressed mainly on immune cell surfaces and recognize at least one PAMP. Thence, downstream immune responses are activated and pathogens are phagocytosed. To date, the PRRs identified in P. clarkii include Toll-like receptors (TLRs), lectins, fibrinogen-related proteins (FREPs), and β-1,3-glucan-binding proteins (BGRPs). The present review addresses recent progress in research on PRRs and aims to provide guidance for improving immunity and preventing and treating infectious diseases in P. clarkii.
Collapse
Affiliation(s)
- Yanlong Gu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| | - Xinru Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Hao Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
5
|
Yang M, Guo X, Chen T, Li P, Xiao T, Dai Z, Hu Y. Effect of dietary replacement of fish meal by poultry by-product meal on the growth performance, immunity, and intestinal health of juvenile red swamp crayfish, procambarus clarkia. FISH & SHELLFISH IMMUNOLOGY 2022; 131:381-390. [PMID: 36257552 DOI: 10.1016/j.fsi.2022.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The present study was conducted to investigate the dietary replacement of fish meal with poultry by-product meal (PBM) on the growth performance, immunity, antioxidant properties, and intestinal health of red swamp crayfish (Procambarus clarkia). A diet containing 20% fish meal (FM) and complex plant ingredients as the main protein resources was set as the FM group (crude protein 32%, crude lipid 6%). Four diets replacing 25%, 50%, 75%, and 100% fish meal of the FM diet with PBM were set as the PBM25, PBM50, PBM75, and PBM100 groups, respectively. Compared to the FM group, the PBM100 diet significantly decreased growth performance and feed utilization of crayfish, while markedly increasing the activity of serum aspartate aminotransferase. The immune response was depressed in crayfish fed the PBM100 diet as the activities of serum lysozyme and phenoloxidase, gene expression of anti-lipopolysaccharide factors (alf), cyclophilin A (cypa), crustin, and hemocyanin-1 (hep-1) in hepatopancreas were remarkably decreased. The activities of antioxidases and expression of antioxidant-relevant genes in the hepatopancreas were not influenced by PBM inclusion. Crayfish fed different diets exhibited no obvious symptoms of enteritis, but the PBM100 diet destructed intestinal morphology by significantly decreasing the average length of longitudinal ridges. The α-diversity and overall community structure were not significantly influenced but variations were found in the relative abundance of some genera by PBM inclusion. In summary, CAP could successfully replace 75% dietary FM in a basal diet containing 20% fish meal, while higher CAP level compromised growth performance, immunity, and intestinal histology of crayfish.
Collapse
Affiliation(s)
- Mengxi Yang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Xiaorui Guo
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Tuo Chen
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Peng Li
- North American Renderers Association, Alexandria, VA, 22314, USA
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Zhenyan Dai
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Yi Hu
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha, 410128, Hunan, China.
| |
Collapse
|
6
|
Punginelli D, Schillaci D, Mauro M, Deidun A, Barone G, Arizza V, Vazzana M. The potential of antimicrobial peptides isolated from freshwater crayfish species in new drug development: A review. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104258. [PMID: 34530039 DOI: 10.1016/j.dci.2021.104258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
The much-publicised increased resistance of pathogenic bacteria to conventional antibiotics has focused research effort on the characterization of new antimicrobial drugs. In this context, antimicrobial peptides (AMPs) extracted from animals are considered a promising alternative to conventional antibiotics. In recent years, freshwater crayfish species have emerged as an important source of bioactive compounds. In fact, these invertebrates rely on an innate immune system based on cellular responses and on the production of important effectors in the haemolymph, such as AMPs, which are produced and stored in granules in haemocytes and released after stimulation. These effectors are active against both Gram-positive and Gram-negative bacteria. In this review, we summarise the recent progress on AMPs isolated from the several species of freshwater crayfish and their prospects for future pharmaceutical applications to combat infectious agents.
Collapse
Affiliation(s)
- Diletta Punginelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Alan Deidun
- Department of Geosciences, Faculty of Science, University of Malta, Msida MSD, 2080, Malta
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy.
| |
Collapse
|
7
|
Capanni F, Greco S, Tomasi N, Giulianini PG, Manfrin C. Orally administered nano-polystyrene caused vitellogenin alteration and oxidative stress in the red swamp crayfish (Procambarus clarkii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:147984. [PMID: 34118657 DOI: 10.1016/j.scitotenv.2021.147984] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/09/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Nanoplastics (≤100 nm) represent the smallest fraction of plastic litter and may result in the aquatic environment as degradation products of larger plastic material. To date, few studies focused on the interactions of micro- and nanoplastics with freshwater Decapoda. The red swamp crayfish (Procambarus clarkii, Girard, 1852) is an invasive species able to tolerate highly perturbed environments. As a benthic opportunistic feeder, this species may be susceptible to plastic ingestion. In this study, adult P. clarkii, at intermolt stage, were exposed to 100 μg of 100 nm carboxylated polystyrene nanoparticles (PS NPs) through diet in a 72 h acute toxicity test. An integrated approach was conceived to assess the biological effects of PS NPs, by analyzing both transcriptomic and physiological responses. Total hemocyte counts, basal and total phenoloxidase activities, glycemia and total protein concentration were investigated in crayfish hemolymph at 0 h, 24 h, 48 h and 72 h from PS NPs administration to evaluate general stress response over time. Differentially expressed genes (DEGs) in the hemocytes and hepatopancreas were analyzed to ascertain the response of crayfish to PS NP challenge after 72 h. At a physiological level, crayfish were able to compensate for the induced stress, not exceeding generic stress thresholds. The RNA-Sequencing analysis revealed the altered expression of few genes involved in immune response, oxidative stress, gene transcription and translation, protein degradation, lipid metabolism, oxygen demand, and reproduction after PS NPs exposure. This study suggests that a low concentration of PS NPs may induce mild stress in crayfish, and sheds light on molecular pathways possibly involved in nanoplastic toxicity.
Collapse
Affiliation(s)
- Francesca Capanni
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Samuele Greco
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Noemi Tomasi
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Piero G Giulianini
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Chiara Manfrin
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| |
Collapse
|
8
|
Yin CM, Pan XY, Cao XT, Li T, Zhang YH, Lan JF. A crayfish ALF inhibits the proliferation of microbiota by binding to RPS4 and MscL of E. coli. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104106. [PMID: 33878364 DOI: 10.1016/j.dci.2021.104106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Antimicrobial peptides (AMPs), most of which are small proteins, are necessary for innate immunity against pathogens. Anti-lipopolysaccharide factor (ALF) with a conserved lipopolysaccharide binding domain (LBD) can bind to lipopolysaccharide (LPS) and neutralize LPS activity. The antibacterial mechanism of ALF, especially its role in bacteria, needs to be further investigated. In this study, the antibacterial role of an anti-lipopolysaccharide factor (PcALF5) derived from Procambarus clarkii was analyzed. PcALF5 could inhibit the replication of the microbiota in vitro and enhance the bacterial clearance ability in crayfish in vivo. Far-western blot assay results indicated that PcALF5 bound to two proteins of E. coli (approximately 25 kDa and 15 kDa). Mass spectrometry (MS), far-western blot assay, and pull-down results showed that 30S ribosomal protein S4 (RPS4, 25 kD) interacted with PcALF5. Further studies revealed that another E. coli protein binding to PcALF5 could be the large mechanosensitive channel (MscL), which is reported to participate in the transport of peptides and antibiotics. Additional assays showed that PcALF5 inhibited protein synthesis and promoted the transcription of ribosomal component genes in E. coli. Overall, these results indicate that PcALF5 could transfer into E. coli by binding to MscL and inhibit protein synthesis by interacting with RPS4. This study reveals the mechanism underlying ALF involvement in the antibacterial immune response and provides a new reference for the research on antibacterial drugs.
Collapse
Affiliation(s)
- Cheng-Ming Yin
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Yi Pan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Xiao-Tong Cao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Tong Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying-Hao Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jiang-Feng Lan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
9
|
Bouallegui Y. A Comprehensive Review on Crustaceans' Immune System With a Focus on Freshwater Crayfish in Relation to Crayfish Plague Disease. Front Immunol 2021; 12:667787. [PMID: 34054837 PMCID: PMC8155518 DOI: 10.3389/fimmu.2021.667787] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022] Open
Abstract
Freshwater crayfish immunity has received great attention due to the need for urgent conservation. This concern has increased the understanding of the cellular and humoral defense systems, although the regulatory mechanisms involved in these processes need updating. There are, however, aspects of the immune response that require clarification and integration. The particular issues addressed in this review include an overall description of the oomycete Aphanomyces astaci, the causative agent of the pandemic plague disease, which affects freshwater crayfish, and an overview of crustaceans' immunity with a focus on freshwater crayfish. It includes a classification system of hemocyte sub-types, the molecular factors involved in hematopoiesis and the differential role of the hemocyte subpopulations in cell-mediated responses, including hemocyte infiltration, inflammation, encapsulation and the link with the extracellular trap cell death pathway (ETosis). In addition, other topics discussed include the identity and functions of hyaline cells, the generation of neoplasia, and the emerging topic of the role of sessile hemocytes in peripheral immunity. Finally, attention is paid to the molecular execution of the immune response, from recognition by the pattern recognition receptors (PRRs), the role of the signaling network in propagating and maintaining the immune signals, to the effector elements such as the putative function of the Down syndrome adhesion molecules (Dscam) in innate immune memory.
Collapse
Affiliation(s)
- Younes Bouallegui
- LR01ES14 Laboratory of Environmental Biomonitoring, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
| |
Collapse
|
10
|
Lang L, Bao M, Jing W, Chen W, Wang L. Clone, identification and functional characterization of a novel toll (Shtoll1) from the freshwater crab Sinopotamon henanense in response to cadmium exposure and Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2020; 98:401-413. [PMID: 31953198 DOI: 10.1016/j.fsi.2020.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/31/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Toll is essential in innate immune system which is important for defense against bacterial, fungal and viral infections in invertebrates. Our previous study showed that cadmium (Cd) could change the expression pattern of ShToll3 in the epithelium (gills and midgut from the freshwater crab Sinopotamon henanense) infected by Aeromonas hydrophila. To investigate the diverse innate immune roles of crustacean homolog Tolls, in this study, we cloned Shtoll1 from S. henanense. The full-length cDNA of Shtoll1 was 4746 bp, with an ORF of 3033 bp encoding a putative protein of 111 amino acids, a 5'-untranslated region of 255 bp and a 3'-untranslated region of 1713 bp. Phylogenetic analysis showed that ShToll1 was clustered into the group of DmToll1, DmToll 4 and DmToll 5. In addition, the tissue distribution results showed that Shtoll1 was expressed widely in different tissues, with the highest expression in heamocytes. Besides, Shtoll1 expressions were upregulated in heamocytes and hepatopancreas after A. hydrophila infection. At the same time, the increase of Shtoll1 expressions were examined in heamocytes in response to Cd exposure and A. hydrophila infection in combination. Through western blotting and immunohistochemical analysis, the ShToll1 expressions in heamocytes were increased in response to A. hydrophila and Cd independently as well as in combination. Moreover, the mRNA level of three antimicrobial peptides (AMPs) alf5, alf6, and c-lys, which possibly responded to Cd and A. hydrophila stimulation through Shtoll1, were analyzed. Thus, we conclude that Cd expand the susceptibility of ShToll1 to A. hydrophila infection in heamocytes. This suggest that ShToll1 may contribute to the innate immune defense of S. henanense against A. hydrophila and Cd in heamocytes.
Collapse
Affiliation(s)
- Lang Lang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China
| | - Minnan Bao
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China
| | - Weixin Jing
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China
| | - Wei Chen
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Lan Wang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China.
| |
Collapse
|
11
|
Huang Y, Ren Q. Research progress in innate immunity of freshwater crustaceans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103569. [PMID: 31830502 DOI: 10.1016/j.dci.2019.103569] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/07/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Invertebrates lack adaptive immunity and innate immunity plays important roles in combating foreign invasive pathogens. Freshwater crustaceans, which are invertebrates, depend completely on their innate immune system. In recent years, many immune-related molecules in freshwater crustaceans, as well as their functions, have been identified. Three main immune signaling pathways, namely, Toll, immune deficiency (IMD), and Janus kinase-signal transducer activator of transcription (JAK/STAT) pathways, were found in freshwater crustaceans. A series of pattern recognition receptors (PRRs), including Toll receptors, lectins, lipopolysaccharide and β-1,3-glucan binding protein, scavenger receptors, Down syndrome cell adhesion molecules, and thioester-containing proteins, were reported. Prophenoloxidase activation system and antimicrobial peptide synthesis are two important immune effector systems. These components are involved in the innate immunity of freshwater crustaceans, and they function in the innate immune defense against invading pathogens. This review mainly summarizes innate immune signaling pathways, PRRs, and effector molecules in freshwater crustaceans.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China; Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, 40 Tonghu Road, Baoying, Yangzhou, Jiangsu, 225800, China
| | - Qian Ren
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
12
|
Abstract
Anti-lipopolysaccharide factors (ALFs) are a type of antimicrobial peptide (AMP) which show broad-spectrum antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, fungi and viruses. In this chapter, we review the discovery and classification of this kind of antimicrobial peptide in crustaceans. The structure and function, as well as the mechanism of antibacterial and antiviral activities of ALFs will be summarized and discussed. We will then describe the expression and regulation of various ALF genes in different crustacean species. Finally, the application prospects of ALFs in drug development and disease-resistant genetic breeding will be pointed out and discussed. The review will also discuss several key questions such as the systematic classification and expression regulation of the ALF genes, as well as the future application of ALFs and ALF-derived peptides.
Collapse
Affiliation(s)
- Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
13
|
Li C, Wang S, He J. The Two NF-κB Pathways Regulating Bacterial and WSSV Infection of Shrimp. Front Immunol 2019; 10:1785. [PMID: 31417561 PMCID: PMC6683665 DOI: 10.3389/fimmu.2019.01785] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
The outbreak of diseases ordinarily results from the disruption of the balance and harmony between hosts and pathogens. Devoid of adaptive immunity, shrimp rely largely on the innate immune system to protect themselves from pathogenic infection. Two nuclear factor-κB (NF-κB) pathways, the Toll and immune deficiency (IMD) pathways, are generally regarded as the major regulators of the immune response in shrimp, which have been extensively studied over the years. Bacterial infection can be recognized by Toll and IMD pathways, which activate two NF-κB transcription factors, Dorsal and Relish, respectively, to eventually lead to boosting the expression of various antimicrobial peptides (AMPs). In response to white-spot-syndrome-virus (WSSV) infection, these two pathways appear to be subverted and hijacked to favor viral survival. In this review, the recent progress in elucidating microbial recognition, signal transduction, and effector regulation within both shrimp Toll and IMD pathways will be discussed. We will also highlight and discuss the similarities and differences between shrimps and their Drosophila or mammalian counterparts. Understanding the interplay between pathogens and shrimp NF-κB pathways may provide new opportunities for disease-prevention strategies in the future.
Collapse
Affiliation(s)
- Chaozheng Li
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China
| | - Sheng Wang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Li C, Weng S, He J. WSSV-host interaction: Host response and immune evasion. FISH & SHELLFISH IMMUNOLOGY 2019; 84:558-571. [PMID: 30352263 DOI: 10.1016/j.fsi.2018.10.043] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
As invertebrates, shrimps rely on multiple innate defense reactions, including humoral immunity and cellular immunity to recognize and eliminate various invaders, such as viruses. White spot syndrome virus (WSSV) causes the most prevalent and devastating viral disease in penaeid shrimps, which are the most widely cultured species in the coastal waters worldwide. In the last couple of decades, studies about WSSV implicate a dual role of the immune system in protecting shrimps against the infection; these studies also explore on the pathogenesis of WSSV infection. Herein, we review our current knowledge of the innate immune responses of shrimps to WSSV, as well as the molecular mechanisms used by this virus to evade host immune responses or actively subvert them for its own benefit. Deciphering the interactions between WSSV and the shrimp host is paramount to understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during viral infection and to the development of a safe and effective WSSV defensive strategy.
Collapse
Affiliation(s)
- Chaozheng Li
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
15
|
Li H, Yin B, Wang S, Fu Q, Xiao B, Lǚ K, He J, Li C. RNAi screening identifies a new Toll from shrimp Litopenaeus vannamei that restricts WSSV infection through activating Dorsal to induce antimicrobial peptides. PLoS Pathog 2018; 14:e1007109. [PMID: 30256850 PMCID: PMC6175524 DOI: 10.1371/journal.ppat.1007109] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/08/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022] Open
Abstract
The function of Toll pathway defense against bacterial infection has been well established in shrimp, however how this pathway responds to viral infection is still largely unknown. In this study, we report the Toll4-Dorsal-AMPs cascade restricts the white spot syndrome virus (WSSV) infection of shrimp. A total of nine Tolls from Litopenaeus vannamei namely Toll1-9 are identified, and RNAi screening in vivo reveals the Toll4 is important for shrimp to oppose WSSV infection. Knockdown of Toll4 results in elevated viral loads and renders shrimp more susceptible to WSSV. Furthermore, Toll4 could be a one of upstream pattern recognition receptor (PRR) to detect WSSV, and thereby leading to nuclear translocation and phosphorylation of Dorsal, the known NF-κB transcription factor of the canonical Toll pathway. More importantly, silencing of Toll4 and Dorsal contributes to impaired expression of a specific set of antimicrobial peptides (AMPs) such as anti-LPS-factor (ALF) and lysozyme (LYZ) family, which exert potent anti-WSSV activity. Two AMPs of ALF1 and LYZ1 as representatives are demonstrated to have the ability to interact with several WSSV structural proteins to inhibit viral infection. Taken together, we therefore identify that the Toll4-Dorsal pathway mediates strong resistance to WSSV infection by inducing some specific AMPs. The TLR pathway mediated antiviral immune response is well identified in mammals, yet, Toll pathway governing this protection in invertebrates remains unknown. In the present study, we uncover that a shrimp Toll4 from a total of nine Tolls in L. vannamei confers resistance to WSSV thought inducing the NF-κB transcription factor Dorsal to inspire the production of some antimicrobial peptides (AMPs) with antiviral activity. The anti-LPS-factor (ALF) and lysozyme (LYZ) family are identified as the Toll4-Dorsal pathway targeted genes with the ability to interact with viral structural proteins in response to WSSV infection. These results suggest that the Toll receptor induces the expression of AMPs with antiviral activity could be a general antiviral mechanism in invertebrates and Toll pathway established antiviral defense could be conserved during evolution.
Collapse
Affiliation(s)
- Haoyang Li
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Bin Yin
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Sheng Wang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Qihui Fu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Bang Xiao
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Kai Lǚ
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianguo He
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
- * E-mail: (JH); (CL)
| | - Chaozheng Li
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
- * E-mail: (JH); (CL)
| |
Collapse
|
16
|
Calderón-Rosete G, González-Barrios JA, Lara-Lozano M, Piña-Leyva C, Rodríguez-Sosa L. Transcriptional Identification of Related Proteins in the Immune System of the Crayfish Procambarus clarkii. High Throughput 2018; 7:E26. [PMID: 30213058 PMCID: PMC6165390 DOI: 10.3390/ht7030026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023] Open
Abstract
The freshwater crayfish Procambarus clarkii is an animal model employed for physiological and immunological studies and is also of great economic importance in aquaculture. Although it is a species of easy husbandry, a high percentage of its production is lost annually as a result of infectious diseases. Currently, genetic information about the immune system of crustaceans is limited. Therefore, we used the abdominal nerve cord from P. clarkii to obtain its transcriptome using Next Generation Sequencing (NGS) to identify proteins that participate in the immune system. The reads were assembled de novo and consensus sequences with more than 3000 nucleotides were selected for analysis. The transcripts of the sequences of RNA were edited for annotation and sent to the GenBank database of the National Center for Biotechnology Information (NCBI). We made a list of accession numbers of the sequences which were organized by the putative role of the immune system pathway in which they participate. In this work, we report on 80 proteins identified from the transcriptome of crayfish related to the immune system, 74 of them being the first reported for P. clarkii. We hope that the knowledge of these sequences will contribute significantly to the development of future studies of the immune system in crustaceans.
Collapse
Affiliation(s)
- Gabina Calderón-Rosete
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, C. P. 04510 Ciudad de México, Mexico.
| | - Juan Antonio González-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional "Primero de Octubre" ISSSTE, Av. Instituto Politécnico Nacional 1669, 07300 Ciudad de México, Mexico.
| | - Manuel Lara-Lozano
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico.
| | - Celia Piña-Leyva
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico.
| | - Leonardo Rodríguez-Sosa
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, C. P. 04510 Ciudad de México, Mexico.
| |
Collapse
|
17
|
Huang Y, Chen Y, Hui K, Ren Q. Cloning and Characterization of Two Toll Receptors ( PcToll5 and PcToll6) in Response to White Spot Syndrome Virus in the Red Swamp Crayfish Procambarus clarkii. Front Physiol 2018; 9:936. [PMID: 30072914 PMCID: PMC6060793 DOI: 10.3389/fphys.2018.00936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/25/2018] [Indexed: 01/08/2023] Open
Abstract
Toll/Toll-like receptors are key components in the innate immune responses of invertebrates. In this study, we identified two novel Toll receptors (PcToll5 and PcToll6) from the red swamp crayfish Procambarus clarkii. The complete cDNA sequence of PcToll5 is 4247 bp, encoding a 1293 amino acid polypeptide. The full-length 4688 bp PcToll6 encodes a putative protein of 1195 amino acids. Quantitative RT-PCR analysis indicated that PcToll5 and PcToll6 were constitutively expressed in all tissues studied. The highest expression levels of PcToll5 and PcToll6 were found in the intestine and gills, respectively, and were significantly upregulated from 24 to 48 h during white spot syndrome virus (WSSV) challenge. siRNA-mediated RNA interference results showed that PcToll5 and PcToll6 might regulate the expression of anti-lipopolysaccharide factors (PcALF2 and PcALF3) in vivo. Overexpression of PcToll5 and PcToll6 in Drosophila Schneider 2 (S2) cells activated the transcription of Drosophila antimicrobial peptides, including drosomycin (Drs), metchnikowin (Mtk), and attacin A (AttA), and shrimp Penaeidin-4 (Pen4). These findings provide significant information that PcToll5 and PcToll6 may contribute to host immune defense against WSSV in P. clarkii.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, Nanjing, China
| | - Yihong Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, South China Sea Bio-Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kaimin Hui
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Qian Ren
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, China
| |
Collapse
|
18
|
Shi L, Yi S, Li Y. Genome survey sequencing of red swamp crayfish Procambarus clarkii. Mol Biol Rep 2018; 45:799-806. [PMID: 29931535 DOI: 10.1007/s11033-018-4219-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/15/2018] [Indexed: 11/24/2022]
Abstract
Red swamp crayfish, Procambarus clarkii, presently is an important aquatic commercial species in China. The crayfish is a hot area of research focus, and its genetic improvement is quite urgent for the crayfish aquaculture in China. However, the knowledge of its genomic landscape is limited. In this study, a survey of P. clarkii genome was investigated based on Illumina's Solexa sequencing platform. Meanwhile, its genome size was estimated using flow cytometry. Interestingly, the genome size estimated is about 8.50 Gb by flow cytometry and 1.86 Gb with genome survey sequencing. Based on the assembled genome sequences, total of 136,962 genes and 152,268 exons were predicted, and the predicted genes ranged from 150 to 12,807 bp in length. The survey sequences could help accelerate the progress of gene discovery involved in genetic diversity and evolutionary analysis, even though it could not successfully applied for estimation of P. clarkii genome size.
Collapse
Affiliation(s)
- Linlin Shi
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shaokui Yi
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, 1864 Shyville Road, Piketon, OH, 45661, USA
| | - Yanhe Li
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
19
|
Li YY, Chen XX, Lin FY, Chen QF, Ma XY, Liu HP. CqToll participates in antiviral response against white spot syndrome virus via induction of anti-lipopolysaccharide factor in red claw crayfish Cherax quadricarinatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 74:217-226. [PMID: 28479346 DOI: 10.1016/j.dci.2017.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
It is well known that Tolls/Toll like receptors (TLRs), a family of pattern recognition receptors, play important roles in immune responses. Previously, we found that a Toll transcript was increased in a transcriptome library of haematopoietic tissue (Hpt) cells from the red claw crayfish Cherax quadricarinatus post white spot syndrome virus infection. In the present study, a full-length cDNA sequence of Toll receptor (named as CqToll) was identified with 3482 bp which contained an open reading frame of 3021 bp encoding 1006 amino acids. The predicted structure of CqToll protein was composed of three domains, including an extracellular domain of 19 leucine-rich repeats residues, a transmembrane domain and an intracellular domain of 138 amino acids. Tissue distribution analysis revealed that CqToll was expressed widely in various tissues determined from red claw crayfish with highest expression in haemocyte but lowest expression in eyestalk. Importantly, significant lower expression of the anti-lipopolysacchride factor (CqALF), an antiviral antimicrobial peptide (AMP) in crustaceans, but not CqCrustin was observed after gene silencing of CqToll in crayfish Hpt cell cultures, indicating that the CqALF was likely to be positively regulated via Toll pathway in red claw crayfish. Furthermore, the transcription of both an immediate early gene and a late envelope protein gene VP28 of WSSV were clearly enhanced in Hpt cells if silenced with CqToll, suggesting that the increase of WSSV replication was likely to be caused by the lower expression of the CqALF resulted from the loss-of-function of CqToll. Taken together, these data implied that CqToll might play a key role in anti-WSSV response via induction of CqALF in a crustacean C. quadricarinatus.
Collapse
Affiliation(s)
- Yan-Yao Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China; School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Xiao-Xiao Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China; School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Feng-Yu Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China
| | - Qiu-Fan Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China
| | - Xing-Yuan Ma
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China.
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China.
| |
Collapse
|