1
|
Shen W, Sun J, Xiao Z, Feng P, Zhang T, He G, Sang X. Narrow and Stripe Leaf 2 Regulates Leaf Width by Modulating Cell Cycle Progression in Rice. RICE (NEW YORK, N.Y.) 2023; 16:20. [PMID: 37071312 PMCID: PMC10113404 DOI: 10.1186/s12284-023-00634-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Leaf morphology is an important component of the idea plant architecture that extensively influences photosynthesis, transpiration, and ultimately grain yield in crops. However, the genetic and molecular mechanisms regulating this morphology remain largely unclear. RESULTS In this study, a mutant showing a narrow and stripe leaf phonotype, designated nsl2, was obtained. Histological analysis revealed defects in the vascular system and reduced epidermal cell number in the nsl2, while the cell size remained unchanged. Map-based cloning and genetic complementation experiments revealed that NSL2, which encodes a small subunit of ribonucleotide reductases (RNRs), is a null allelic with ST1 and SDL. The NSL2 was expressed in variety of tissues, with the highest levels detected in leaves, and its protein was localized in the nucleus and cytoplasm. The dNTPs level was altered in the nsl2 mutant, and thereby affecting the dNTPs pool balance. In addition, flow cytometric analysis and the altered transcript level of genes related to cell cycle indicated that NSL2 affects cell cycle progression. CONCLUSIONS Our findings here suggest that NSL2 function in the synthesis of dNTP, the deficient of which leads to DNA synthesis block and in turn affects cell cycle progression, and ultimately decreased cell number and narrow leaf in the nsl2 plant.
Collapse
Affiliation(s)
- Wenqiang Shen
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Jiajie Sun
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Zan Xiao
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Ping Feng
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Ting Zhang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Guanghua He
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Xianchun Sang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| |
Collapse
|
2
|
Sekhar S, Das S, Panda D, Mohanty S, Mishra B, Kumar A, Navadagi DB, Sah RP, Pradhan SK, Samantaray S, Baig MJ, Behera L, Mohapatra T. Identification of microRNAs That Provide a Low Light Stress Tolerance-Mediated Signaling Pathway during Vegetative Growth in Rice. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192558. [PMID: 36235424 PMCID: PMC9614602 DOI: 10.3390/plants11192558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 05/27/2023]
Abstract
Low light intensity affects several physiological parameters during the different growth stages in rice. Plants have various regulatory mechanisms to cope with stresses. One of them is the differential and temporal expression of genes, which is governed by post-transcriptional gene expression regulation through endogenous miRNAs. To decipher low light stress-responsive miRNAs in rice, miRNA expression profiling was carried out using next-generation sequencing of low-light-tolerant (Swarnaprabha) and -sensitive (IR8) rice genotypes through Illumina sequencing. Swarnaprabha and IR8 were subjected to 25% low light treatment for one day, three days, and five days at the active tillering stage. More than 43 million raw reads and 9 million clean reads were identified in Swarnaprabha, while more than 41 million raw reads and 8.5 million clean reads were identified in IR8 after NGS. Importantly, 513 new miRNAs in rice were identified, whose targets were mostly regulated by the genes involved in photosynthesis and metabolic pathways. Additionally, 114 known miRNAs were also identified. Five novel (osa-novmiR1, osa-novmiR2, osa-novmiR3, osa-novmiR4, and osa-novmiR5) and three known (osa-miR166c-3p, osa-miR2102-3p, and osa-miR530-3p) miRNAs were selected for their expression validation through miRNA-specific qRT-PCR. The expression analyses of most of the predicted targets of corresponding miRNAs show negative regulation. Hence, miRNAs modulated the expression of genes providing tolerance/susceptibility to low light stress. This information might be useful in the improvement of crop productivity under low light stress.
Collapse
Affiliation(s)
- Sudhanshu Sekhar
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack 753006, India
| | - Swagatika Das
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack 753006, India
| | - Darshan Panda
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack 753006, India
| | - Soumya Mohanty
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack 753006, India
| | - Baneeta Mishra
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack 753006, India
| | - Awadhesh Kumar
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack 753006, India
| | | | - Rameswar Prasad Sah
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack 753006, India
| | - Sharat Kumar Pradhan
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack 753006, India
| | - Sanghamitra Samantaray
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack 753006, India
| | - Mirza Jaynul Baig
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack 753006, India
| | - Lambodar Behera
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack 753006, India
| | - Trilochan Mohapatra
- Former Secretary DARE, DG, ICAR, Government. of India, New Delhi 11001, India
| |
Collapse
|
3
|
Gu M, Lu Q, Liu Y, Cui M, Si Y, Wu H, Chai T, Ling HQ. Requirement and functional redundancy of two large ribonucleotide reductase subunit genes for cell cycle, chloroplast biogenesis and photosynthesis in tomato. ANNALS OF BOTANY 2022; 130:173-187. [PMID: 35700127 PMCID: PMC9445600 DOI: 10.1093/aob/mcac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Ribonucleotide reductase (RNR), functioning in the de novo synthesis of deoxyribonucleoside triphosphates (dNTPs), is crucial for DNA replication and cell cycle progression. In most plants, the large subunits of RNR have more than one homologous gene. However, the different functions of these homologous genes in plant development remain unknown. In this study, we obtained the mutants of two large subunits of RNR in tomato and studied their functions. METHODS The mutant ylc1 was obtained by ethyl methyl sulfonate (EMS) treatment. Through map-based cloning, complementation and knock-out experiments, it was confirmed that YLC1 encodes a large subunit of RNR (SlRNRL1). The expression level of the genes related to cell cycle progression, chloroplast biogenesis and photosynthesis was assessed by RNA-sequencing. In addition, we knocked out SlRNRL2 (a SlRNRL1 homologue) using CRISPR-Cas9 technology in the tomato genome, and we down-regulated SlRNRL2 expression in the genetic background of slrnrl1-1 using a tobacco rattle virus-induced gene silencing (VIGS) system. KEY RESULTS The mutant slrnrl1 exhibited dwarf stature, chlorotic young leaves and smaller fruits. Physiological and transcriptomic analyses indicated that SlRNRL1 plays a crucial role in the regulation of cell cycle progression, chloroplast biogenesis and photosynthesis in tomato. The slrnrl2 mutant did not exhibit any visible phenotype. SlRNRL2 has a redundant function with SlRNRL1, and the double mutant slrnrl1slrnrl2 is lethal. CONCLUSIONS SlRNRL1 is essential for cell cycle progression, chloroplast biogenesis and photosynthesis. In addition, SlRNRL1 and SlRNRL2 possess redundant functions and at least one of these RNRLs is required for tomato survival, growth and development.
Collapse
Affiliation(s)
| | | | - Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Man Cui
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yaoqi Si
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Tuanyao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
4
|
Higgins J, Santos B, Khanh TD, Trung KH, Duong TD, Doai NTP, Hall A, Dyer S, Ham LH, Caccamo M, De Vega J. Genomic regions and candidate genes selected during the breeding of rice in Vietnam. Evol Appl 2022; 15:1141-1161. [PMID: 35899250 PMCID: PMC9309459 DOI: 10.1111/eva.13433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Vietnam harnesses a rich diversity of rice landraces adapted to a range of conditions, which constitute a largely untapped source of diversity for the continuous improvement of cultivars. We previously identified a strong population structure in Vietnamese rice, which is captured in five Indica and four Japonica subpopulations, including an outlying Indica-5 group. Here, we leveraged that strong differentiation and 672 native rice genomes to identify genomic regions and genes putatively selected during the breeding of rice in Vietnam. We identified significant distorted patterns in allele frequency (XP-CLR) and population differentiation scores (F ST) resulting from differential selective pressures between native subpopulations, and later annotated them with QTLs previously identified by GWAS in the same panel. We particularly focussed on the outlying Indica-5 subpopulation because of its likely novelty and differential evolution, where we annotated 52 selected regions, which represented 8.1% of the rice genome. We annotated the 4576 genes in these regions and selected 65 candidate genes as promising breeding targets, several of which harboured alleles with nonsynonymous substitutions. Our results highlight genomic differences between traditional Vietnamese landraces, which are likely the product of adaption to multiple environmental conditions and regional culinary preferences in a very diverse country. We also verified the applicability of this genome scanning approach to identify potential regions harbouring novel loci and alleles to breed a new generation of sustainable and resilient rice.
Collapse
Affiliation(s)
| | | | - Tran Dang Khanh
- Agriculture Genetics Institute (AGI)HanoiVietnam
- Vietnam National University of AgricultureHanoiVietnam
| | | | | | | | | | | | - Le Huy Ham
- Agriculture Genetics Institute (AGI)HanoiVietnam
| | | | | |
Collapse
|
5
|
Li JY, Yang C, Tian YY, Liu JX. Regulation of Chloroplast Development and Function at Adverse Temperatures in Plants. PLANT & CELL PHYSIOLOGY 2022; 63:580-591. [PMID: 35141744 DOI: 10.1093/pcp/pcac022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The chloroplast is essential for photosynthesis, plant growth and development. As semiautonomous organelles, the biogenesis and development of chloroplasts need to be well-regulated during plant growth and stress responses. Low or high ambient temperatures are adverse environmental stresses that affect crop growth and productivity. As sessile organisms, plants regulate the development and function of chloroplasts in a fluctuating temperature environment to maintain normal photosynthesis. This review focuses on the molecular mechanisms and regulatory factors required for chloroplast biogenesis and development under cold or heat stress conditions and highlights the importance of chloroplast gene transcription, RNA metabolism, ribosome function and protein homeostasis essential for chloroplast development under adverse temperature conditions.
Collapse
Affiliation(s)
- Jin-Yu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang 310027, China
| | - Chuang Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang 310027, China
| | - Ying-Ying Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang 310027, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
6
|
Sun L, Wang Y, Ma D, Wang L, Zhang X, Ding Y, Fan K, Xu Z, Yuan C, Jia H, Ren Y, Ding Z. Differential responses of the rhizosphere microbiome structure and soil metabolites in tea (Camellia sinensis) upon application of cow manure. BMC Microbiol 2022; 22:55. [PMID: 35164712 PMCID: PMC8842532 DOI: 10.1186/s12866-022-02470-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background The rhizosphere is the narrow zone of soil immediately surrounding the root, and it is a critical hotspot of microbial activity, strongly influencing the physiology and development of plants. For analyzing the relationship between the microbiome and metabolome in the rhizosphere of tea (Camellia sinensis) plants, the bacterial composition and its correlation to soil metabolites were investigated under three different fertilization treatments (unfertilized, urea, cow manure) in different growing seasons (spring, early and late summer). Results The bacterial phyla Proteobacteria, Bacteroidetes, Acidobacteria and Actinobacteria dominated the rhizosphere of tea plants regardless of the sampling time. These indicated that the compositional shift was associated with different fertilizer/manure treatments as well as the sampling time. However, the relative abundance of these enriched bacteria varied under the three different fertilizer regimes. Most of the enriched metabolic pathways stimulated by different fertilizer application were all related to sugars, amino acids fatty acids and alkaloids metabolism. Organic acids and fatty acids were potential metabolites mediating the plant-bacteria interaction in the rhizosphere. Bacteria in the genera Proteiniphilum, Fermentimonas and Pseudomonas in spring, Saccharimonadales and Gaiellales in early summer, Acidobacteriales and Gaiellales in late summer regulated relative contents of organic and fatty acids. Conclusion This study documents the profound changes to the rhizosphere microbiome and bacterially derived metabolites under different fertilizer regimes and provides a conceptual framework towards improving the performance of tea plantations. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02470-9.
Collapse
Affiliation(s)
- Litao Sun
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China.,College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Dexin Ma
- College of Communication, Qingdao Agricultural University, Qingdao, China
| | - Linlin Wang
- College of Communication, Qingdao Agricultural University, Qingdao, China
| | - Xiaomei Zhang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, China
| | - Yiqian Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Ze Xu
- Tea Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Changbo Yuan
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Houzhen Jia
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yonglin Ren
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia.
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China. .,College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia.
| |
Collapse
|
7
|
Dark/Light Treatments Followed by γ-Irradiation Increase the Frequency of Leaf-Color Mutants in Cymbidium. PLANTS 2020; 9:plants9040532. [PMID: 32326016 PMCID: PMC7238429 DOI: 10.3390/plants9040532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/16/2022]
Abstract
Radiation randomly induces chromosomal mutations in plants. However, it was recently found that the frequency of flower-color mutants could be specifically increased by upregulating anthocyanin pathway gene expression before radiation treatments. The mechanisms of chlorophyll biosynthesis and degradation are active areas of plant study because chlorophyll metabolism is closely connected to photosynthesis. In this study, we determined the dark/light treatment conditions that resulted in upregulation of the expression levels of six chlorophyll pathway genes, uroporphyrinogen III synthase (HEMD), uroporphyrinogen III decarboxylase (HEME2), NADPH-protochlorophyllide oxidoreductase (POR) A (PORA), chlorophyll synthase (CHLG), chlorophyllase (CLH2), and red chlorophyll catabolite reductase (RCCR), and measured their effects on the γ-irradiation-induced frequencies of leaf-color mutants in two Cymbidium cultivars. To degrade chlorophyll in rhizomes, 60–75 days of dark treatment were required. To upregulate the expressions of chlorophyll pathway genes, 10 days of light treatment appeared to be optimal. Dark/light treatments followed by γ-irradiation increased chlorophyll-related leaf mutants by 1.4- to 2.0-fold compared with γ-ray treatment alone. Dark/light treatments combined with γ-irradiation increased the frequency of leaf-color mutants in Cymbidium, which supports the wider implementation of a plant breeding methodology that increases the mutation frequency of a target trait by controlling the expression of target trait-related genes.
Collapse
|
8
|
Hu L, Zhang H, Xie C, Wang J, Zhang J, Wang H, Weng Y, Chen P, Li Y. A mutation in CsHD encoding a histidine and aspartic acid domain-containing protein leads to yellow young leaf-1 (yyl-1) in cucumber (Cucumis sativus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110407. [PMID: 32081257 DOI: 10.1016/j.plantsci.2020.110407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 05/24/2023]
Abstract
Leaf color mutants are an ideal tool to study chlorophyll biosynthesis, chloroplast development and photosynthesis. In this study, we identified an EMS-induced yellow young leaf mutant C777. The mutant exhibited yellow cotyledons and emerging true leaves with stay-green dots that turn green gradually with leaf growth. Segregation analysis in several populations indicated that the mutant C777 was controlled by a recessive gene yyl-1. Fine mapping delimited the yyl-1 locus to a 45.3 kb region harboring 8 putative genes, but only one SNP (G to A) was identified between C777 and its wild-type parental line in this region which occurred in the 13th exon of CsHD that encodes a histidine and aspartic acid (HD) domain containing protein. This nonsense mutation introduced a stop codon and thus a premature protein. Uniqueness of this mutant allele was verified in 515 cucumber lines. Quantitative real-time PCR revealed significantly reduced expression of CsHD gene in the mutant. Further, silencing the NbHD gene by VIGS in tobacco resulted in virescent young leaves and significantly down-regulated expression of HD gene. These results strongly supported the association of the CsHD gene with the virescent young leaf phenotype in C777. This is the first report to clone and characterize the CsHD gene in the horticultural crops. The results may help understand the functions of the HD gene in chloroplast development and chlorophyll biosynthesis in plants.
Collapse
Affiliation(s)
- Liangliang Hu
- College of Horticulture, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Haiqiang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Chen Xie
- College of Horticulture, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Jin Wang
- College of Horticulture, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Jiayu Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Hui Wang
- College of Horticulture, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Yiqun Weng
- USDA-ARS, Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, Shanxi, 712100, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, Shanxi, 712100, China.
| |
Collapse
|
9
|
Kim SH, Kim SW, Lim GH, Lyu JI, Choi HI, Jo YD, Kang SY, Kang BC, Kim JB. Transcriptome analysis to identify candidate genes associated with the yellow-leaf phenotype of a Cymbidium mutant generated by γ-irradiation. PLoS One 2020; 15:e0228078. [PMID: 31995594 PMCID: PMC6988911 DOI: 10.1371/journal.pone.0228078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/07/2020] [Indexed: 11/23/2022] Open
Abstract
Leaf color is an important agronomic trait in flowering plants, including orchids. However, factors underlying leaf phenotypes in plants remain largely unclear. A mutant displaying yellow leaves was obtained by the γ-ray-based mutagenesis of a Cymbidium orchid and characterized using RNA sequencing. A total of 144,918 unigenes obtained from over 25 million reads were assigned to 22 metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes database. In addition, gene ontology was used to classify the predicted functions of transcripts into 73 functional groups. The RNA sequencing analysis identified 2,267 differentially expressed genes between wild-type and mutant Cymbidium sp. Genes involved in the chlorophyll biosynthesis and degradation, as well as ion transport, were identified and assayed for their expression levels in wild-type and mutant plants using quantitative real-time profiling. No critical expression changes were detected in genes involved in chlorophyll biosynthesis. In contrast, seven genes involved in ion transport, including two metal ion transporters, were down-regulated, and chlorophyllase 2, associated with chlorophyll degradation, was up-regulated. Together, these results suggest that alterations in chlorophyll metabolism and/or ion transport might contribute to leaf color in Cymbidium orchids.
Collapse
Affiliation(s)
- Sang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Se Won Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Gah-Hyun Lim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Jae Il Lyu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Yeong Deuk Jo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Si-Yong Kang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| |
Collapse
|
10
|
Zhu X, Ze M, Yin J, Chern M, Wang M, Zhang X, Deng R, Li Y, Liao H, Wang L, Tu B, Song L, He M, Li S, Wang WM, Chen X, Wang J, Li W. A phosphofructokinase B-type carbohydrate kinase family protein, PFKB1, is essential for chloroplast development at early seedling stage in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110295. [PMID: 31779907 DOI: 10.1016/j.plantsci.2019.110295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/03/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Among the phosphofructokinase B-type carbohydrate kinase (PCK) family proteins, only few proteins, like the FRUCTOKINASE-LIKE 1 and 2, have been functionally characterized in regulation of chloroplast development. Here, we report the involvement of a PCK protein PFKB1 in chloroplast development by identification of a new rice mutant, revertible early yellowing Kitaake 2 [rey(k2)]. The mutant rey(k2) shows yellow leaf phenotype, reduced photosynthetic pigments, and retarded chloroplast development during early stages of seedlings, but gradually recovered at later stages. The phenotype of rey(k2) is resulted from the disruption of the PFKB1 protein. The Pfkb1 gene is ubiquitously expressed, and its protein is mainly targeted to the chloroplast and, in some cells, to the nucleus. In addition, the PFKB1 protein possesses phosphofructokinase activity in vitro. The rey(k2) mutant affects RNA levels of chloroplast-associated genes. In particular, the nuclear-encoded RNA polymerase (NEP)-dependent genes are expressed at a sustained high level in rey(k2) even after turning green, indicating that PFKB1 is essential for suppressing the expression of NEP-dependent genes. Taken together, our study suggests that PFKB1 functions as a novel regulator indispensable for early chloroplast development, at least partly by regulating chloroplast-associated genes.
Collapse
Affiliation(s)
- Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Mu Ze
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Mawsheng Chern
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Mingrui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Xiang Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Rui Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Yongzhen Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Haicheng Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Long Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Bin Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China.
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China.
| |
Collapse
|
11
|
Rice Senescence-Induced Receptor-Like Kinase ( OsSRLK) Is Involved in Phytohormone-Mediated Chlorophyll Degradation. Int J Mol Sci 2019; 21:ijms21010260. [PMID: 31905964 PMCID: PMC6982081 DOI: 10.3390/ijms21010260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 01/26/2023] Open
Abstract
Chlorophyll breakdown is a vital catabolic process of leaf senescence as it allows the recycling of nitrogen and other nutrients. In the present study, we isolated rice senescence-induced receptor-like kinase (OsSRLK), whose transcription was upregulated in senescing rice leaves. The detached leaves of ossrlk mutant (ossrlk) contained more green pigment than those of the wild type (WT) during dark-induced senescence (DIS). HPLC and immunoblot assay revealed that degradation of chlorophyll and photosystem II proteins was repressed in ossrlk during DIS. Furthermore, ultrastructural analysis revealed that ossrlk leaves maintained the chloroplast structure with intact grana stacks during dark incubation; however, the retained green color and preserved chloroplast structures of ossrlk did not enhance the photosynthetic competence during age-dependent senescence in autumn. In ossrlk, the panicles per plant was increased and the spikelets per panicle were reduced, resulting in similar grain productivity between WT and ossrlk. By transcriptome analysis using RNA sequencing, genes related to phytohormone, senescence, and chlorophyll biogenesis were significantly altered in ossrlk compared to those in WT during DIS. Collectively, our findings indicate that OsSRLK may degrade chlorophyll by participating in a phytohormone-mediated pathway.
Collapse
|
12
|
Alamin M, Zeng DD, Sultana MH, Qin R, Jin XL, Shi CH. Rice SDSFL1 plays a critical role in the regulation of plant structure through the control of different phytohormones and altered cell structure. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:110-123. [PMID: 30253267 DOI: 10.1016/j.jplph.2018.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/09/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Semi-dwarfism is one of the most important agronomic traits for many cereal crops. In the present study, a mutant with semi-dwarf and short flag leaf 1, sdsfl1, was identified and characterized. The sdsfl1 mutant demonstrated some distinguished structural alterations, including shorter plant height and flag leaf length, increased tiller numbers and flag leaf width, and decreased panicle length compared with those of wild type (WT). Genetic analysis suggested that the mutant traits were completely controlled by a single recessive gene. The SDSFL1 gene was mapped to the long arm of chromosome 3 within a region of 44.6 kb between InDel markers A3P8.3 and A3P8.4. The DNA sequence analysis revealed that there was only a T to C substitution in the coding region of LOC_Os03g63970, resulting in the substitution of Tryptophan (Try) to Arginine (Arg) and encoding a GA 20 oxidase 1 protein of 372 amino acid residues. Photosynthesis analysis showed that the photosynthetic rate (Pn), stomatal conductance (Gs), and intercellular CO2 concentration (Ci) were significantly increased in sdsfl1. Chlorophyll a (Chl a), total Chl, and carotenoid contents were significantly increased in sdsfl1 compared with those in WT. sdsfl1 carried a reduced level of GA3 but reacted to exogenously applied gibberellins (GA). Moreover, the levels of abscisic acid (ABA), indole 3-acetic acid (IAA), and salicylic acid (SA) were notably improved in sdsfl1, whereas there was no noteworthy change in jasmonic acid (JA). The results thus offer a visible foundation for the molecular and physiological analysis of the SDSFL1 gene, which might participate in various functional pathways for controlling plant height and leaf length in rice breeding.
Collapse
Affiliation(s)
- Md Alamin
- Department of Agronomy, Zhejiang University, Hangzhou 310058, China
| | - Dong-Dong Zeng
- Department of Agronomy, Zhejiang University, Hangzhou 310058, China
| | | | - Ran Qin
- Department of Agronomy, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Li Jin
- Department of Agronomy, Zhejiang University, Hangzhou 310058, China
| | - Chun-Hai Shi
- Department of Agronomy, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Zhang S, Tang S, Tang C, Luo M, Jia G, Zhi H, Diao X. SiSTL2 Is Required for Cell Cycle, Leaf Organ Development, Chloroplast Biogenesis, and Has Effects on C 4 Photosynthesis in Setaria italica (L.) P. Beauv. FRONTIERS IN PLANT SCIENCE 2018; 9:1103. [PMID: 30105043 PMCID: PMC6077218 DOI: 10.3389/fpls.2018.01103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/09/2018] [Indexed: 05/20/2023]
Abstract
Deoxycytidine monophosphate deaminase (DCD) is a key enzyme in the de novo dTTP biosynthesis pathway. Previous studies have indicated that DCD plays key roles in the maintenance of the balance of dNTP pools, cell cycle progression, and plant development. However, few studies have elucidated the functions of the DCD gene in Panicoideae plants. Setaria has been proposed as an ideal model of Panicoideae grasses, especially for C4 photosynthesis research. Here, a Setaria italica stripe leaf mutant (sistl2) was isolated from EMS-induced lines of "Yugu1," the wild-type parent. The sistl2 mutant exhibited semi-dwarf, striped leaves, abnormal chloroplast ultrastructure, and delayed cell cycle progression compared with Yugu1. High-throughput sequencing and map-based cloning identified the causal gene SiSTL2, which encodes a DCD protein. The occurrence of a single-base G to A substitution in the fifth intron introduced alternative splicing, which led to the early termination of translation. Further physiological and transcriptomic investigation indicated that SiSTL2 plays an essential role in the regulation of chloroplast biogenesis, cell cycle, and DNA replication, which suggested that the gene has conserved functions in both foxtail millet and rice. Remarkably, in contrast to DCD mutants in C3 rice, sistl2 showed a significant reduction in leaf cell size and affected C4 photosynthetic capacity in foxtail millet. qPCR showed that SiSTL2 had a similar expression pattern to typical C4 genes in response to a low CO2 environment. Moreover, the loss of function of SiSTL2 resulted in a reduction of leaf 13C content and the enrichment of DEGs in photosynthetic carbon fixation. Our research provides in-depth knowledge of the role of DCD in the C4 photosynthesis model S. italica and proposed new directions for further study of the function of DCD.
Collapse
Affiliation(s)
- Shuo Zhang
- These authors have contributed equally to this work
| | - Sha Tang
- These authors have contributed equally to this work
| | | | | | | | - Hui Zhi
- *Correspondence: Hui Zhi, Xianmin Diao,
| | | |
Collapse
|