1
|
Bai W, Huang M, Li C, Li J. The biological principles and advanced applications of DSB repair in CRISPR-mediated yeast genome editing. Synth Syst Biotechnol 2023; 8:584-596. [PMID: 37711546 PMCID: PMC10497738 DOI: 10.1016/j.synbio.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
To improve the performance of yeast cell factories for industrial production, extensive CRISPR-mediated genome editing systems have been applied by artificially creating double-strand breaks (DSBs) to introduce mutations with the assistance of intracellular DSB repair. Diverse strategies of DSB repair are required to meet various demands, including precise editing or random editing with customized gRNAs or a gRNA library. Although most yeasts remodeling techniques have shown rewarding performance in laboratory verification, industrial yeast strain manipulation relies only on very limited strategies. Here, we comprehensively reviewed the molecular mechanisms underlying recent industrial applications to provide new insights into DSB cleavage and repair pathways in both Saccharomyces cerevisiae and other unconventional yeast species. The discussion of DSB repair covers the most frequently used homologous recombination (HR) and nonhomologous end joining (NHEJ) strategies to the less well-studied illegitimate recombination (IR) pathways, such as single-strand annealing (SSA) and microhomology-mediated end joining (MMEJ). Various CRISPR-based genome editing tools and corresponding gene editing efficiencies are described. Finally, we summarize recently developed CRISPR-based strategies that use optimized DSB repair for genome-scale editing, providing a direction for further development of yeast genome editing.
Collapse
Affiliation(s)
- Wenxin Bai
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, PR China
- The BIT-QUB International Joint Laboratory in Synthetic Biology, Beijing, 100081, PR China
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, David Keir Building, Queen's University Belfast, Stranmillis Road, Northern Ireland, BT9 5AG, Belfast, United Kingdom
- The BIT-QUB International Joint Laboratory in Synthetic Biology, Beijing, 100081, PR China
| | - Chun Li
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, PR China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Jun Li
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, PR China
- The BIT-QUB International Joint Laboratory in Synthetic Biology, Beijing, 100081, PR China
| |
Collapse
|
2
|
Wacholder A, Carvunis AR. Biological factors and statistical limitations prevent detection of most noncanonical proteins by mass spectrometry. PLoS Biol 2023; 21:e3002409. [PMID: 38048358 PMCID: PMC10721188 DOI: 10.1371/journal.pbio.3002409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 12/14/2023] [Accepted: 10/30/2023] [Indexed: 12/06/2023] Open
Abstract
Ribosome profiling experiments indicate pervasive translation of short open reading frames (ORFs) outside of annotated protein-coding genes. However, shotgun mass spectrometry (MS) experiments typically detect only a small fraction of the predicted protein products of this noncanonical translation. The rarity of detection could indicate that most predicted noncanonical proteins are rapidly degraded and not present in the cell; alternatively, it could reflect technical limitations. Here, we leveraged recent advances in ribosome profiling and MS to investigate the factors limiting detection of noncanonical proteins in yeast. We show that the low detection rate of noncanonical ORF products can largely be explained by small size and low translation levels and does not indicate that they are unstable or biologically insignificant. In particular, proteins encoded by evolutionarily young genes, including those with well-characterized biological roles, are too short and too lowly expressed to be detected by shotgun MS at current detection sensitivities. Additionally, we find that decoy biases can give misleading estimates of noncanonical protein false discovery rates, potentially leading to false detections. After accounting for these issues, we found strong evidence for 4 noncanonical proteins in MS data, which were also supported by evolution and translation data. These results illustrate the power of MS to validate unannotated genes predicted by ribosome profiling, but also its substantial limitations in finding many biologically relevant lowly expressed proteins.
Collapse
Affiliation(s)
- Aaron Wacholder
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
3
|
Wacholder A, Carvunis AR. Biological Factors and Statistical Limitations Prevent Detection of Most Noncanonical Proteins by Mass Spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531963. [PMID: 36945638 PMCID: PMC10028962 DOI: 10.1101/2023.03.09.531963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Ribosome profiling experiments indicate pervasive translation of short open reading frames (ORFs) outside of annotated protein-coding genes. However, shotgun mass spectrometry experiments typically detect only a small fraction of the predicted protein products of this noncanonical translation. The rarity of detection could indicate that most predicted noncanonical proteins are rapidly degraded and not present in the cell; alternatively, it could reflect technical limitations. Here we leveraged recent advances in ribosome profiling and mass spectrometry to investigate the factors limiting detection of noncanonical proteins in yeast. We show that the low detection rate of noncanonical ORF products can largely be explained by small size and low translation levels and does not indicate that they are unstable or biologically insignificant. In particular, proteins encoded by evolutionarily young genes, including those with well-characterized biological roles, are too short and too lowly-expressed to be detected by shotgun mass spectrometry at current detection sensitivities. Additionally, we find that decoy biases can give misleading estimates of noncanonical protein false discovery rates, potentially leading to false detections. After accounting for these issues, we found strong evidence for four noncanonical proteins in mass spectrometry data, which were also supported by evolution and translation data. These results illustrate the power of mass spectrometry to validate unannotated genes predicted by ribosome profiling, but also its substantial limitations in finding many biologically relevant lowly-expressed proteins.
Collapse
|
4
|
Wacholder A, Parikh SB, Coelho NC, Acar O, Houghton C, Chou L, Carvunis AR. A vast evolutionarily transient translatome contributes to phenotype and fitness. Cell Syst 2023; 14:363-381.e8. [PMID: 37164009 PMCID: PMC10348077 DOI: 10.1016/j.cels.2023.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/30/2023] [Accepted: 04/06/2023] [Indexed: 05/12/2023]
Abstract
Translation is the process by which ribosomes synthesize proteins. Ribosome profiling recently revealed that many short sequences previously thought to be noncoding are pervasively translated. To identify protein-coding genes in this noncanonical translatome, we combine an integrative framework for extremely sensitive ribosome profiling analysis, iRibo, with high-powered selection inferences tailored for short sequences. We construct a reference translatome for Saccharomyces cerevisiae comprising 5,400 canonical and almost 19,000 noncanonical translated elements. Only 14 noncanonical elements were evolving under detectable purifying selection. A representative subset of translated elements lacking signatures of selection demonstrated involvement in processes including DNA repair, stress response, and post-transcriptional regulation. Our results suggest that most translated elements are not conserved protein-coding genes and contribute to genotype-phenotype relationships through fast-evolving molecular mechanisms.
Collapse
Affiliation(s)
- Aaron Wacholder
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Saurin Bipin Parikh
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Integrative Systems Biology Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nelson Castilho Coelho
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Omer Acar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Joint CMU-Pitt PhD Program in Computational Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Carly Houghton
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Joint CMU-Pitt PhD Program in Computational Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lin Chou
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Integrative Systems Biology Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
5
|
Jagadeesan SK, Al-gafari M, Wang J, Takallou S, Allard D, Hajikarimlou M, Kazmirchuk TDD, Moteshareie H, Said KB, Nokhbeh R, Smith M, Samanfar B, Golshani A. DBP7 and YRF1-6 Are Involved in Cell Sensitivity to LiCl by Regulating the Translation of PGM2 mRNA. Int J Mol Sci 2023; 24:ijms24021785. [PMID: 36675300 PMCID: PMC9864399 DOI: 10.3390/ijms24021785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/17/2023] Open
Abstract
Lithium chloride (LiCl) has been widely researched and utilized as a therapeutic option for bipolar disorder (BD). Several pathways, including cell signaling and signal transduction pathways in mammalian cells, are shown to be regulated by LiCl. LiCl can negatively control the expression and activity of PGM2, a phosphoglucomutase that influences sugar metabolism in yeast. In the presence of galactose, when yeast cells are challenged by LiCl, the phosphoglucomutase activity of PGM2p is decreased, causing an increase in the concentration of toxic galactose metabolism intermediates that result in cell sensitivity. Here, we report that the null yeast mutant strains DBP7∆ and YRF1-6∆ exhibit increased LiCl sensitivity on galactose-containing media. Additionally, we demonstrate that DBP7 and YRF1-6 modulate the translational level of PGM2 mRNA, and the observed alteration in translation seems to be associated with the 5'-untranslated region (UTR) of PGM2 mRNA. Furthermore, we observe that DBP7 and YRF1-6 influence, to varying degrees, the translation of other mRNAs that carry different 5'-UTR secondary structures.
Collapse
Affiliation(s)
- Sasi Kumar Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Mustafa Al-gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jiashu Wang
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Danielle Allard
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Thomas David Daniel Kazmirchuk
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Houman Moteshareie
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Kamaledin B. Said
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Hail 55476, Saudi Arabia
| | - Reza Nokhbeh
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Myron Smith
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Bahram Samanfar
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, ON K1A 0C6, Canada
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Correspondence:
| |
Collapse
|
6
|
Jagadeesan SK, Potter T, Al-Gafari M, Hooshyar M, Hewapathirana CM, Takallou S, Hajikarimlou M, Burnside D, Samanfar B, Moteshareie H, Smith M, Golshani A. Discovery and identification of genes involved in DNA damage repair in yeast. Gene 2022; 831:146549. [PMID: 35569766 DOI: 10.1016/j.gene.2022.146549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/16/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022]
Abstract
DNA repair defects are common in tumour cells and can lead to misrepair of double-strand breaks (DSBs), posing a significant challenge to cellular integrity. The overall mechanisms of DSB have been known for decades. However, the list of the genes that affect the efficiency of DSB repair continues to grow. Additional factors that play a role in DSB repair pathways have yet to be identified. In this study, we present a computational approach to identify novel gene functions that are involved in DNA damage repair in Saccharomyces cerevisiae. Among the primary candidates, GAL7, YMR130W, and YHI9 were selected for further analysis since they had not previously been identified as being active in DNA repair pathways. Originally, GAL7 was linked to galactose metabolism. YHI9 and YMR130W encode proteins of unknown functions. Laboratory testing of deletion strains gal7Δ, ymr130wΔ, and yhi9Δ implicated all 3 genes in Homologous Recombination (HR) and/or Non-Homologous End Joining (NHEJ) repair pathways, and enhanced sensitivity to DNA damage-inducing drugs suggested involvement in the broader DNA damage repair machinery. A subsequent genetic interaction analysis revealed interconnections of these three genes, most strikingly through SIR2, SIR3 and SIR4 that are involved in chromatin regulation and DNA damage repair network.
Collapse
Affiliation(s)
- Sasi Kumar Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Taylor Potter
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Mustafa Al-Gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Mohsen Hooshyar
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | | | - Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Daniel Burnside
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, Ontario, Canada.
| | - Houman Moteshareie
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Myron Smith
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
7
|
Lithium chloride sensitivity connects the activity of PEX11 and RIM20 to the translation of PGM2 and other mRNAs with structured 5’-UTRs. Mol Cell Biochem 2022; 477:2643-2656. [DOI: 10.1007/s11010-022-04466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
|
8
|
Actin-Related Protein 6 (Arp6) Influences Double-Strand Break Repair in Yeast. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA double-strand breaks (DSBs) are the most deleterious form of DNA damage and are repaired through non-homologous end-joining (NHEJ) or homologous recombination (HR). Repair initiation, regulation and communication with signaling pathways require several histone-modifying and chromatin-remodeling complexes. In budding yeast, this involves three primary complexes: INO80-C, which is primarily associated with HR, SWR1-C, which promotes NHEJ, and RSC-C, which is involved in both pathways as well as the general DNA damage response. Here we identify ARP6 as a factor involved in DSB repair through an RSC-C-related pathway. The loss of ARP6 significantly reduces the NHEJ repair efficiency of linearized plasmids with cohesive ends, impairs the repair of chromosomal breaks, and sensitizes cells to DNA-damaging agents. Genetic interaction analysis indicates that ARP6, MRE11 and RSC-C function within the same pathway, and the overexpression of ARP6 rescues rsc2∆ and mre11∆ sensitivity to DNA-damaging agents. Double mutants of ARP6, and members of the INO80 and SWR1 complexes, cause a significant reduction in repair efficiency, suggesting that ARP6 functions independently of SWR1-C and INO80-C. These findings support a novel role for ARP6 in DSB repair that is independent of the SWR1 chromatin remodeling complex, through an apparent RSC-C and MRE11-associated DNA repair pathway.
Collapse
|
9
|
Jessulat M, Amin S, Hooshyar M, Malty R, Moutaoufik MT, Zilocchi M, Istace Z, Phanse S, Aoki H, Omidi K, Burnside D, Samanfar B, Aly KA, Golshani A, Babu M. The conserved Tpk1 regulates non-homologous end joining double-strand break repair by phosphorylation of Nej1, a homolog of the human XLF. Nucleic Acids Res 2021; 49:8145-8160. [PMID: 34244791 PMCID: PMC8373142 DOI: 10.1093/nar/gkab585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 02/03/2023] Open
Abstract
The yeast cyclic AMP-dependent protein kinase A (PKA) is a ubiquitous serine-threonine kinase, encompassing three catalytic (Tpk1-3) and one regulatory (Bcy1) subunits. Evidence suggests PKA involvement in DNA damage checkpoint response, but how DNA repair pathways are regulated by PKA subunits remains inconclusive. Here, we report that deleting the tpk1 catalytic subunit reduces non-homologous end joining (NHEJ) efficiency, whereas tpk2-3 and bcy1 deletion does not. Epistatic analyses revealed that tpk1, as well as the DNA damage checkpoint kinase (dun1) and NHEJ factor (nej1), co-function in the same pathway, and parallel to the NHEJ factor yku80. Chromatin immunoprecipitation and resection data suggest that tpk1 deletion influences repair protein recruitments and DNA resection. Further, we show that Tpk1 phosphorylation of Nej1 at S298 (a Dun1 phosphosite) is indispensable for NHEJ repair and nuclear targeting of Nej1 and its binding partner Lif1. In mammalian cells, loss of PRKACB (human homolog of Tpk1) also reduced NHEJ efficiency, and similarly, PRKACB was found to phosphorylate XLF (a Nej1 human homolog) at S263, a corresponding residue of the yeast Nej1 S298. Together, our results uncover a new and conserved mechanism for Tpk1 and PRKACB in phosphorylating Nej1 (or XLF), which is critically required for NHEJ repair.
Collapse
Affiliation(s)
- Matthew Jessulat
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Shahreen Amin
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Mohsen Hooshyar
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1S5 B6, Canada
| | - Ramy Malty
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | | | - Mara Zilocchi
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Zoe Istace
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Katayoun Omidi
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1S5 B6, Canada
| | - Daniel Burnside
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1S5 B6, Canada
| | - Bahram Samanfar
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1S5 B6, Canada
| | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1S5 B6, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
10
|
Gholami L, Badrlou E, Nazer N, Sadeghi G, Haftlang MK, Mirzajani S, Shadnoush M, Sayad A, Ghafouri-Fard S. Expression of apoptosome-related genes in periodontitis. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Hajikarimlou M, Hunt K, Kirby G, Takallou S, Jagadeesan SK, Omidi K, Hooshyar M, Burnside D, Moteshareie H, Babu M, Smith M, Holcik M, Samanfar B, Golshani A. Lithium Chloride Sensitivity in Yeast and Regulation of Translation. Int J Mol Sci 2020; 21:ijms21165730. [PMID: 32785068 PMCID: PMC7461102 DOI: 10.3390/ijms21165730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
For decades, lithium chloride (LiCl) has been used as a treatment option for those living with bipolar disorder (BD). As a result, many studies have been conducted to examine its mode of action, toxicity, and downstream cellular responses. We know that LiCl is able to affect cell signaling and signaling transduction pathways through protein kinase C and glycogen synthase kinase-3, which are considered to be important in regulating gene expression at the translational level. However, additional downstream effects require further investigation, especially in translation pathway. In yeast, LiCl treatment affects the expression, and thus the activity, of PGM2, a phosphoglucomutase involved in sugar metabolism. Inhibition of PGM2 leads to the accumulation of intermediate metabolites of galactose metabolism causing cell toxicity. However, it is not fully understood how LiCl affects gene expression in this matter. In this study, we identified three genes, NAM7, PUS2, and RPL27B, which increase yeast LiCl sensitivity when deleted. We further demonstrate that NAM7, PUS2, and RPL27B influence translation and exert their activity through the 5′-Untranslated region (5′-UTR) of PGM2 mRNA in yeast.
Collapse
Affiliation(s)
- Maryam Hajikarimlou
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Kathryn Hunt
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Grace Kirby
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Sarah Takallou
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Sasi Kumar Jagadeesan
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Katayoun Omidi
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Mohsen Hooshyar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Daniel Burnside
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Houman Moteshareie
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK S4S 0A2, Canada;
| | - Myron Smith
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Bahram Samanfar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, ON K1Y 4X2, Canada
| | - Ashkan Golshani
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
- Correspondence:
| |
Collapse
|
12
|
Hajikarimlou M, Moteshareie H, Omidi K, Hooshyar M, Shaikho S, Kazmirchuk T, Burnside D, Takallou S, Zare N, Jagadeesan SK, Puchacz N, Babu M, Smith M, Holcik M, Samanfar B, Golshani A. Sensitivity of yeast to lithium chloride connects the activity of YTA6 and YPR096C to translation of structured mRNAs. PLoS One 2020; 15:e0235033. [PMID: 32639961 PMCID: PMC7343135 DOI: 10.1371/journal.pone.0235033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Lithium Chloride (LiCl) toxicity, mode of action and cellular responses have been the subject of active investigations over the past decades. In yeast, LiCl treatment is reported to reduce the activity and alters the expression of PGM2, a gene that encodes a phosphoglucomutase involved in sugar metabolism. Reduced activity of phosphoglucomutase in the presence of galactose causes an accumulation of intermediate metabolites of galactose metabolism leading to a number of phenotypes including growth defect. In the current study, we identify two understudied yeast genes, YTA6 and YPR096C that when deleted, cell sensitivity to LiCl is increased when galactose is used as a carbon source. The 5’-UTR of PGM2 mRNA is structured. Using this region, we show that YTA6 and YPR096C influence the translation of PGM2 mRNA.
Collapse
Affiliation(s)
- Maryam Hajikarimlou
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Houman Moteshareie
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Katayoun Omidi
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Mohsen Hooshyar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sarah Shaikho
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Tom Kazmirchuk
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Daniel Burnside
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sarah Takallou
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Narges Zare
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sasi Kumar Jagadeesan
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Nathalie Puchacz
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Canada
| | - Myron Smith
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Bahram Samanfar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada.,Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, Ontario, Canada
| | - Ashkan Golshani
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Insights into the suitability of utilizing brown rats (Rattus norvegicus) as a model for healing spinal cord injury with epidermal growth factor and fibroblast growth factor-II by predicting protein-protein interactions. Comput Biol Med 2019; 104:220-226. [DOI: 10.1016/j.compbiomed.2018.11.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/06/2023]
|
14
|
Heavy metal sensitivities of gene deletion strains for ITT1 and RPS1A connect their activities to the expression of URE2, a key gene involved in metal detoxification in yeast. PLoS One 2018; 13:e0198704. [PMID: 30231023 PMCID: PMC6145592 DOI: 10.1371/journal.pone.0198704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/28/2018] [Indexed: 11/19/2022] Open
Abstract
Heavy metal and metalloid contaminations are among the most concerning types of pollutant in the environment. Consequently, it is important to investigate the molecular mechanisms of cellular responses and detoxification pathways for these compounds in living organisms. To date, a number of genes have been linked to the detoxification process. The expression of these genes can be controlled at both transcriptional and translational levels. In baker’s yeast, Saccharomyces cerevisiae, resistance to a wide range of toxic metals is regulated by glutathione S-transferases. Yeast URE2 encodes for a protein that has glutathione peroxidase activity and is homologous to mammalian glutathione S-transferases. The URE2 expression is critical to cell survival under heavy metal stress. Here, we report on the finding of two genes, ITT1, an inhibitor of translation termination, and RPS1A, a small ribosomal protein, that when deleted yeast cells exhibit similar metal sensitivity phenotypes to gene deletion strain for URE2. Neither of these genes were previously linked to metal toxicity. Our gene expression analysis illustrates that these two genes affect URE2 mRNA expression at the level of translation.
Collapse
|