1
|
Rosero J, Monzani PS, Pessoa GP, Coelho GCZ, Carvalho GB, López LS, Senhorini JA, Dos Santos SCA, Yasui GS. Traceability of primordial germ cells in three neotropical fish species aiming genetic conservation actions. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2025-2042. [PMID: 38060079 DOI: 10.1007/s10695-023-01279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Primordial germ cells (PGCs) are embryonic pluripotent cells that can differentiate into spermatogonia and oogonia, and therefore, PGCs are a genetic source for germplasm conservation through cryobanking and the generation of germline chimeras. The knowledge of PGC migration routes is essential for transplantation studies. In this work, the mRNA synthesized from the ddx4 3'UTR sequence of Pseudopimelodus mangurus, in fusion with gfp or dsred, was microinjected into zygotes of three neotropical species (P. mangurus, Astyanax altiparanae, and Prochilodus lineatus) for PGC labeling. Visualization of labeled PGCs was achieved by fluorescence microscopy during embryonic development. In addition, ddx4 and dnd1 expressions were evaluated during embryonic development, larvae, and adult tissues of P. mangurus, to validate their use as a PGC marker. As a result, the effective identification of presumptive PGCs was obtained. DsRed-positive PGC of P. mangurus was observed in the hatching stage, GFP-positive PGC of A. altiparanae in the gastrula stage, and GFP-positive PGCs from P. lineatus were identified at the segmentation stage, with representative labeling percentages of 29% and 16% in A. altiparanae and P. lineatus, respectively. The expression of ddx4 and dnd1 of P. mangurus confirmed the specificity of these genes in germ cells. These results point to the functionality of the P. mangurus ddx4 3'UTR sequence as a PGC marker, demonstrating that PGC labeling was more efficient in A. altiparanae and P. lineatus. The procedures used to identify PGCs in P. mangurus consolidate the first step for generating germinal chimeras as a conservation action of P. mangurus.
Collapse
Affiliation(s)
- Jenyffer Rosero
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil.
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil.
| | - Paulo Sérgio Monzani
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Giselle Pessanha Pessoa
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Geovanna Carla Zacheo Coelho
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Gabriella Braga Carvalho
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| | - Lucia Suárez López
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | - José Augusto Senhorini
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | | | - George Shigueki Yasui
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| |
Collapse
|
2
|
López LS, Monzani PS, Carvalho GB, de Siqueira Silva DH, Vianna NC, Yasui GS, Senhorini JA. Cryopreservation and transplantation of spermatogonia stem cells in piracanjuba Brycon orbignyanus (Characiformes: Characidae), an endangered fish species. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2117-2135. [PMID: 39331242 DOI: 10.1007/s10695-024-01406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Piracanjuba (Brycon orbignyanus) is an endangered fish species from the Neotropical region. The establishment of a cryobank using spermatogonial stem cells (SSCs) and subsequent production of a germline chimera is thus a promising strategy for such species. In the present work, procedures for the isolation and cryopreservation of piracanjuba SSCs and subsequent transplantation into sterile recipients were established. The piracanjuba SSCs were obtained by Percoll density gradient centrifugation and differential plating. SSC fractions were evaluated by relative ddx4 expression, alkaline phosphatase activity, and light microscopy. SSC cryopreservation was performed using five cryoprotectants at three different concentrations. The mix of the cells from the 20% and 30% Percoll density gradients showed 58.35 ± 0.03% purity of SSCs. The purity of SSCs increased to 66.00 ± 0.01% after differential plating. The relative ddx4 expression was 3.5 times higher in cells from the Percoll density gradient centrifugation than in the gonad and cells after differential plating. Propanediol (1 M) was the most effective cryoprotector evaluated (P = 1.000), showing 90.75 ± 1.85% cell viability. Freshly isolated and cryopreserved cells from the Percoll density gradient centrifugation were transplanted into a sterile male adult triploid hybrid with germ cell-less gonads. SSCs were observed in the germinal epithelium of the testes of recipients 20 days after transplantation. The results are promising for obtaining functional germline chimeras in Neotropical fish. Consequently, although the number of males used for the experiment was borderline, the procedures established here can be applied in future actions for the conservation and reconstitution of the piracanjuba in case of extinction.
Collapse
Affiliation(s)
- Lucia Suárez López
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil.
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation/National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, São Paulo, Brazil.
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil.
- Department of Aquaculture, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), No. 3918. Zona Playitas, Carretera Ensenada, 22860, Tijuana, Baja California, Mexico.
| | - Paulo Sérgio Monzani
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation/National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, São Paulo, Brazil
| | - Gabriella Braga Carvalho
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation/National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, São Paulo, Brazil
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Diógenes Henrique de Siqueira Silva
- Study Group on the Reproduction of Amazonian Fishes, Biology Faculty, Federal University of the South and Southeast of Pará, Marabá, Pará, Brazil
| | | | - George Shigueki Yasui
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation/National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, São Paulo, Brazil
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - José Augusto Senhorini
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation/National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, São Paulo, Brazil
| |
Collapse
|
3
|
Pessoa GP, López LS, Rosero JM, Dos Santos SCA, Yasui GS, Senhorini JA, Monzani PS. Isolation and cryopreservation of Pseudopimelodus mangurus (Siluriformes) spermatogonial cells. Cryobiology 2024; 116:104941. [PMID: 39029551 DOI: 10.1016/j.cryobiol.2024.104941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Spermatogonia cryopreservation can be a strategy for future conservation actions. The neotropical Siluriformes Pseudopimelodus mangurus was already classified as vulnerable on the Red List of Threatened Species. P. mangurus spermatogonial cells were isolated, assessed, and cryopreserved. Fragments of the testis were enzymatically dissociated, purified using Percoll density gradient, and submitted to differential plating. Fractionated cells were evaluated by microscopy, ddx4 (vasa) relative expression, and alkaline phosphatase activity. Cryopreservation was conducted using ethylene glycol, glycerol, dimethyl sulfoxide (DMSO), dimethylacetamide (DMA), and propanediol at 1 M, 1.5 M, and 2 M. Cell viability was evaluated and cell concentration was determined. Cell fractions from 20 % and 30 % Percoll gradient bands showed the highest concentrations of spermatogonia. The fraction mix showed 54 % purity and 93 % viability. After differential plating, 60 % purity and 92 % viability were obtained. Spermatogonial cells showed high alkaline phosphatase activity compared to spermatocytes and spermatids. The relative spermatogonial ddx4 expression from the Percoll density gradient was about twice as high as in samples from the testis and the differential plating. The increased ddx4 expression indicated the enrichment of spermatogonial cells by density gradient step and dead cells expressing ddx4 in differential plating, or ddx4 decreasing expression during cell culture. For this reason, cells from the Percoll gradient were chosen for cryopreservation. Propanediol at 1 M demonstrated the best condition for spermatogonial cell cryopreservation, presenting 98 % viability, while dimethylacetamide at 2 M represented the least favorable condition, with approximately 47 % viability. These findings are essential for P. mangurus spermatogonial cell cryopreservation, aiming to generate a spermatogonia cryobank for future conservation efforts.
Collapse
Affiliation(s)
- Giselle Pessanha Pessoa
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil; Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation, National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil.
| | - Lucia Suárez López
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil; Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation, National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Jenyffer Mairely Rosero
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation, National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil; Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | | | - George Shigueki Yasui
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation, National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil; Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - José Augusto Senhorini
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil; Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation, National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Paulo Sérgio Monzani
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil; Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation, National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| |
Collapse
|
4
|
Bhat IA, Dubiel MM, Rodriguez E, Jónsson ZO. Insights into Early Ontogenesis of Salmo salar: RNA Extraction, Housekeeping Gene Validation and Transcriptional Expression of Important Primordial Germ Cell and Sex-Determination Genes. Animals (Basel) 2023; 13:ani13061094. [PMID: 36978635 PMCID: PMC10044239 DOI: 10.3390/ani13061094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The challenge in extracting high-quality RNA impedes the investigation of the transcriptome of developing salmonid embryos. Furthermore, the mRNA expression pattern of important PGC and SD genes during the initial embryonic development of Salmo salar is yet to be studied. So, in the present study, we aimed to isolate high-quality RNA from eggs and developing embryos to check vasa, dnd1, nanos3a, sdf1, gsdf, amh, cyp19a, dmrt1 and foxl2 expression by qPCR. Additionally, four HKGs (GAPDH, UB2L3, eEf1a and β-actin) were validated to select the best internal control for qPCR. High-quality RNA was extracted, which was confirmed by spectrophotometer, agarose gel electrophoresis and Agilent TapeStation analysis. UB2L3 was chosen as a reference gene because it exhibited lower intra- and inter-sample variation. vasa transcripts were expressed in all the developmental stages, while dnd1 was expressed only up to 40 d°C. Nanos3a was expressed in later stages and remained at its peak for a shorter period, while sdf1 showed an irregular pattern of mRNA expression. The mRNA expression levels of SD genes were observed to be upregulated during the later stages of development, prior to hatching. This study presents a straightforward methodology for isolating high-quality RNA from salmon eggs, and the resulting transcript profiles of significant PGC and SD genes in S. salar could aid in improving our comprehension of reproductive development in this commercially important species.
Collapse
Affiliation(s)
- Irfan Ahmad Bhat
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, 101 Reykjavik, Iceland
| | - Milena Malgorzata Dubiel
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, 101 Reykjavik, Iceland
| | | | - Zophonías Oddur Jónsson
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
5
|
Shiguemoto GF, Coelho GCZ, López LS, Pessoa GP, Dos Santos SCA, Senhorini JA, Monzani PS, Yasui GS. Primordial germ cell identification and traceability during the initial development of the Siluriformes fish Pseudopimelodus mangurus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1137-1153. [PMID: 35925505 DOI: 10.1007/s10695-022-01106-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Primordial germ cells (PGCs) are responsible for generating all germ cells. Therefore, they are essential targets to be used as a tool for the production of germline chimeras. The labeling and route of PGCs were evaluated during the initial embryonic development of Pseudopimelodus mangurus, using whole-mount in situ hybridization (WISH) and mRNA microinjection in zygotes. A specific antisense RNA probe constituted by a partial coding region from P. mangurus nanos3 mRNA was synthesized for the WISH method. RNA microinjection was performed using the GFP gene reporter regulated by translation regulatory P. mangurus buc and nanos3 3'UTR sequences, germline-specific markers used to describe in vivo migration of PGCs. Nanos3 and buc gene expression was evaluated in tissues for male and female adults and initial development phases and larvae from the first to seventh days post-hatching. The results from the WISH technique indicated the origin of PGCs in P. mangurus from the aggregations of nanos3 mRNA in the cleavage grooves and the signals obtained from nanos3 probes corresponded topographically to the migratory patterns of the PGCs reported for other fish species. Diffuse signals were observed in all blastomeres until the 16-cell stage, which could be related to the two sequences of the nanos3 3'UTR observed in the P. mangurus unfertilized egg transcriptome. Microinjection was not successful using GFP-Dr-nanos1 3'UTR mRNA and GFP-Pm-buc 3'UTR mRNA and allowed the identification of potential PGCs with less than 2% efficiency only and after hatching using GFP-Pm-nanos3 3'UTR. Nanos3 and buc gene expression was reported in the female gonads and from fertilized eggs until the blastula phase. These results provide information about the PGC migration of P. mangurus and the possible use of PGCs for the future generation of germline chimeras to be applied in the conservation efforts of Neotropical Siluriformes species. This study can contribute to establishing genetic banks, manipulating organisms, and assisting in biotechnologies such as transplanting germ cells in fish.
Collapse
Affiliation(s)
- Gustavo Fonseca Shiguemoto
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Geovanna Carla Zacheo Coelho
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Lucia Suárez López
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Giselle Pessanha Pessoa
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | | | - José Augusto Senhorini
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Paulo Sérgio Monzani
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil.
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil.
| | - George Shigueki Yasui
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| |
Collapse
|
6
|
Xu C, Li Y, Wen Z, Jawad M, Gui L, Li M. Spinyhead Croaker Germ Cells Gene dnd Visualizes Primordial Germ Cells in Medaka. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081226. [PMID: 36013405 PMCID: PMC9409898 DOI: 10.3390/life12081226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
Spinyhead croaker (Collichthys lucidus) is an economically important fish suffering from population decline caused by overfishing and habitat destruction. Researches on the development of primordial germ cell (PGC) and reproduction biology were an emergency for the long-term conservation of the involved species. Dead end (dnd) gene plays an indispensable role in PGC specification, maintenance, and development. In the current study, we report the cloning and expression patterns of dnd in C. lucidus (Cldnd). RT-PCR analysis revealed that Cldnd was specifically expressed in both sexual gonads. In the ovary, Cldnd RNA was uniformly distributed in the oocytes and abundant in oogonia, and gradually decreased with oogenesis. A similar expression pattern was also detected in testis. Dual fluorescent in situ hybridization of Cldnd and Clvasa demonstrated that they almost had the same distribution except in oocytes at stage I, in which the vasa RNA aggregated into some particles. Furthermore, Cldnd 3' UTR was sufficient to guide the Green Fluorescent Protein (GFP) specifically and stably expressed in the PGCs of medaka. These findings offer insight into that Cldnd is an evolutionarily conserved germline-specific gene and even a potential candidate for PGC manipulation in C. lucidus.
Collapse
Affiliation(s)
- Cong Xu
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yu Li
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Main Building, QiLu Innovalley Incubator, High-Tech Industry Development Zone, Jinan 250101, China
| | - Zhengshun Wen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Muhammad Jawad
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (L.G.); (M.L.)
| | - Mingyou Li
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (L.G.); (M.L.)
| |
Collapse
|
7
|
Cloning Method for Stress-Resistant Gene of Conringia planisiliqua under Drought Stress. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:3517002. [PMID: 34221296 PMCID: PMC8219435 DOI: 10.1155/2021/3517002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022]
Abstract
The low temperature, drought, high salt, and other environments influence crop production and development directly, so the gene cloning method has become an effective biological means. In order to effectively improve the cloning effect, a gene cloning method for Conringia planisiliqua based on mRNA differential display technology was proposed. Based on mRNA differential display technology, the gene of Conringia planisiliqua was transcribed. The present study expects gene cloning to be better than the traditional method. This will lay the basis for gene cloning and functional verification of the transcription and disease-resistant proteins in Conringia planisiliqua. According to homologous identification results, the homologous drought-resistant genes were determined and screened. The data of Conringia planisiliqua in the existing biological database were used to extract ESTs data of Conringia planisiliqua. Then, the heating environment was established and the concept of integral function was introduced to express the influence of growth environment of different genomes. The mass, momentum, energy, and turbulent flow situation of stress-resistant gene of Conringia planisiliqua during the growth were satisfied. Finally, the data search was carried out in the NCBI database and gene cloning was achieved by ESTs data sequence. Experimental results show that the proposed method can effectively reduce the gene data fitting and improve the quantity of gene fragments cloned in a cycle, so the overall cloning effect is better.
Collapse
|
8
|
Zhou L, Xu S, Lin F, Wang X, Wang Y, Wang Y, Yu D, Liu Q, Li J. Both of marine fish species Oryzias melastigma and Pagrus major all failing in early localization at embryo stage by vasa RNA. Gene 2020; 769:145204. [PMID: 33031890 DOI: 10.1016/j.gene.2020.145204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/08/2020] [Accepted: 09/29/2020] [Indexed: 11/15/2022]
Abstract
Germ cells are essential for gonadal development. As precursors of germ cells, primordial germ cells (PGCs) are particularly important for germline formation. However, the research on distribution patterns of PGCs in marine fish is very limited, especially for economic species. The vasa gene has been widely used as marker to identify PGCs origination and migration because of vasa RNA is a component of germ plasm. In this study, we isolated full-length vasa cDNA (Omvas and Pmvas) from marine medaka (Oryzias melastigma) and red seabream (Pagrus major), detected vasa transcripts in different tissues by RT-PCR and described vasa expression patterns during embryogenesis and gametogenesis by in situ hybridization. At the same time, we also explored the relationship between early distribution of germ plasm components and species evolution. The results demonstrated that deduced amino acid sequence of Omvas and Pmvas shared several conserved motifs of Vasa homologues and high identity with other teleost, and vasa transcripts were exclusively detected in early germ cells of gonad. During embryogenesis, vasa RNA of both fishes, like medaka (Oryzias latipes), failed to localize at cleavage furrows and distributed uniformly throughout each blastomere. This study firstly discovered that the marine economic fish, red seabream, lost vasa RNA early specific localization at cleavage furrows and distinctive distribution in germ cells. In addition, compared with other teleost, we found that early distribution of germ plasm might not relate to species evolution. This will improve our understanding of vasa localization modes in teleost, and facilitate fish germ cell manipulation.
Collapse
Affiliation(s)
- Li Zhou
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihong Xu
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fan Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xueying Wang
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yunong Wang
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfeng Wang
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Daode Yu
- Marine Biology Institute of Shandong Province, Qingdao 266104, China
| | - Qinghua Liu
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jun Li
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
9
|
Presence of the matrix metalloproteinases during the migration of the primordial germ cells in zebrafish gonadal ridge. Cell Tissue Res 2020; 383:707-722. [PMID: 32960354 DOI: 10.1007/s00441-020-03288-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/18/2020] [Indexed: 01/20/2023]
Abstract
In vertebrates, the primordial germ cells (PGCs) differentiate from extragonadal regions, migrating to gonadal ridge during the embryonic development. However, recent studies in mammals indicate that the PGCs originate from the epiblast and subsequently migrate into the yolk sac. Cell and molecular bases involved in routes during the migration of these cells are still not well understood. Thus, in an attempt to evaluate the participation of matrix metalloproteinases (MMPs) during the gonadal primordium formation in Danio rerio (zebrafish), the route of migration of PGCs was analyzed. In zebrafish, during the migration of the PGCs to the forming gonad, they bind by cytoplasmic processes to the extracellular matrix and migrate through amoeboid movements until they reach the gonadal ridge. During the epiboly, MMPs were not detected. However, after organogenesis, three MMP types were expressed in the somatic cells that were located ahead of the PGCs in the migration route. This expression was maintained throughout the mesentery and was not detected in the PGCs. Upon reaching the gonadal ridge, the PGCs and somatic cells express MMPs and epithelium begins to be formed. After the formation of the basement membrane, the germinal epithelium is delineated by the somatic cells, which remodeling the extracellular matrix. So, a PGC organization occurs through the tissue, forming the gonadal primordium. Concomitantly, granulocytes expressing different MMPs are present. This data in exposing the role of MMPs during the PGC migration to the forming gonad, may point a new way in understanding the reproductive biology of the vertebrates in general.
Collapse
|
10
|
Ferrão ML, Rocha MJ, Rocha E. Histological characterization of the maturation stages of the ovarian follicles of the goldfish
Carassius auratus
(Linnaeus, 1758). Anat Histol Embryol 2020; 49:749-762. [DOI: 10.1111/ahe.12570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/30/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Maria Leonor Ferrão
- Laboratório de Histologia e Embriologia Departamento de Microscopia Instituto de Ciências Biomédicas de Abel Salazar (ICBAS)Universidade do Porto (U.Porto) Porto Portugal
| | - Maria João Rocha
- Laboratório de Histologia e Embriologia Departamento de Microscopia Instituto de Ciências Biomédicas de Abel Salazar (ICBAS)Universidade do Porto (U.Porto) Porto Portugal
- Equipa de Histomorfologia, Fisiopatologia e Toxicologia Aplicada (PATH) Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) Universidade do Porto (U.Porto) Matosinhos Portugal
| | - Eduardo Rocha
- Laboratório de Histologia e Embriologia Departamento de Microscopia Instituto de Ciências Biomédicas de Abel Salazar (ICBAS)Universidade do Porto (U.Porto) Porto Portugal
- Equipa de Histomorfologia, Fisiopatologia e Toxicologia Aplicada (PATH) Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) Universidade do Porto (U.Porto) Matosinhos Portugal
| |
Collapse
|
11
|
Qu M, Ding S, Schartl M, Adolfi MC. Spatial and temporal expression pattern of sex-related genes in ovo-testis of the self-fertilizing mangrove killifish (Kryptolebias marmoratus). Gene 2020; 742:144581. [PMID: 32173540 DOI: 10.1016/j.gene.2020.144581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/23/2023]
Abstract
In vertebrates, sex determination and differentiation comprehend a fine balance between female and male factors, leading the bipotential anlage to develop towards ovary or testis, respectively. Nevertheless, the mangrove killifish, (Kryptolebias marmoratus) a simultaneous hermaphroditic species, could overcome those antagonistic pathways and evolved to develop and maintain reproductively active ovarian and testicular tissues in the same organ. Morphological and mRNA localization analyzes of developing and adult gonads demonstrate that genes related to testis (dmrt1 and amh) and ovary differentiation (foxl2 and sox9a) follow the same expression pattern observed in gonochoristic species, thus functioning as two independent organs. In addition, Amh expression patterns make it a strong candidate for initiation of the formation and maintenance of the testicular tissue in the hermaphroditic gonad. Differently from described so far, foxl3 seems to have an important role in oogenesis as well as spermatogenesis and gonadal structure.
Collapse
Affiliation(s)
- Meng Qu
- University of Wuerzburg, Physiological Chemistry, Biocenter, Am Hubland, D-97074 Wuerzburg, Germany; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China; CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Guangzhou 510220, China
| | - Shaoxiong Ding
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Manfred Schartl
- University of Wuerzburg, Physiological Chemistry, Biocenter, Am Hubland, D-97074 Wuerzburg, Germany; University of Wuerzburg, Developmental Biochemistry, Biocenter, Am Hubland, D-97074 Wuerzburg, Germany; The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Mateus Contar Adolfi
- University of Wuerzburg, Physiological Chemistry, Biocenter, Am Hubland, D-97074 Wuerzburg, Germany; University of Wuerzburg, Developmental Biochemistry, Biocenter, Am Hubland, D-97074 Wuerzburg, Germany.
| |
Collapse
|
12
|
Identification and characterization of germ cell genes vasa and dazl in a protogynous hermaphrodite fish, orange-spotted grouper (Epinephelus coioides). Gene Expr Patterns 2020; 35:119095. [DOI: 10.1016/j.gep.2020.119095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/18/2020] [Accepted: 01/25/2020] [Indexed: 12/21/2022]
|
13
|
Jeng SR, Wu GC, Yueh WS, Kuo SF, Dufour S, Chang CF. Dmrt1 (doublesex and mab-3-related transcription factor 1) expression during gonadal development and spermatogenesis in the Japanese eel. Gen Comp Endocrinol 2019; 279:154-163. [PMID: 30902612 DOI: 10.1016/j.ygcen.2019.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/23/2022]
Abstract
Dmrt1, doublesex- and mab-3-related transcription factor-1, has been suggested to play critical roles in male gonadogenesis, testicular differentiation and development, including spermatogenesis, among different vertebrates. Vasa is a putative molecular marker of germ cells in vertebrates. In this study, we cloned the full-length dmrt1 cDNA from Japanese eel, and the protein comprised 290 amino acids and presented an extremely conserved Doublesex and Mab-3 (DM) domain. Vasa proteins were expressed in gonadal germ cells in a stage-specific manner, and were expressed at high levels in PGC and spermatogonia, low levels in spermatocytes, and were absent in spermatids and spermatozoa of Japanese eels. Dmrt1 proteins were abundantly expressed in spermatogonia B cells, spermatocytes, spermatids, but not in spermatozoa, spermatogonia A and Sertoli cells. To our knowledge, this study is the first to show a restricted expression pattern for the Dmrt1 protein in spermatogonia B cells, but not spermatogonia A cells, of teleosts. Therefore, Dmrt1 might play vital roles at the specific stages during spermatogenesis from spermatogonia B cells to spermatids in the Japanese eel. Moreover, the Dmrt1 protein exhibited a restricted localization in differentiating oogonia in the early differentiating gonad (ovary-like structure) of male Japanese eels and in E2-induced feminized Japanese eels. We proposed that dmrt1 may be not only required for spermatogenesis but might also play a role in oogenesis in the Japanese eel.
Collapse
Affiliation(s)
- Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Shu-Fen Kuo
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Museum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231 Paris Cedex 05, France
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
14
|
Fernandino JI, Hattori RS. Sex determination in Neotropical fish: Implications ranging from aquaculture technology to ecological assessment. Gen Comp Endocrinol 2019; 273:172-183. [PMID: 29990492 DOI: 10.1016/j.ygcen.2018.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/09/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022]
Abstract
The high biodiversity of fish in the Neotropical region contrasts with scarce or biased studies on the mechanisms involved in the sex determination in members of this fauna. In this review, we attempted to compile the information available on determination, differentiation, and manipulation of sex for Neotropical species, with special focus on silversides and other two speciose groups, known as characins (Characiformes) and catfishes (Siluriformes). Currently, there is plenty of information available on chromosomal sex determination systems, which includes both male and female heterogamety with many variations, and sex chromosomes evolution at the macro chromosomal level. However, there is hitherto a blank in information at micro, gene/molecule levels and in research related to the effects of environmental cues on sex determination; most of reported studies are limited to silversides and guppies. In view of such a high diversity, it is critically necessary to establish key model species for relevant Neotropical fish taxa and also multi-disciplinary research groups in order to uncover the main patterns and trends that dictate the mechanisms of sex determination and gonadal differentiation in this icthyofauna. By increasing our knowledge on sex determination/differentiation with the identification of sex chromosome-linked markers or sex-determining genes, characterization of the onset timing of morphological gonadal differentiation, and determination of the environmental-hormonal labile period of gonadal sex determination in reference species, it will be possible to use those information as guidelines for application in other related groups. Overall, the strategic advance in this research field will be crucial for the development of biotechnological tools for aquaculture industry and for conservation of fish fauna from the Neotropical Region.
Collapse
Affiliation(s)
- Juan Ignacio Fernandino
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Nacional de San Martín (CONICET/UNSAM), Chascomús, Argentina.
| | - Ricardo Shohei Hattori
- Salmonid Experimental Station at Campos do Jordão, UPD-CJ (APTA/SAA), Campos do Jordão, Brazil.
| |
Collapse
|
15
|
Liu W, Zhang H, Xiang Y, Jia K, Luo M, Yi M. Molecular characterization of vasa homologue in marbled goby, Oxyeleotris marmorata: Transcription and localization analysis during gametogenesis and embryogenesis. Comp Biochem Physiol B Biochem Mol Biol 2018; 229:42-50. [PMID: 30590176 DOI: 10.1016/j.cbpb.2018.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
Abstract
Identification of germ cell markers is important for investigating reproduction biology in fish. Vasa is one of the most studied germ cell markers in mammals and lower vertebrates including fish. Here, we characterized a vasa homologue from the fish marbled goby (Oxyeleotris marmorata), termed omvasa. The full length of omvasa cDNA is 2344 bp and encodes 658 amino acids, sharing high identities with Vasa homologues of other vertebrates. OmVasa protein contains 15 RG/RGG repeats at N-terminus, 2 ATPase motifs, as well as RNA unwinding and RNA binding domains at C-terminus. Phylogenetic tree showed that omVasa had the closest relationship with the Vasa homologue from the fish Boleophthalmus pectinirostris, the great blue-spotted mudskipper. qRT-PCR analysis indicated that omvasa was specifically transcribed in gonads, and the transcription level was gradually increased during oocyte development. The germ cell-specific distribution of omvasa mRNA was revealed by fluorescent in situ hybridization. In ovary, the signal of omvasa RNA displayed strong-weak-strong dynamics from oogonia over pre-vitellogenic oocytes to vitellogenic oocytes. In testis, omvasa signal was strong in spermatogonia, modest in spermatocytes but undetectable in spermatids and somatic cells. During embryogenesis, the transcription of omvasa mRNA was high at blastula stage, gradually decreased from gastrula stage and maintained at a low level in later developmental stages. Whole mount in situ hybridization indicated that omvasa mRNA was specific to primordial germ cells (PGCs). In summary, marbled goby vasa is a germ cell-specific transcript during gametogenesis, and can be used as an ideal marker for tracing PGC formation and migration, which is pivotal to germ cell manipulation in this species.
Collapse
Affiliation(s)
- Wei Liu
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Hong Zhang
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Yangxi Xiang
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Kuntong Jia
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Mingfei Luo
- Zhuhai Modern Agriculture Development Center, Guangdong, China.
| | - Meisheng Yi
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| |
Collapse
|