1
|
Singh S, Dutta T. A virulence-associated small RNA MTS1338 activates an ABC transporter CydC for rifampicin efflux in Mycobacterium tuberculosis. Front Microbiol 2024; 15:1469280. [PMID: 39364170 PMCID: PMC11446857 DOI: 10.3389/fmicb.2024.1469280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
The efficacy of the tuberculosis treatment is restricted by innate drug resistance of Mycobacterial tuberculosis and its ability to acquire resistance to all anti-tuberculosis drugs in clinical use. A profound understanding of bacterial ploys that decrease the effectiveness of drugs would identify new mechanisms for drug resistance, which would subsequently lead to the development of more potent TB therapies. In the current study, we identified a virulence-associated small RNA (sRNA) MTS1338-driven drug efflux mechanism in M. tuberculosis. The treatment of a frontline antitubercular drug rifampicin upregulated MTS1338 by >4-fold. Higher intrabacterial abundance of MTS1338 increased the growth rate of cells in rifampicin-treated conditions. This fact was attributed by the upregulation of an efflux protein CydC by MTS1338. Gel-shift assay identified a stable interaction of MTS1338 with the coding region of cydC mRNA thereby potentially stabilizing it at the posttranscriptional level. The drug efflux measurement assays revealed that cells with higher MTS1338 abundance accumulate less drug in the cells. This study identified a new regulatory mechanism of drug efflux controlled by an infection-induced sRNA in M. tuberculosis.
Collapse
Affiliation(s)
| | - Tanmay Dutta
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
2
|
Zhang X, Lin G, Zhang Q, Wu H, Xu W, Wang Z, He Z, Su L, Zhuang Y, Gong A. The rs3918188 and rs1799983 loci of eNOS gene are associated with susceptibility in patients with systemic lupus erythematosus in Northeast China. Sci Rep 2024; 14:20803. [PMID: 39242633 PMCID: PMC11379712 DOI: 10.1038/s41598-024-70711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
To investigate the association between single nucleotide polymorphism (SNP) at the rs3918188, rs1799983 and rs1007311 loci of the endothelial nitric oxide synthase (eNOS) gene and genetic susceptibility to systemic lupus erythematosus (SLE) in northeastern China. The base distribution of eNOS gene rs3918188, rs1799983 and rs1007311 in 1712 human peripheral blood samples from Northeast China was detected by SNaPshot sequencing technology. The correlation between genotype, allele and gene model of these loci of the eNOS gene and the genetic susceptibility to SLE was investigated by logistic regression analysis. The results of the differences in the frequency distribution of their gene models were visualised using R 4.3.2 software. Finally, HaploView 4.2 software was used to analyse the relationship between the haplotypes of the three loci mentioned above and the genetic susceptibility to SLE. A multifactor dimensionality reduction (MDR) analysis was used to determine the best SNP-SNP interaction model. The CC genotype and C allele at the rs3918188 locus may be a risk factor for SLE (CC vs AA: OR = 1.827, P < 0.05; C vs A: OR = 1.558, P < 0.001), and this locus increased the risk of SLE in the dominant model and the recessive model (AC + CC vs AA: OR = 1.542, P < 0.05; CC vs AA + AC: OR = 1.707, P < 0.001), while the risk of SLE was reduced in the overdominant model (AC vs AA + CC: OR = 0.628, P < 0.001). The GT genotype and T allele at locus rs1799983 may be a protective factor for SLE (GT vs GG: OR = 0.328, P < 0.001; T vs G: OR = 0.438, P < 0.001) and this locus reduced the risk of SLE in the overdominant model (GT vs GG + TT: OR = 0.385, P < 0.001). There is a strong linkage disequilibrium between the rs1007311 and rs1799983 loci of the eNOS gene. Among them, the formed haplotype AG increased the risk of SLE compared to GG. AT and GT decreased the risk of SLE compared to GG. In this study, the eNOS gene rs3918188 and rs1799983 loci were found to be associated with susceptibility to SLE. This helps to deeply explore the mechanism of eNOS gene and genetic susceptibility to SLE. It provides a certain research basis for the subsequent exploration of the molecular mechanism of these loci and SLE, as well as the early diagnosis, treatment and prognosis of SLE.
Collapse
Affiliation(s)
- Xuan Zhang
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, 571199, China
| | - Guiling Lin
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, 571199, China
| | - Qi Zhang
- Heilongjiang Academy of Chinese Medicine, Harbin, 150036, Heilongjiang, China
| | - Huitao Wu
- Heilongjiang Academy of Chinese Medicine, Harbin, 150036, Heilongjiang, China
| | - Wenlu Xu
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, 571199, China
| | - Zhe Wang
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, 571199, China
| | - Ziman He
- Heilongjiang Academy of Chinese Medicine, Harbin, 150036, Heilongjiang, China
| | - Linglan Su
- Heilongjiang Academy of Chinese Medicine, Harbin, 150036, Heilongjiang, China
| | - Yanping Zhuang
- International Research Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, Hainan, China.
| | - Aimin Gong
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
3
|
Papadopoulos KI, Papadopoulou A, Aw TC. Live to die another day: novel insights may explain the pathophysiology behind smoker's paradox in SARS-CoV-2 infection. Mol Cell Biochem 2023; 478:2517-2526. [PMID: 36867341 PMCID: PMC9983545 DOI: 10.1007/s11010-023-04681-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023]
Abstract
The severe acute respiratory coronavirus 2 (SARS-CoV-2) infection demonstrates a highly variable and unpredictable course. Several reports have claimed a smoker's paradox in coronavirus disease 2019 (COVID-19), in line with previous suggestions that smoking is associated with better survival after acute myocardial infarction and appears protective in preeclampsia. Several plausible physiological explanations exist accounting for the paradoxical observation of smoking engendering protection against SARS-CoV-2 infection. In this review, we delineate novel mechanisms whereby smoking habits and smokers' genetic polymorphism status affecting various nitric oxide (NO) pathways (endothelial NO synthase, cytochrome P450 (CYP450), erythropoietin receptor (EPOR); β-common receptor (βcR)), along with tobacco smoke modulation of microRNA-155 and aryl-hydrocarbon receptor (AHR) effects, may be important determinators of SARS-CoV-2 infection and COVID-19 course. While transient NO bioavailability increase and beneficial immunoregulatory modulations through the above-mentioned pathways using exogenous, endogenous, genetic and/or therapeutic modalities may have direct and specific, viricidal SARS-CoV-2 effects, employing tobacco smoke inhalation to achieve protection equals self-harm. Tobacco smoking remains the leading cause of death, illness, and impoverishment.
Collapse
Affiliation(s)
- K. I. Papadopoulos
- THAI StemLife, 566/3 Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd., Wangthonglang, Wangthonglang, 10310 Bangkok Thailand
| | - A. Papadopoulou
- Occupational and Environmental Health Services, Feelgood Lund, Ideon Science Park, Scheelevägen 17, 223 63 Lund, Sweden
| | - T. C. Aw
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore, 529889 Singapore
- Department of Medicine, National University of Singapore, Singapore, 119228 Singapore
| |
Collapse
|
4
|
Lv X, Jia Y, Li J, Deng S, Yuan E. The construction of a prognostic model of cervical cancer based on four immune-related LncRNAs and an exploration of the correlations between the model and oxidative stress. Front Pharmacol 2023; 14:1234181. [PMID: 37808187 PMCID: PMC10551162 DOI: 10.3389/fphar.2023.1234181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction: The immune-related lncRNAs (IRLs) are critical for the development of cervical cancer (CC), but it is still unclear how exactly ILRs contribute to CC. In this study, we aimed to examine the relationship between IRL and CC in detail. Methods: First, the RNAseq data and clinical data of CC patients were collected from The Cancer Genome Atlas (TCGA) database, along with the immune genes from the Import database. We used univariate cox and least absolute shrinkage and selection operator (lasso) to obtain IRLs for prediction after screening the variables. According to the expression levels and risk coefficients of IRLs, the riskscore were calculated. We analyzed the relationship between the model and oxidative stress. We stratified the risk model into two as the high and low-risk groups. We also evaluated the survival differences, immune cell differences, immunotherapeutic response differences, and drug sensitivity differences between the risk groups. Finally, the genes in the model were experimentally validated. Results: Based on the above analyses, we further selected four IRLs (TFAP2A.AS1, AP000911.1, AL133215.2, and LINC02078) to construct the risk model. The model was associated with oxidative-stress-related genes, especially SOD2 and OGG1. Patients in the high-risk group had a lower overall survival than those in the low-risk group. Riskscore was positively correlated with resting mast cells, neutrophils, and CD8+ T-cells. Patients in the low-risk group showed a greater sensitivity to immunosuppression therapy. In addition, we found that patients with the PIK3CA mutation were more sensitive to chemotherapeutic agents such as dasatinib, afatinib, dinaciclib and pelitinib. The function of AL133215.2 was verified, which was consistent with previous findings, and AL133215.2 exerted a pro-tumorigenic effect. We also found that AL133215.2 was closely associated with oxidative-stress-related pathways. Discussion: The results suggested that risk modeling might be useful for prognosticating patients with CC and opening up new routes for immunotherapy.
Collapse
Affiliation(s)
- Xuefeng Lv
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanyan Jia
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinpeng Li
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shu Deng
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enwu Yuan
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Papadopoulos KI, Papadopoulou A, Aw TC. A protective erythropoietin evolutionary landscape, NLRP3 inflammasome regulation, and multisystem inflammatory syndrome in children. Hum Cell 2023; 36:26-40. [PMID: 36310304 PMCID: PMC9618415 DOI: 10.1007/s13577-022-00819-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
Abstract
The low incidence of pediatric severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and the associated multisystem inflammatory syndrome (MIS-C) lack a unifying pathophysiological explanation, impeding effective prevention and therapy. Activation of the NACHT, LRR, and PYD domains-containing protein (NLRP) 3 inflammasome in SARS-CoV-2 with perturbed regulation in MIS-C, has been reported. We posit that, early age physiological states and genetic determinants, such as certain polymorphisms of renin-angiotensin aldosterone system (RAAS) molecules, promote a controlled RAAS hyperactive state, and form an evolutionary landscape involving an age-dependent erythropoietin (EPO) elevation, mediating ancestral innate immune defenses that, through appropriate NLRP3 regulation, mitigate tissue injury and pathogen invasion. SARS-CoV-2-induced downregulation of angiotensin-converting enzyme (ACE)2 expression in endothelial cells (EC), impairment of endothelial nitric oxide (NO) synthase (eNOS) activity and downstream NO bioavailability, may promote a hyperactive RAAS with elevated angiotensin II and aldosterone that, can trigger, and accelerate NLRP3 inflammasome activation, while EPO-eNOS/NO abrogate it. Young age and a protective EPO evolutionary landscape may successfully inhibit SARS-CoV-2 and contain NLRP3 inflammasome activation. By contrast, increasing age and falling EPO levels, in genetically susceptible children with adverse genetic variants and co-morbidities, may lead to unopposed RAAS hyperactivity, NLRP3 inflammasome dysregulation, severe endotheliitis with pyroptotic cytokine storm, and development of autoantibodies, as already described in MIS-C. Our haplotype estimates, predicted from allele frequencies in population databases, are in concordance with MIS-C incidence reports in Europeans but indicate lower risks for Asians and African Americans. Targeted Mendelian approaches dissecting the influence of relevant genetic variants are needed.
Collapse
Affiliation(s)
- Konstantinos I Papadopoulos
- Department of Research and Development, THAI StemLife Co., Ltd., 566/3 THAI StemLife Bldg., Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd., Wangthonglang, 10310, Bangkok, Thailand.
| | - Alexandra Papadopoulou
- Occupational and Environmental Health Services, Feelgood Lund, Ideon Science Park, Scheelevägen 17, 223 63, Lund, Sweden
| | - Tar-Choon Aw
- Department of Laboratory Medicine, Changi General Hospital, Singapore, 529889, Singapore
- Department of Medicine, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
6
|
Mak A, Chan JKY. Endothelial function and endothelial progenitor cells in systemic lupus erythematosus. Nat Rev Rheumatol 2022; 18:286-300. [PMID: 35393604 DOI: 10.1038/s41584-022-00770-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
Abstract
The observations that traditional cardiovascular disease (CVD) risk factors fail to fully account for the excessive cardiovascular mortality in patients with systemic lupus erythematosus (SLE) compared with the general population have prompted in-depth investigations of non-traditional, SLE-related risk factors that contribute to cardiovascular complications in patients with SLE. Of the various perturbations of vascular physiology, endothelial dysfunction, which is believed to occur in the earliest step of atherosclerosis, has been extensively investigated for its contribution to CVD risk in SLE. Endothelial progenitor cells (EPCs), which play a crucial part in vascular repair, neovascularization and maintenance of endothelial function, are quantitatively and functionally reduced in patients with SLE. Yet, the lack of a unified definition of EPCs, standardization of the quantity and functional assessment of EPCs as well as endothelial function measurement pose challenges to the translation of endothelial function measurements and EPC levels into prognostic markers for CVD in patients with SLE. This Review discusses factors that contribute to CVD in SLE, with particular focus on how endothelial function and EPCs are evaluated currently, and how EPCs are quantitatively and functionally altered in patients with SLE. Potential strategies for the use of endothelial function measurements and EPC quantification as prognostic markers of CVD in patients with SLE, and the limitations of their prognostication potential, are also discussed.
Collapse
Affiliation(s)
- Anselm Mak
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Division of Rheumatology, University Medicine Cluster, National University Health System, Singapore, Singapore.
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Academic Clinical Programme in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Huang G, Deng X, Xu Y, Wang P, Li T, Hu P. Endothelial nitric oxide synthase polymorphism and venous thromboembolism: A meta-analysis of 9 studies involving 3993 subjects. Phlebology 2021; 36:797-808. [PMID: 34102908 DOI: 10.1177/02683555211016626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Endothelial nitric oxide synthase (eNOS) polymorphism may influence the risk of venous thromboembolism (VTE). However, data from published studies with low statistical power are inconclusive. The present meta-analysis aimed to assess the relationship between eNOS polymorphism and the risk of VTE. METHOD Case-control studies evaluating the association between the eNOS polymorphism and VTE were searched in PubMed, Embase, Web of Science, Google Scholar, Wanfang, Chinese National Knowledge Infrastructure (CNKI), the Chongqing VIP Chinese Science and Technology Periodical Database (VIP), and Chinese Biomedical Literature Database (CBM). RESULTS A total of 1588 cases and 2405 controls from 9 studies were included in the analysis. The results showed that eNOS G894T polymorphism was related to VTE susceptibility and the difference was statistically significant [T vs G: OR = 1.41, 95% CI (1.13, 1.75), P = 0.002; TT + GG vs TG: OR = 0.71, 95% CI (0.60, 0.84), P = 0.000; TT + TG vs GG: OR = 1.45, 95% CI (1.23, 1.70), P = 0.000]. Additionally, eNOS Intron 4 VNTR polymorphism was related to VTE susceptibility and the difference was statistically significant [4b4b vs 4a4a + 4a4b: OR = 2.77, 95% CI (1.01, 7.61), P = 0.048]. CONCLUSION ENOS G894T and eNOS Intron 4 VNTR polymorphisms were associated with VTE susceptibility, especially in Asian populations. However, multicenter studies with larger samples should be conducted to further clarify this association and verify our findings.
Collapse
Affiliation(s)
- Guangbin Huang
- Department of Trauma Surgery, Emergency Medical Cental of Chongqing, The Affiliated Central Hospital of Chongqin University, Chongqing, China
| | - Xuejun Deng
- Department of Cardiology, Suining Central Hospital, Suining, China
| | - Yanan Xu
- Department of Trauma Surgery, Emergency Medical Cental of Chongqing, The Affiliated Central Hospital of Chongqin University, Chongqing, China
| | - Pan Wang
- Department of Trauma Surgery, Emergency Medical Cental of Chongqing, The Affiliated Central Hospital of Chongqin University, Chongqing, China
| | - Tao Li
- Department of Trauma Surgery, Emergency Medical Cental of Chongqing, The Affiliated Central Hospital of Chongqin University, Chongqing, China
| | - Ping Hu
- Department of Trauma Surgery, Emergency Medical Cental of Chongqing, The Affiliated Central Hospital of Chongqin University, Chongqing, China
| |
Collapse
|
8
|
Mancardi D, Arrigo E, Cozzi M, Cecchi I, Radin M, Fenoglio R, Roccatello D, Sciascia S. Endothelial dysfunction and cardiovascular risk in lupus nephritis: New roles for old players? Eur J Clin Invest 2021; 51:e13441. [PMID: 33128260 DOI: 10.1111/eci.13441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
In systemic lupus erythematosus (SLE) patients, most of the clinical manifestation share a vascular component triggered by endothelial dysfunction. Endothelial cells (ECs) activation occurs both on the arterial and venous side, and the high vascular density of kidneys accounts for the detrimental outcomes of SLE through lupus nephritis (LN). Kidney damage, in turn, exerts a negative feedback on the cardiovascular (CV) system aggravating risk factors for CV diseases such as hypertension, stroke and coronary syndrome among others. Despite the intensive investigation on SLE and LN, the role of endothelial dysfunction, as well as the underlying mechanisms, remains to be fully understood, with no specifically targeted pharmacological treatment. It is not known, in fact, if the activation pathway(s) in venous ECs are similar to the one in arterial ECs and doubts persist on the shared manifestation of microcirculation compared to macrocirculation. In this work, we aim to review the recent literature about the role of endothelial activation and dysfunction in the development of CV complications in SLE and LN patients. We, therefore, focus on arteriovenous similarities and differences and on specific pathways of great vessels compared to capillaries. Critically summarising the available data is of pivotal importance for both basic researchers and clinicians in order to develop and test new pharmacological approaches in the treatment of basic components of SLE and LN.
Collapse
Affiliation(s)
- Daniele Mancardi
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Elisa Arrigo
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Martina Cozzi
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases-Nephrology and Dialysis S. Giovanni Bosco Hospital, University of Turin, Turin, Italy.,School of Specialization in Nephrology, University of Verona, Verona, Italy
| | - Irene Cecchi
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases-Nephrology and Dialysis S. Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Massimo Radin
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases-Nephrology and Dialysis S. Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Roberta Fenoglio
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases-Nephrology and Dialysis S. Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Dario Roccatello
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases-Nephrology and Dialysis S. Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Savino Sciascia
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases-Nephrology and Dialysis S. Giovanni Bosco Hospital, University of Turin, Turin, Italy
| |
Collapse
|
9
|
Zhang Y, You B, Liu X, Chen J, Peng Y, Yuan Z. High-Mobility Group Box 1 (HMGB1) Induces Migration of Endothelial Progenitor Cell via Receptor for Advanced Glycation End-Products (RAGE)-Dependent PI3K/Akt/eNOS Signaling Pathway. Med Sci Monit 2019; 25:6462-6473. [PMID: 31461437 PMCID: PMC6733152 DOI: 10.12659/msm.915829] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND High-mobility group box1 (HMGB1) is a cytokine that has been demonstrated to have an important role in inducing migration and homing of endothelial progenitor cells (EPCs) in the process of neovascularization during wound healing, but its specific mechanism remains elusive. The aim of this study was to investigate the effects of the HMGB-RAGE axis in EPC migration, as well as the underlying molecular mechanism responsible for these effects. MATERIAL AND METHODS EPCs were isolated from the mice and identified using flow cytometry and fluorescence staining. The effect of HMGB1 on the activity of EPCs was detected using the Cell Counting Kit-8 (CCK-8). Then, the migration of EPCs was detected by scratch wound-healing and cell migration assay. NO levels were analyzed by ELISA. The expression of p-PI3K, p-Akt, and p-eNOS was determined by Western blot analysis. RAGE expression was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot analysis. F-actin was assessed by fluorescent staining. RESULTS The results showed that HMGB1 induced a concentration-dependent migration of EPCs, and the migration was RAGE-dependent. The migration could be almost completely blocked by PI3K inhibitors and eNOS inhibitor. HMGB1-RAGE upregulated the expression of p-Akt, p-eNOS, and p-ERK. We also demonstrated that the MEK/ERK signaling pathway is not involved in the EPC migration induced by HMGB1-RAGE. CONCLUSIONS These data demonstrate that HMGB1 activates RAGE and induces PI3K/Akt/eNOS signaling transduction pathway activation to promote EPC migration. Therefore, the HMGB1-RAGE axis plays an important role in the EPC migration process and may become a potential target in wound healing.
Collapse
Affiliation(s)
- Yulong Zhang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medicine University (Army Medical University), Chongqing, China (mainland)
| | - Bo You
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medicine University (Army Medical University), Chongqing, China (mainland).,Department of Burn, 958 Hospital of the People's Liberation Army, Chongqing, China (mainland)
| | - Xinzhu Liu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medicine University (Army Medical University), Chongqing, China (mainland)
| | - Jin Chen
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medicine University (Army Medical University), Chongqing, China (mainland)
| | - Yizhi Peng
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medicine University (Army Medical University), Chongqing, China (mainland)
| | - Zhiqiang Yuan
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medicine University (Army Medical University), Chongqing, China (mainland)
| |
Collapse
|