1
|
Nozari A, Babaahmadi P, Jalilian N, Sadeghi T, Hasani M. Introducing a novel TRAPPC10 gene variant as a potential cause of developmental delay and intellectual disability in an Iranian family. Neurogenetics 2024; 26:1. [PMID: 39560797 DOI: 10.1007/s10048-024-00785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND TRAPP complexes are crucial components for intracellular transport and cellular organization. Their role in vesicle trafficking, particularly through their involvement in the secretory pathway, make them more important in neurodevelopmental mechanisms. This study aims to identify a novel genetic variant, associated with developmental delay and intellectual disability by analyzing a consanguineous Iranian family. MATERIALS AND METHODS Here, we performed whole-exome sequencing on an Iranian family, originating from a small population. The patient presented with severe developmental delay, microcephaly, and behavioral abnormalities. Through our analysis, we discovered a new biallelic variant on a previously introduced gene: TRAPPC10 (NM_003274.5): c.3222 C > A; p.(Cys1074Ter) that is a potential cause for these specific clinical characteristics. RESULTS Previous functional analysis suggest that the mutation causes premature termination of protein translation, likely leading to nonsense-mediated decay because of biallelic loss of functional TRAPPC10 protein which leads to severe developmental delay, microcephaly, and behavioral abnormalities such as aggression and autistic traits. CONCLUSION The aim of this research is to discover a novel variant in the TRAPPC10 gene that is responsible for a particular neurodevelopmental condition, dominantly characterized by developmental delay, intellectual disability, and microcephaly. These findings advance the comprehension of TRAPP-related diseases and emphasize the need for further exploration into the impact of TRAPPC10 on the development of the nervous system.
Collapse
Affiliation(s)
- Ahoura Nozari
- Medical Genetics laboratory, Sadra Medical Genetics Laboratory, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Paria Babaahmadi
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Jalilian
- Department of Medical Biochemistry, Faculty of Medical Sciences, Ilam University of medical sciences, Ilam, Iran
| | - Taha Sadeghi
- Sadra Medical Genetics Laboratory, Shahrekord, 8815938702, Iran
| | - Mahdieh Hasani
- Department of Medical Genetics, School of Medicine, Ilam University of Medical sciences, Ilam, Iran
| |
Collapse
|
2
|
Tomer O, Horowitz-Cederboim S, Rivkin D, Meiner V, Gollob MH, Zwas DR, Durst R, Shauer A. Variable clinical expression of a novel FLNC truncating variant in a large family. Int J Cardiol 2024; 401:131849. [PMID: 38360096 DOI: 10.1016/j.ijcard.2024.131849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Variants in Filamin-C (FLNC) have been associated with various hereditary cardiomyopathies. Recent literature reports a prevalence of sudden cardiac death (SCD) of 13-25% among carriers of truncating-variants, with mean age of 42±15 years for first SCD event. This study reports two familial cases of SCD and the results of cascade screening of their large family. METHODS Molecular-autopsy of the SCD victims revealed a novel truncating-variant in the FLNC gene (chr 7:128496880 [hg19]; NM_001458.5; c.7467_7474del; p.(Ser2490fs)). We screened thirty-two family members following genetic counseling, and variant carriers underwent a comprehensive workup followed by consultation with a cardiologist with expertise in the genetics of cardiac diseases. RESULTS Seventeen variant carriers were identified: ages between 9 and 85 (mean 47±26). Fifteen underwent clinical evaluation. To date, none of the identified carriers has had major adverse events. In evaluated patients, ECG showed right-axis deviation in 60% (n = 9). Holter recorded frequent premature ventricular contractions (PVCs) (991±2030 per 24 h) in 33% (n = 5) with 4 patients having polymorphic PVC morphology. Three carriers had echocardiographic evidence of mild left-ventricular (LV) systolic dysfunction and another with mild LV dilatation. Cardiac magnetic-resonance (CMR) exhibited late‑gadolinium-enhancement in 10 out of 11 exams, mainly in the mid-myocardium and sub-epicardium, frequently involving the septum and the inferior-lateral wall. CONCLUSION This large FLNC truncating variant carrier family exhibits high cardiomyopathy penetrance, best diagnosed by CMR, with variable clinical expressions. These findings present a challenge in SCD prevention management and underscoring the imperative for better risk stratification measures.
Collapse
Affiliation(s)
- Orr Tomer
- The Heart Institute and The Hadassah Center for Cardiogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| | - Smadar Horowitz-Cederboim
- The Heart Institute and The Hadassah Center for Cardiogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Dini Rivkin
- The Heart Institute, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Vardiella Meiner
- Department of Genetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Michael H Gollob
- Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Canada
| | - Donna R Zwas
- The Heart Institute and The Hadassah Center for Cardiogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ronen Durst
- The Heart Institute and The Hadassah Center for Cardiogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ayelet Shauer
- The Heart Institute and The Hadassah Center for Cardiogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
3
|
Hassani M, Taghizadeh S, Farahzad Broujeni A, Habibi M, Banitalebi S, Kasiri M, Sadeghi A, Nozari A. A Novel Missense Mutation in the TGF-β-binding Protein-Like Domain 3 of FBN1 Causes Weill-Marchesani Syndrome with Intellectual Disability. Adv Biomed Res 2023; 12:114. [PMID: 37288014 PMCID: PMC10241635 DOI: 10.4103/abr.abr_138_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 06/09/2023] Open
Abstract
Background Weill-Marchesani syndrome (WMS) is a rare connective tissue disorder characterized by locus heterogeneity and variable expressivity. Patients suffering from WMS are described by short stature, brachydactyly, joint stiffness, congenital heart defects, and eye abnormalities. This disorder is inherited in two different modes; the autosomal dominant form of the disease occurs due to a mutation in FBN1, and the recessive form results from mutations in ADAMTS10, ADAMTS17, or LTP2 genes. Materials and Methods The family recruited in this study was a consanguineous Iranian family with an intellectually disabled girl referred to the Sadra Genetics laboratory, Shahrekord, Iran. The clinical history of family members was investigated. Whole-Exome Sequencing (WES) for the proband was performed. Sanger sequencing was used to assess the segregation of candidate variants in the other family members. Results Whole-exome sequencing analysis revealed a novel heterozygote mutation in the proband located at the third TGF-β-binding protein-like (TB) domain of the FBN1 gene (NM000138: c.2066A>G: (p. Glu689Gly), NP_000129.3, in exon 17 of the gene). Co-segregation analysis with Sanger sequencing confirmed this mutation in the affected members of the pedigree. Conclusion Our findings represent an autosomal dominant form of specific WMS resulting from a substitution mutation in the FBN1 gene. In addition to the typical manifestations of the disorder, mild intellectual disability (ID) was identified in the 8-year-old proband. Given the fact that ID is primarily reported in ADAMTS10 mutated cases, this family was clinically and genetically a novel case.
Collapse
Affiliation(s)
- Mahdieh Hassani
- Department of Medical Genetics, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Sara Taghizadeh
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahita Farahzad Broujeni
- Shahrekord Neuroscience Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahvash Habibi
- Department of Medical Genetics, Sadra Medical Genetics Lab, Shahrekord, Iran
| | - Setareh Banitalebi
- Department of Medical Genetics, Sadra Medical Genetics Lab, Shahrekord, Iran
| | - Mahbubeh Kasiri
- Department of Medical Genetics, Medical Genetics Laboratory, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Alireza Sadeghi
- Department of Medical Genetics, Sadra Medical Genetics Lab, Shahrekord, Iran
| | - Ahoura Nozari
- Department of Medical Genetics, Sadra Medical Genetics Lab, Shahrekord, Iran
- Department of Medical Genetics, Medical Genetics Laboratory, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
4
|
Malakootian M, Bagheri Moghaddam M, Kalayinia S, Farrashi M, Maleki M, Sadeghipour P, Amin A. Dilated cardiomyopathy caused by a pathogenic nucleotide variant in RBM20 in an Iranian family. BMC Med Genomics 2022; 15:106. [PMID: 35527250 PMCID: PMC9079971 DOI: 10.1186/s12920-022-01262-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/05/2022] [Indexed: 12/22/2022] Open
Abstract
Abstract
Introduction
Dilated cardiomyopathy (DCM) is characterized by the dilation and impaired contraction of 1 or both ventricles and can be caused by a variety of disorders. Up to 50% of idiopathic DCM cases have heritable familial diseases, and the clinical screening of family members is recommended. Identifying a genetic cause that can explain the DCM risk in the family can help with better screening planning and clinical decision-making. Whole-exome sequencing (WES) has aided significantly in the detection of causative genes in many genetically heterogeneous diseases. In the present study, we applied WES to identify the causative genetic variant in a family with heritable DCM.
Methods
WES was applied to identify genetic variants on a 26-year-old man as the proband of a family with DCM. Subsequently, Sanger sequencing was performed to confirm the variant in the patient and all the available affected and unaffected family members. The pathogenicity of the variant was evaluated through co-segregation analysis in the family and employment of in silico predictive software.
Results
WES demonstrated the missense pathogenic heterozygous nucleotide variant, c.1907G > A, (p.Arg636His, rs267607004, NM_0011343), in exon 9 of the RBM20 gene in the proband. The variant was co-segregated in all the affected family members in a heterozygous form and the unaffected family members. The in silico analysis confirmed the variant as pathogenic.
Conclusion
Pathogenic RBM20 nucleotide variants are associated with arrhythmogenic DCM. We believe that our report is the first to show an RBM20 variant in Iranian descent associated with DCM.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Dilated cardiomyopathy (DCM) frequently involves an underlying genetic etiology, but the clinical approach for genetic diagnosis and application of results in clinical practice can be complex. RECENT FINDINGS International sequence databases described the landscape of genetic variability across populations, which informed guidelines for the interpretation of DCM gene variants. New evidence indicates that loss-of-function mutations in filamin C (FLNC) contribute to DCM and portend high risk of ventricular arrhythmia. A clinical framework aids in referring patients for DCM genetic testing and applying results to patient care. Results of genetic testing can change medical management, particularly in a subset of genes that increase risk for life-threatening ventricular arrhythmias, and can influence decisions for defibrillator therapy. Clinical screening and cascade genetic testing of family members should be diligently pursued to identify those at risk of developing DCM.
Collapse
Affiliation(s)
- Lisa D Wilsbacher
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Simpson Querrey Biomedical Research Center 8-404, 303 E. Superior St, Chicago, IL, 60611, USA.
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Pecorari I, Mestroni L, Sbaizero O. Current Understanding of the Role of Cytoskeletal Cross-Linkers in the Onset and Development of Cardiomyopathies. Int J Mol Sci 2020; 21:E5865. [PMID: 32824180 PMCID: PMC7461563 DOI: 10.3390/ijms21165865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Cardiomyopathies affect individuals worldwide, without regard to age, sex and ethnicity and are associated with significant morbidity and mortality. Inherited cardiomyopathies account for a relevant part of these conditions. Although progresses have been made over the years, early diagnosis and curative therapies are still challenging. Understanding the events occurring in normal and diseased cardiac cells is crucial, as they are important determinants of overall heart function. Besides chemical and molecular events, there are also structural and mechanical phenomena that require to be investigated. Cell structure and mechanics largely depend from the cytoskeleton, which is composed by filamentous proteins that can be cross-linked via accessory proteins. Alpha-actinin 2 (ACTN2), filamin C (FLNC) and dystrophin are three major actin cross-linkers that extensively contribute to the regulation of cell structure and mechanics. Hereby, we review the current understanding of the roles played by ACTN2, FLNC and dystrophin in the onset and progress of inherited cardiomyopathies. With our work, we aim to set the stage for new approaches to study the cardiomyopathies, which might reveal new therapeutic targets and broaden the panel of genes to be screened.
Collapse
Affiliation(s)
- Ilaria Pecorari
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy;
| | - Luisa Mestroni
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
7
|
Sammani A, Kayvanpour E, Bosman LP, Sedaghat‐Hamedani F, Proctor T, Gi W, Broezel A, Jensen K, Katus HA, te Riele AS, Meder B, Asselbergs FW. Predicting sustained ventricular arrhythmias in dilated cardiomyopathy: a meta-analysis and systematic review. ESC Heart Fail 2020; 7:1430-1441. [PMID: 32285648 PMCID: PMC7373946 DOI: 10.1002/ehf2.12689] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/07/2020] [Accepted: 03/11/2020] [Indexed: 12/19/2022] Open
Abstract
AIMS Patients with non-ischaemic dilated cardiomyopathy (DCM) are at increased risk of sudden cardiac death. Identification of patients that may benefit from implantable cardioverter-defibrillator implantation remains challenging. In this study, we aimed to determine predictors of sustained ventricular arrhythmias in patients with DCM. METHODS AND RESULTS We searched MEDLINE/Embase for studies describing predictors of sustained ventricular arrhythmias in patients with DCM. Quality and bias were assessed using the Quality in Prognostic Studies tool, articles with high risk of bias in ≥2 areas were excluded. Unadjusted hazard ratios (HRs) of uniformly defined predictors were pooled, while all other predictors were evaluated in a systematic review. We included 55 studies (11 451 patients and 3.7 ± 2.3 years follow-up). Crude annual event rate was 4.5%. Younger age [HR 0.82; 95% CI (0.74-1.00)], hypertension [HR 1.95; 95% CI (1.26-3.00)], prior sustained ventricular arrhythmia [HR 4.15; 95% CI (1.32-13.02)], left ventricular ejection fraction on ultrasound [HR 1.45; 95% CI (1.19-1.78)], left ventricular dilatation (HR 1.10), and presence of late gadolinium enhancement [HR 5.55; 95% CI (4.02-7.67)] were associated with arrhythmic outcome in pooled analyses. Prior non-sustained ventricular arrhythmia and several genotypes [mutations in Phospholamban (PLN), Lamin A/C (LMNA), and Filamin-C (FLNC)] were associated with arrhythmic outcome in non-pooled analyses. Quality of evidence was moderate, and heterogeneity among studies was moderate to high. CONCLUSIONS In patients with DCM, the annual event rate of sustained ventricular arrhythmias is approximately 4.5%. This risk is considerably higher in younger patients with hypertension, prior (non-)sustained ventricular arrhythmia, decreased left ventricular ejection fraction, left ventricular dilatation, late gadolinium enhancement, and genetic mutations (PLN, LMNA, and FLNC). These results may help determine appropriate candidates for implantable cardioverter-defibrillator implantation.
Collapse
Affiliation(s)
- Arjan Sammani
- Department of Cardiology, Division Heart & Lungs, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Elham Kayvanpour
- Department of CardiologyUniversity Hospital of HeidelbergINF 41069120HeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)BerlinGermany
| | - Laurens P. Bosman
- Department of Cardiology, Division Heart & Lungs, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Farbod Sedaghat‐Hamedani
- Department of CardiologyUniversity Hospital of HeidelbergINF 41069120HeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)BerlinGermany
| | - Tanja Proctor
- Institute of Medical Biometry and InformaticsUniversity of HeidelbergHeidelbergGermany
| | - Weng‐Tein Gi
- Department of CardiologyUniversity Hospital of HeidelbergINF 41069120HeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)BerlinGermany
| | - Alicia Broezel
- Department of CardiologyUniversity Hospital of HeidelbergINF 41069120HeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)BerlinGermany
| | - Katrin Jensen
- Institute of Medical Biometry and InformaticsUniversity of HeidelbergHeidelbergGermany
| | - Hugo A. Katus
- Department of CardiologyUniversity Hospital of HeidelbergINF 41069120HeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)BerlinGermany
| | - Anneline S.J.M. te Riele
- Department of Cardiology, Division Heart & Lungs, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Benjamin Meder
- Department of CardiologyUniversity Hospital of HeidelbergINF 41069120HeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)BerlinGermany
- Department of Genetics, Stanford Genome Technology CenterStanford University School of MedicineStanfordCAUSA
| | - Folkert W. Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health SciencesUniversity College LondonLondonUK
- Health Data Research UK and Institute of Health InformaticsUniversity College LondonLondonUK
| |
Collapse
|
8
|
Gerull B, Brodehl A. Genetic Animal Models for Arrhythmogenic Cardiomyopathy. Front Physiol 2020; 11:624. [PMID: 32670084 PMCID: PMC7327121 DOI: 10.3389/fphys.2020.00624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Arrhythmogenic cardiomyopathy has been clinically defined since the 1980s and causes right or biventricular cardiomyopathy associated with ventricular arrhythmia. Although it is a rare cardiac disease, it is responsible for a significant proportion of sudden cardiac deaths, especially in athletes. The majority of patients with arrhythmogenic cardiomyopathy carry one or more genetic variants in desmosomal genes. In the 1990s, several knockout mouse models of genes encoding for desmosomal proteins involved in cell-cell adhesion revealed for the first time embryonic lethality due to cardiac defects. Influenced by these initial discoveries in mice, arrhythmogenic cardiomyopathy received an increasing interest in human cardiovascular genetics, leading to the discovery of mutations initially in desmosomal genes and later on in more than 25 different genes. Of note, even in the clinic, routine genetic diagnostics are important for risk prediction of patients and their relatives with arrhythmogenic cardiomyopathy. Based on improvements in genetic animal engineering, different transgenic, knock-in, or cardiac-specific knockout animal models for desmosomal and nondesmosomal proteins have been generated, leading to important discoveries in this field. Here, we present an overview about the existing animal models of arrhythmogenic cardiomyopathy with a focus on the underlying pathomechanism and its importance for understanding of this disease. Prospectively, novel mechanistic insights gained from the whole animal, organ, tissue, cellular, and molecular levels will lead to the development of efficient personalized therapies for treatment of arrhythmogenic cardiomyopathy.
Collapse
Affiliation(s)
- Brenda Gerull
- Comprehensive Heart Failure Center Wuerzburg, Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center NRW, University Hospitals of the Ruhr-University of Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
9
|
Structure and Function of Filamin C in the Muscle Z-Disc. Int J Mol Sci 2020; 21:ijms21082696. [PMID: 32295012 PMCID: PMC7216277 DOI: 10.3390/ijms21082696] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Filamin C (FLNC) is one of three filamin proteins (Filamin A (FLNA), Filamin B (FLNB), and FLNC) that cross-link actin filaments and interact with numerous binding partners. FLNC consists of a N-terminal actin-binding domain followed by 24 immunoglobulin-like repeats with two intervening calpain-sensitive hinges separating R15 and R16 (hinge 1) and R23 and R24 (hinge-2). The FLNC subunit is dimerized through R24 and calpain cleaves off the dimerization domain to regulate mobility of the FLNC subunit. FLNC is localized in the Z-disc due to the unique insertion of 82 amino acid residues in repeat 20 and necessary for normal Z-disc formation that connect sarcomeres. Since phosphorylation of FLNC by PKC diminishes the calpain sensitivity, assembly, and disassembly of the Z-disc may be regulated by phosphorylation of FLNC. Mutations of FLNC result in cardiomyopathy and muscle weakness. Although this review will focus on the current understanding of FLNC structure and functions in muscle, we will also discuss other filamins because they share high sequence similarity and are better characterized. We will also discuss a possible role of FLNC as a mechanosensor during muscle contraction.
Collapse
|
10
|
Reduction in Filamin C transcript is associated with arrhythmogenic cardiomyopathy in Ashkenazi Jews. Int J Cardiol 2020; 317:133-138. [PMID: 32532510 DOI: 10.1016/j.ijcard.2020.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/07/2020] [Accepted: 04/01/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Filamin C is a cytoskeletal protein expressed in cardiac cells. Nonsense variations in the filamin C gene (FLNC) were associated with dilated and arrhythmogenic cardiomyopathies. METHODS AND RESULTS We identified an intronic variation in FLNC gene (c.3791-1G > C) in three unrelated Ashkenazi Jewish families with variable expression of arrhythmia and cardiomyopathy. cDNA was prepared from a mutation carrier's cultured skin fibroblasts. Quantitative PCR demonstrated a reduction in total FLNC transcript, and no other FLNC splice variants were found. Single-nucleotide polymorphism (SNP) analysis revealed heterozygous variations in the genomic DNA that were not expressed in the messenger RNA. Immunohistochemical analysis of cardiac sections detected a normal distribution of filamin C protein in the heart ventricles. CONCLUSION The transcript that included the FLNC variant was degraded. Haploinsufficiency in filamin C underlies arrhythmogenic cardiomyopathy with variable symptoms.
Collapse
|
11
|
Di RM, Yang CX, Zhao CM, Yuan F, Qiao Q, Gu JN, Li XM, Xu YJ, Yang YQ. Identification and functional characterization of KLF5 as a novel disease gene responsible for familial dilated cardiomyopathy. Eur J Med Genet 2020; 63:103827. [DOI: 10.1016/j.ejmg.2019.103827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/25/2019] [Accepted: 12/14/2019] [Indexed: 02/08/2023]
|
12
|
Verdonschot JAJ, Vanhoutte EK, Claes GRF, Helderman-van den Enden ATJM, Hoeijmakers JGJ, Hellebrekers DMEI, de Haan A, Christiaans I, Lekanne Deprez RH, Boen HM, van Craenenbroeck EM, Loeys BL, Hoedemaekers YM, Marcelis C, Kempers M, Brusse E, van Waning JI, Baas AF, Dooijes D, Asselbergs FW, Barge-Schaapveld DQCM, Koopman P, van den Wijngaard A, Heymans SRB, Krapels IPC, Brunner HG. A mutation update for the FLNC gene in myopathies and cardiomyopathies. Hum Mutat 2020; 41:1091-1111. [PMID: 32112656 PMCID: PMC7318287 DOI: 10.1002/humu.24004] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Filamin C (FLNC) variants are associated with cardiac and muscular phenotypes. Originally, FLNC variants were described in myofibrillar myopathy (MFM) patients. Later, high‐throughput screening in cardiomyopathy cohorts determined a prominent role for FLNC in isolated hypertrophic and dilated cardiomyopathies (HCM and DCM). FLNC variants are now among the more prevalent causes of genetic DCM. FLNC‐associated DCM is associated with a malignant clinical course and a high risk of sudden cardiac death. The clinical spectrum of FLNC suggests different pathomechanisms related to variant types and their location in the gene. The appropriate functioning of FLNC is crucial for structural integrity and cell signaling of the sarcomere. The secondary protein structure of FLNC is critical to ensure this function. Truncating variants with subsequent haploinsufficiency are associated with DCM and cardiac arrhythmias. Interference with the dimerization and folding of the protein leads to aggregate formation detrimental for muscle function, as found in HCM and MFM. Variants associated with HCM are predominantly missense variants, which cluster in the ROD2 domain. This domain is important for binding to the sarcomere and to ensure appropriate cell signaling. We here review FLNC genotype–phenotype correlations based on available evidence.
Collapse
Affiliation(s)
- Job A J Verdonschot
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Els K Vanhoutte
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Godelieve R F Claes
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | - Debby M E I Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Amber de Haan
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Imke Christiaans
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands.,Department of Clinical Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ronald H Lekanne Deprez
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Hanne M Boen
- Department of Cardiology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | | | - Bart L Loeys
- Department of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Yvonne M Hoedemaekers
- Department of Clinical Genetics, University Medical Centre Groningen, Groningen, The Netherlands.,Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Carlo Marcelis
- Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marlies Kempers
- Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Esther Brusse
- Department of Neurology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Jaap I van Waning
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Annette F Baas
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis Dooijes
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Stephane R B Heymans
- Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.,The Netherlands Heart Institute, Utrecht, The Netherlands
| | - Ingrid P C Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Genetics and Cell Biology, GROW Institute for Developmental Biology and Cancer, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
13
|
Identification and Functional Characterization of an ISL1 Mutation Predisposing to Dilated Cardiomyopathy. J Cardiovasc Transl Res 2018; 12:257-267. [DOI: 10.1007/s12265-018-9851-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
|