1
|
Rutledge BS, Kim YJ, McDonald DW, Jurado-Coronel JC, Prado MAM, Johnson JL, Choy WY, Duennwald ML. Stress-inducible phosphoprotein 1 (Sti1/Stip1/Hop) sequesters misfolded proteins during stress. FEBS J 2024. [PMID: 39739753 DOI: 10.1111/febs.17389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/16/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Co-chaperones are key elements of cellular protein quality control. They cooperate with the major heat shock proteins Hsp70 and Hsp90 in folding proteins and preventing the toxic accumulation of misfolded proteins upon exposure to stress. Hsp90 interacts with the co-chaperone stress-inducible phosphoprotein 1 (Sti1/Stip1/Hop) and activator of Hsp90 ATPase protein 1 (Aha1) among many others. Sti1 and Aha1 control the ATPase activity of Hsp90, but Sti1 also facilitates the transfer of client proteins from Hsp70 to Hsp90, thus connecting these two major branches of protein quality control. We find that misbalanced expression of Sti1 and Aha1 in yeast and mammalian cells causes severe growth defects. Also, deletion of STI1 causes an accumulation of soluble misfolded ubiquitinated proteins and a strong activation of the heat shock response. We discover that, during proteostatic stress, Sti1 forms cytoplasmic inclusions in yeast and mammalian cells that overlap with misfolded proteins. Our work indicates a key role of Sti1 in proteostasis independent of its Hsp90 ATPase regulatory functions by sequestering misfolded proteins during stress.
Collapse
Affiliation(s)
- Benjamin S Rutledge
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Young J Kim
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| | - Donovan W McDonald
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| | - Juan C Jurado-Coronel
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| | - Marco A M Prado
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
- Robarts Research Institute and Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Wing-Yiu Choy
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Martin L Duennwald
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| |
Collapse
|
2
|
Guo Y, Hong Z, Huang S, Wu Y, Qiu C, Xu J. GOLPH3-STIP1 Complex Activates STAT3 Through Exosome Secretion to Induce Colon Cancer Metastasis. Biotechnol J 2024; 19:e202400563. [PMID: 39711092 DOI: 10.1002/biot.202400563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/24/2024]
Abstract
With a high mortality rate, colon cancer (CC) is the third most common malignant tumor worldwide. The primary causes are thought to be the high invasiveness and migration of CC cells. The functions of Golgi phosphoprotein 3 (GOLPH3), stress-induced phosphoprotein 1 (STIP1), and the signal transducer and activator of transcription 3 (STAT3) signaling pathway in the invasion and migration of CC cells were examined in this study. We collected the exosomes by high-speed centrifugation. The expressions of GOLPH3, STIP1, and epithelial-mesenchymal transition (EMT)-related proteins in CC tissues, cells, and exosomes were analyzed using Western blotting (WB) experiments. The abilities of CC cell invasion and migration were evaluated by the Transwell assay. The binding relationship between GOLPH3 and STIP1 was validated through Co-immunoprecipitation (Co-IP), and their sublocalization in CC cells was determined by immunofluorescence detection under laser confocal microscopy. Immunohistochemistry (IHC) experiments detected the expression levels of each protein in the transplanted tumor mass. Animal experiments confirmed the impact of the GOLPH3/STIP1/STAT3 regulatory axis on CC growth. We found that in CC tissues and cells, GOLPH3 was highly expressed, and silencing GOLPH3 not only greatly reduced CC cell invasion and migration but also prevented EMT. Furthermore, GOLPH3 and STIP1 interacted in CC cells, and the GOLPH3-STIP1 complex affected the capacity for cell invasion and migration by triggering the STAT3 signaling pathway. Noteworthily, GOLPH3, and STIP1 could also be detected in CC cell exosomes, and the exosomes carried the GOLPH3-ST1P1 complex to act on CC cells to activate intracellular STAT3 signaling, ultimately affecting the cancer cell migration and invasion. The above molecular regulatory mechanisms have also been validated in mice. In conclusion, the GOLPH3-STIP1 complex acted on surrounding CC cells through exosomes and activated the STAT3 signaling pathway to stimulate CC cell invasion and migration.
Collapse
Affiliation(s)
- Yanta Guo
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhongshi Hong
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Sifu Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yuze Wu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Chengzhi Qiu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Jianhua Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
3
|
de Azevedo ALK, Gomig THB, Ribeiro EMDSF. Stress-induced phosphoprotein 1: how does this co-chaperone influence the metastasis steps? Clin Exp Metastasis 2024; 41:589-597. [PMID: 38581620 DOI: 10.1007/s10585-024-10282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/27/2024] [Indexed: 04/08/2024]
Abstract
In several cancer types, metastasis is associated with poor prognosis, survival, and quality of life, representing a life risk more significant than the primary tumor itself. Metastasis is a multi-step process that spreads tumor cells from primary sites to surrounding or distant organs, originating secondary tumors. The interconnected steps that drive metastasis depend of several capabilities that enable cells to detach from the primary tumor, acquire motility and migrate through the basal membrane; invade and spread through the vascular system, and finally settle and originate a new tumor. Recently, stress-induced phosphoprotein 1 (STIP1) has emerged as a protein capable of driving tumor cells through these metastasis steps by mediating several biological processes and signaling pathways. This protein is mainly known for its function as a co-chaperone, acting as a scaffold for the interaction of its client heat-shock proteins Hsp70/90 chaperones; however, it is also known that STIP1 can act independently of chaperones to activate downstream phosphorylation pathways. The over-expression of STIP1 has been reported across various cancer types, identifying it as a potential biomarker for predicting patient prognosis and monitoring the progression of metastasis. Here, we present a discussion on how this co-chaperone mediates the initial steps of metastasis (cell adhesion loss, epithelial-to-mesenchymal transition, and angiogenesis), highlighting the biological mechanisms in which STIP1 plays a vital role, also presenting an overview of the current knowledge regarding its clinical relevance.
Collapse
Affiliation(s)
- Alexandre Luiz Korte de Azevedo
- Genetics Post-Graduation Program, Genetics Department, Federal University of Paraná, P.O. box 19071, Curitiba, Paraná, CEP: 81531-990, Brazil
| | - Talita Helen Bombardelli Gomig
- Genetics Post-Graduation Program, Genetics Department, Federal University of Paraná, P.O. box 19071, Curitiba, Paraná, CEP: 81531-990, Brazil
| | | |
Collapse
|
4
|
Paromov V, Uversky VN, Cooley A, Liburd LE, Mukherjee S, Na I, Dayhoff GW, Pratap S. The Proteomic Analysis of Cancer-Related Alterations in the Human Unfoldome. Int J Mol Sci 2024; 25:1552. [PMID: 38338831 PMCID: PMC10855131 DOI: 10.3390/ijms25031552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
Many proteins lack stable 3D structures. These intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains with intrinsically disordered protein regions (IDPRs) often carry out regulatory functions related to molecular recognition and signal transduction. IDPs/IDPRs constitute a substantial portion of the human proteome and are termed "the unfoldome". Herein, we probe the human breast cancer unfoldome and investigate relations between IDPs and key disease genes and pathways. We utilized bottom-up proteomics, MudPIT (Multidimensional Protein Identification Technology), to profile differentially expressed IDPs in human normal (MCF-10A) and breast cancer (BT-549) cell lines. Overall, we identified 2271 protein groups in the unfoldome of normal and cancer proteomes, with 148 IDPs found to be significantly differentially expressed in cancer cells. Further analysis produced annotations of 140 IDPs, which were then classified to GO (Gene Ontology) categories and pathways. In total, 65% (91 of 140) IDPs were related to various diseases, and 20% (28 of 140) mapped to cancer terms. A substantial portion of the differentially expressed IDPs contained disordered regions, confirmed by in silico characterization. Overall, our analyses suggest high levels of interactivity in the human cancer unfoldome and a prevalence of moderately and highly disordered proteins in the network.
Collapse
Affiliation(s)
- Victor Paromov
- Meharry Proteomics Core, RCMI Research Capacity Core, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA; (V.N.U.); (I.N.)
| | - Ayorinde Cooley
- Meharry Bioinformatics Core, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Lincoln E. Liburd
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA (S.M.)
| | - Shyamali Mukherjee
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA (S.M.)
| | - Insung Na
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA; (V.N.U.); (I.N.)
| | - Guy W. Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL 33613, USA;
| | - Siddharth Pratap
- Meharry Proteomics Core, RCMI Research Capacity Core, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
- Meharry Bioinformatics Core, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
5
|
Wang D, Ding D, Ying J, Qin Y. Bioinformatics identification of a T-cell-related signature for predicting prognosis and drug sensitivity in hepatocellular carcinoma. IET Syst Biol 2023; 17:366-377. [PMID: 37935646 PMCID: PMC10725711 DOI: 10.1049/syb2.12082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a fatal disease with poor clinical outcomes. T cells play a vital role in the crosstalk between the tumour microenvironment and HCC. Single-cell RNA sequencing data were downloaded from the GSE149614 dataset. The T-cell-related prognostic signature (TRPS) was developed with the integrative procedure including 10 machine learning algorithms. The TRPS was established using 7 T-cell-related markers in the Cancer Genome Atlas cohort with 1-, 2- and 3-year area under curve values of 0.820, 0.725 and 0.678, respectively. TRPS acted as an independent risk factor for HCC patients. HCC patients with a high TRPS-based risk score had a higher Tumour Immune Dysfunction and Exclusion score, lower PD1 and CTLA4 immunophenoscore and lower level of immunoactivated cells, including CD8+ T cells and NK cells. The response rate was significantly higher in patients with low-risk scores in immunotherapy cohorts, including IMigor210 and GSE91061. The TRPS-based nomogram had a relatively good predictive value in evaluating the mortality risk at 1, 3 and 5 years in HCC. Overall, this study develops a TRPS by integrated bioinformatics analysis. This TRPS acted as an independent risk factor for the OS rate of HCC patients. It can screen for HCC patients who might benefit from immunotherapy, chemotherapy and targeted therapy.
Collapse
Affiliation(s)
- Dianqian Wang
- Health Science CenterNingbo UniversityNingboZhejiangChina
| | - Dongxiao Ding
- Department of Thoracic SurgeryThe People's Hospital of Beilun DistrictNingboZhejiangChina
| | - Junjie Ying
- Department of Thoracic SurgeryThe People's Hospital of Beilun DistrictNingboZhejiangChina
| | - Yunsheng Qin
- Department of Hepatobiliary and Pancreatic SurgeryFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
- Department of Hepatobiliary SurgeryThe People's Hospital of Beilun DistrictNingboZhejiangChina
| |
Collapse
|
6
|
Xie F, Li L, Peng M, Zhang H. Overexpression of miR-199a-5p improves brain injury in newborn rats with intrauterine infection via inhibition of astrocyte activation. Brain Res 2023; 1820:148560. [PMID: 37648092 DOI: 10.1016/j.brainres.2023.148560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
White matter injury is the most common form of brain injury in preterm infants. In addition to hypoxia ischemia, intrauterine infection is most closely related to brain white matter injury. Our study aimed to explore the mechanism of the miR-199a-5p/HIF-1α axis on astrocyte activation and brain injury in newborn rats caused by intrauterine infection. The animal/cell model was established via escherichia coli infection/lipopolysaccharide induction, followed by the measurement of body weight, brain weight, and the pathological changes in brain tissues of newborn rats, and the pathological changes in placenta and uterus wall of pregnant rats. Also, the levels of GFAP, TNF-α, MDA, GSH, SOD, miR-199a-5p, and HIF-1α were detected though corresponding assays or kits. In vitro, cell viability and apoptosis and the levels of IL-6 and TNF-α were evaluated in astrocytes. Moreover, the targeting relationship between miR-199a-5p and HIF-1α was verified. miR-199a-5p was lowly expressed in the brain tissues of newborn rats with intrauterine infection. Overexpression of miR-199a-5p relieved the injury of placenta and uterus wall in pregnant rats and brain injury in newborn rats, accompanied by decreased HIF-1α, GFAP, TNF-α, and MDA levels and increased GSH and SOD levels. Results from cell models showed that miR-199a-5p overexpression inhibited astrocyte activation, shown by enhanced cell viability, weakened cell apoptosis, and decreased GFAP, IL-6, and TNF-α. Mechanistically, miR-199a-5p targeted HIF-1α to decrease its expression. Collectively, miR-199a-5p inhibited astrocyte activation and alleviated brain injury in newborn rats with intrauterine infection by reducing HIF-1α expression.
Collapse
Affiliation(s)
- Fan Xie
- Obstetrics Department, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, NO.745 Wuluo Road, Hongshan District, Wuhan, Hubei 430070, PR China
| | - Li Li
- Obstetrics Department, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, NO.745 Wuluo Road, Hongshan District, Wuhan, Hubei 430070, PR China
| | - Min Peng
- Obstetrics Department, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, NO.745 Wuluo Road, Hongshan District, Wuhan, Hubei 430070, PR China.
| | - Huan Zhang
- Obstetrics Department, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, NO.745 Wuluo Road, Hongshan District, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
7
|
Hua H, Su T, Han L, Zhang L, Huang Y, Zhang N, Yang M. LINC01226 promotes gastric cancer progression through enhancing cytoplasm-to-nucleus translocation of STIP1 and stabilizing β-catenin protein. Cancer Lett 2023; 577:216436. [PMID: 37806517 DOI: 10.1016/j.canlet.2023.216436] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Gastric cancer (GC) remains one of the most common malignances and the leading cause of cancer-related mortality worldwide. Although the critical role of several long non-coding RNAs (lncRNAs) transcribed from several GC-risk loci has been established, we still know little about the biological significance of these lncRNAs at most gene loci and how they play in cell signaling. In the present study, we identified a novel oncogenic lncRNA LINC01226 transcribed from the 1p35.2 GC-risk locus. LINC01226 shows markedly higher expression levels in GC specimens compared with those in normal tissues. High expression of LINC01226 is evidently correlated with worse prognosis of GC cases. In line with these, oncogenic LINC01226 promotes proliferation, migration and metastasis of GC cells ex vivo and in vivo. Importantly, LINC01226 binds to STIP1 protein, leads to disassembly of the STIP1-HSP90 complex, elevates interactions between HSP90 and β-catenin, stabilizes β-catenin protein, activates the Wnt/β-catenin signaling and, thereby, promote GC progression. Together, our findings uncovered a novel layer regulating the Wnt signaling in cancers and uncovers a new epigenetic mode of GC tumorigenesis. These discoveries also shed new light on the importance of functional lncRNAs as innovative therapeutic targets through precisely controlling protein-protein interactions in cancers.
Collapse
Affiliation(s)
- Hui Hua
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Tao Su
- Shandong University Cancer Center, Jinan, Shandong Province, 250117, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Yizhou Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China; Shandong University Cancer Center, Jinan, Shandong Province, 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| |
Collapse
|
8
|
Zhao X, Wang Y, Xia H, Liu S, Huang Z, He R, Yu L, Meng N, Wang H, You J, Li J, Yam JWP, Xu Y, Cui Y. Roles and Molecular Mechanisms of Biomarkers in Hepatocellular Carcinoma with Microvascular Invasion: A Review. J Clin Transl Hepatol 2023; 11:1170-1183. [PMID: 37577231 PMCID: PMC10412705 DOI: 10.14218/jcth.2022.00013s] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 07/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) being a leading cause of cancer-related death, has high associated mortality and recurrence rates. It has been of great necessity and urgency to find effective HCC diagnosis and treatment measures. Studies have shown that microvascular invasion (MVI) is an independent risk factor for poor prognosis after hepatectomy. The abnormal expression of biomacromolecules such as circ-RNAs, lncRNAs, STIP1, and PD-L1 in HCC patients is strongly correlated with MVI. Deregulation of several markers mentioned in this review affects the proliferation, invasion, metastasis, EMT, and anti-apoptotic processes of HCC cells through multiple complex mechanisms. Therefore, these biomarkers may have an important clinical role and serve as promising interventional targets for HCC. In this review, we provide a comprehensive overview on the functions and regulatory mechanisms of MVI-related biomarkers in HCC.
Collapse
Affiliation(s)
- Xudong Zhao
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yudan Wang
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haoming Xia
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuqiang Liu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Risheng He
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liang Yu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nanfeng Meng
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hang Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Junqi You
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinglin Li
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, Jiangsu, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Hangzhou, Zhejiang, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Changxing, Zhejiang, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Abstract
The Hsp70/Hsp90 organising protein (Hop, also known as stress-inducible protein 1/STI1/STIP1) has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins, although recent evidence suggests that eukaryotic Hop is regulatory within chaperone complexes rather than essential. Consequently, Hop is implicated in many key signalling pathways, including aberrant pathways leading to cancer. Hop is also secreted, and it is now well established that Hop interacts with the prion protein, PrPC, to mediate multiple signalling events. The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrPC. While the various cellular functions of Hop have been described, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseased states.
Collapse
|
10
|
Wang M, Liu F, Pan Y, Xu R, Li F, Liu A, Yang H, Duan L, Shen L, Wu Q, Liu Y, Liu M, Liu Z, Hu Z, Chen H, Cai H, He Z, Ke Y. Tumor-associated autoantibodies in ESCC screening: Detecting prevalent early-stage malignancy or predicting future cancer risk? EBioMedicine 2021; 73:103674. [PMID: 34753106 PMCID: PMC8586741 DOI: 10.1016/j.ebiom.2021.103674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND To assess potential roles for tumor-associated autoantibodies (TAAs) in esophageal squamous cell carcinoma (ESCC) screening: detecting early-stage malignancy, and predicting future cancer risk. METHOD Thirteen candidate autoantibodies identified in previous literatures were measured using multiplex serological assays in sera from cases and matched controls nested in two population-level screening cohorts in China. To evaluate the role of TAAs in detecting prevalent esophageal malignant lesions, an identification set (150 cases vs. 560 controls) and an external validation set (34 cases vs. 121 controls) were established with pre-screening sera collected ≤ 12 months prior to screening-related diagnosis. To explore the role of TAAs in predicting future ESCC risk, an exploration set (105 cases vs. 416 controls) with pre-diagnostic sera collected > 12 months before clinical diagnosis was established. Two models, the questionnaire-based model and full model additionally incorporating TAA markers, were constructed. Area under the receiver operating characteristic curve (AUC) and net reclassification improvement (NRI) were calculated to compare the performance of the two models. FINDINGS In the identification set, NY-ESO-1 (OR=2·12, 95% CI=1·02-4·40) and STIP1 (OR=1·83, 95% CI=1·10-3·05) were positively associated with higher risk of esophageal malignancy. Elevated MMP-7 was associated with higher risk of malignancy in females (ORfemale=5·07, 95% CI=1·30-19·71). The estimates in validation set were consistent with these results, but were close to null in exploration set. Integration of selected TAAs improved the performance of questionnaire-based models in detecting prevalent esophageal malignancy (female: AUCfull model=0·745, 95% CI=0·675-0·814, AUCquestionnaire-based model=0·658, 95% CI=0·585-0·732, NRI=0·604, P<0·0001; male: AUCfull model=0·662, 95% CI=0·596-0·728, AUCquestionnaire-based model=0·619, 95% CI=0·548-0·690, NRI=0·357, P=0·0028). This improvement was also seen in validation set, but was not similarly effective in distinguishing long-term incident cases from healthy controls. INTERPRETATION Serological autoantibodies against NY-ESO-1, STIP1, and MMP-7 perform well in detecting early-stage esophageal malignancy, but are less effective in predicting future ESCC risks. FUNDING This work was supported by the National Science & Technology Fundamental Resources Investigation Program of China (2019FY101102), the National Natural Science Foundation of China (82073626), the National Key R&D Program of China (2016YFC0901404), the Beijing-Tianjin-Hebei Basic Research Cooperation Project (J200016), the Digestive Medical Coordinated Development Center of Beijing Hospitals Authority (XXZ0204), and the Natural Science Foundation of Beijing Municipality (7182033).
Collapse
Affiliation(s)
- Minmin Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Fangfang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Yaqi Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Ruiping Xu
- Anyang Cancer Hospital, Anyang, Henan Province, P.R. China
| | - Fenglei Li
- Hua County People's Hospital, Anyang, Henan Province, P.R. China
| | - Anxiang Liu
- Endoscopy center, Anyang Cancer Hospital, Anyang, Henan Province, P.R. China
| | - Haijun Yang
- Department of pathology, Anyang Cancer Hospital, Anyang, Henan Province, P.R. China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, P.R. China
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Qi Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Endoscopy Center, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Ying Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Mengfei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Zhen Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Zhe Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Huanyu Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Hong Cai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Zhonghu He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| | - Yang Ke
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| |
Collapse
|
11
|
Xia Y, Chen J, Liu G, Huang W, Wei X, Wei Z, He Y. STIP1 knockdown suppresses colorectal cancer cell proliferation, migration and invasion by inhibiting STAT3 pathway. Chem Biol Interact 2021; 341:109446. [PMID: 33766539 DOI: 10.1016/j.cbi.2021.109446] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/07/2021] [Accepted: 03/17/2021] [Indexed: 01/04/2023]
Abstract
Stress-induced phosphoprotein 1 (STIP1) plays an important role in cancer tumorigenesis and progression. However, the role of STIP1 in colorectal cancer (CRC) remains unclear. This study aimed to explore clinical significance, biological function and potential molecular mechanism of STIP1 in CRC. Immunohistochemistry (IHC) and Western bolt were performed to detect STIP1 protein level in CRC and adjacent normal tissues. DLD1 and HCT116 cell lines were treated with shSTIP1, cell proliferation was detected by CCK8 and colony formation assays, and cell migration and invasion were detected by wound healing and transwell assays. Moreover, western blot and immunofluorescence assays were performed to explore the potential molecular mechanism of STIP1 in the progression of CRC. We found that STIP1 expression in CRC tissues was significantly higher than in adjacent normal tissues. High STIP1 expression was associated with poor overall survival (OS) in CRC patients. Furthermore, secreted STIP1 promoted CRC cell proliferation and invasion through STAT3 signaling pathway, while STIP1 knockdown inhibited the proliferation, migration and invasion of CRC cells. Mechanistically, STIP1 knockdown suppressed the activation of STAT3 signaling pathway in CRC. In conclusion, STIP1 knockdown suppresses CRC cell proliferation, migration and invasion by inhibiting the activation of STAT3 signaling, and STIP1 is a potential target for CRC therapy.
Collapse
Affiliation(s)
- YuJian Xia
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Jian Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Guangyao Liu
- Department of Gastrointestinal Surgery, Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Shenyuan Road, Shenzhen, Guangdong, 518106, China
| | - WeiBin Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - XiaoJing Wei
- Department of Medical Record Management, Affiliated Hospital of Yangzhou University, No. 45 Taizhou Road, Yangzhou, Jiangsu, 225000, China
| | - ZheWei Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
| | - YuLong He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
12
|
Geng X, Zhang Y, Zeng Z, Zhu Z, Wang H, Yu W, Li Q. Molecular Characteristics, Prognostic Value, and Immune Characteristics of m 6A Regulators Identified in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:629718. [PMID: 33816266 PMCID: PMC8014089 DOI: 10.3389/fonc.2021.629718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
N6-methyladenosine (m6A) plays crucial roles in a diverse range of physiological and pathological processes, and it is believed that it tremendously promotes neoplasia and progression. However, knowledge of the molecular characteristics of m6A modification, its prognostic value, and the infiltration of immune cell populations in head and neck squamous cell carcinoma (HNSCC) is still insufficient. Therefore, a pan-cancer genomic analysis was systematically performed here by examining m6A regulators at the molecular level within 33 multiple cancer types, and the correlations between the expression of m6A molecules were researched using datasets from The Cancer Genome Atlas (TCGA). Based on the above analysis, insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is upregulated in HNSCC and may serve as an independent prognostic factor of overall survival, thus showing potential as a prognostic biomarker in HNSCC. Genetic alteration analyses elucidated the reasons for the abnormal upregulation of IGF2BP2 in HNSCC. As a result, IGF2BP2 was selected for further univariate and multivariate analyses. The functions of the related genes were annotated through gene set enrichment analysis, and the activation states of multiple biological pathways were shown by gene set variation analysis. We found that LRRC59 and STIP1 may act as IGF2BP2-associated genes to have a regulatory function in the m6A modification. In addition, we found that the status of immune cell infiltration was correlated with the level of IGF2BP2 gene expression. Our results provide supplementation at the molecular level for epigenetic regulation in HNSCC and insight into effective immunotherapy targets and strategies.
Collapse
Affiliation(s)
- Xiuchao Geng
- Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuhao Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- School of Clinical Medicine, Hebei University, Baoding, China
| | - Zhaomu Zeng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- School of Clinical Medicine, Hebei University, Baoding, China
| | - Zhongrui Zhu
- Faculty of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hong Wang
- Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- School of Clinical Medicine, Hebei University, Baoding, China
| | - Wentao Yu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
- Faculty of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qiang Li
- Faculty of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
13
|
Lin L, Wen J, Lin B, Xia E, Zheng C, Ye L, Wang Y, Wang O, Chen Y. Stress-induced phosphoprotein 1 facilitates breast cancer cell progression and indicates poor prognosis for breast cancer patients. Hum Cell 2021; 34:901-917. [PMID: 33665786 DOI: 10.1007/s13577-021-00507-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/13/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer (BC) threatened the life health of a tremendous amount of the population, and the estimated number of death is still rising nowadays. We found that stress-induced phosphoprotein 1 (STIP1) is overexpressed in BC tissues compared to non-tumorous breast tissues. Our study is to validate the prognostic value of STIP1 and investigate its biological role in BC. We verified the upregulation of STIP1 in multiple databases, proved that STIP1 is upregulated in BC tissues and cell lines using real-time quantitative PCR (qRT-PCR). We used small interfering RNA to examine the function of STIP1 in BC cell lines (BT-549, MDA-MB-231, Hs-578 T) and explored the mechanism of function of STIP1 in BC cells using Western blotting and qRT-PCR. Analyses of multiple databases indicated that high STIP1 expression is a marker that effectively distinguishes BC patients from healthy control and predicts worse clinical outcomes in BC. The loss-of-function experiments showed that STIP1 silencing results in inhibition of cell proliferation and migration, inducing cell apoptosis, and S-phase arrest in vitro. Our study also showed that STIP1 downregulation inhibited the JAK2/STAT3 pathway and epithelial-mesenchymal transition process. Rescue experiments demonstrated that the oncogenic effect of STIP1 is partially dependent on mediating JAK2 expression. This study verified that STIP1 is an oncogenic gene that promotes BC progression and serves as a valuable diagnostic and outcome-related marker of BC.
Collapse
Affiliation(s)
- Lizhi Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Jialiang Wen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Bangyi Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Erjie Xia
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Chen Zheng
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Lechi Ye
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinghao Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Ouchen Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Yizuo Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
14
|
Lin CY, Chen SH, Tsai CL, Tang YH, Wu KY, Chao A. Intracellular targeting of STIP1 inhibits human cancer cell line growth. Transl Cancer Res 2021; 10:1313-1323. [PMID: 35116457 PMCID: PMC8799303 DOI: 10.21037/tcr-20-3333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Extracellular and cell-surface molecules remain the most common druggable cancer targets. However, intracellular therapeutic modalities are gaining momentum. The overexpression of stress-induced phosphoprotein 1 (STIP1), an adaptor protein that coordinates the functions of different chaperones in protein folding, has been reported in several solid malignancies. Here, we investigated the effects of intracellular STIP1 inhibition, attained either through the HEPES-mediated cytosolic delivery of anti-STIP1 antibodies or the use of a cell-penetrating signal-tagged peptide 520, in different human cancer cell lines and luciferase-expressing murine ovarian cancer cells (MOSEC/Luc) tumor-bearing C57BL/6 mice. METHODS The effects of STIP1 in different human cell lines were determined by cell viability, cell cytotoxicity and cell apoptosis assays. Immunoblotting was used to assess the relevant proteins found in this study and tumor xenograft mice models were also employed. RESULTS Intracellular targeting of STIP1 inhibited cancer cell line growth and promoted caspase 3-dependent apoptotic cell death. Moreover, the intracellular delivery of anti-STIP1 antibodies facilitated the degradation of STIP1 and two of its client proteins, lysine-specific demethylase 1 and Janus kinase 2. In vivo studies demonstrated that survival of mice bearing experimental tumors was improved by administration of anti-STIP1 antibodies. CONCLUSIONS Our findings demonstrate that the cytosolic inhibition of STIP1 in tumor cells is feasible and provides a solid basis for further investigation of STIP1 as an intracellular cancer target. Our findings demonstrate that cytosolic inhibition of STIP1 in tumor cells is feasible and provide a solid basis for further exploration of STIP1 as an intracellular cancer target.
Collapse
Affiliation(s)
- Chiao-Yun Lin
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan.,Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan
| | - Shun-Hua Chen
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan.,Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan.,Fooyin University School of Nursing, Kaohsiung
| | - Chia-Lung Tsai
- Genomic Medicine Research Core Laboratory, Linkou Chang Gung Memorial Hospital, Taoyuan
| | - Yun-Hsin Tang
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan.,Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan
| | - Kai-Yun Wu
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan
| | - Angel Chao
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan.,Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan
| |
Collapse
|
15
|
da Fonseca ACC, Matias D, Geraldo LHM, Leser FS, Pagnoncelli I, Garcia C, do Amaral RF, da Rosa BG, Grimaldi I, de Camargo Magalhães ES, Cóppola-Segovia V, de Azevedo EM, Zanata SM, Lima FRS. The multiple functions of the co-chaperone stress inducible protein 1. Cytokine Growth Factor Rev 2020; 57:73-84. [PMID: 32561134 DOI: 10.1016/j.cytogfr.2020.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022]
Abstract
Stress inducible protein 1 (STI1) is a co-chaperone acting with Hsp70 and Hsp90 for the correct client proteins' folding and therefore for the maintenance of cellular homeostasis. Besides being expressed in the cytosol, STI1 can also be found both in the cell membrane and the extracellular medium playing several relevant roles in the central nervous system (CNS) and tumor microenvironment. During CNS development, in association with cellular prion protein (PrPc), STI1 regulates crucial events such as neuroprotection, neuritogenesis, astrocyte differentiation and survival. In cancer, STI1 is involved with tumor growth and invasion, is undoubtedly a pro-tumor factor, being considered as a biomarker and possibly therapeutic target for several malignancies. In this review, we discuss current knowledge and new findings on STI1 function as well as its role in tissue homeostasis, CNS and tumor progression.
Collapse
Affiliation(s)
| | - Diana Matias
- Molecular Bionics Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - Luiz Henrique Medeiros Geraldo
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil; Université de Paris, PARCC, INSERM, Paris, 75015, France
| | - Felipe Saceanu Leser
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Iohana Pagnoncelli
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Celina Garcia
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Rackele Ferreira do Amaral
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Barbara Gomes da Rosa
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Izabella Grimaldi
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Eduardo Sabino de Camargo Magalhães
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil; European Research Institute for the Biology of Aging, University of Groningen, Groningen, 9713 AV, Netherlands
| | - Valentín Cóppola-Segovia
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Evellyn Mayla de Azevedo
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Silvio Marques Zanata
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Flavia Regina Souza Lima
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil.
| |
Collapse
|
16
|
Ma XL, Tang WG, Yang MJ, Xie SH, Wu ML, Lin G, Lu RQ. Serum STIP1, a Novel Indicator for Microvascular Invasion, Predicts Outcomes and Treatment Response in Hepatocellular Carcinoma. Front Oncol 2020; 10:511. [PMID: 32426271 PMCID: PMC7212360 DOI: 10.3389/fonc.2020.00511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Previous studies reported that stress-induced phosphoprotein 1 (STIP1) can be secreted by hepatocellular carcinoma (HCC) cells and is increased in the serum of HCC patients. However, the therapy-monitoring and prognostic value of serum STIP1 in HCC remains unclear. Here, we aimed to systemically explore the prognostic significance of serum STIP1 in HCC. Methods: A total of 340 HCC patients were recruited to this study; 161 underwent curative resection and 179 underwent transcatheter arterial chemoembolization (TACE). Serum STIP1 was detected by enzyme-linked immunosorbent assay (ELISA). Optimal cutoff values for serum STIP1 in resection and TACE groups were determined by receiver operating characteristic (ROC) analysis. Prognostic value was assessed by Kaplan-Meier, log-rank, and Cox regression analyses. Predictive values of STIP1 for objective response (OR) to TACE and MVI were evaluated by ROC curves and logistic regression. Results: Serum STIP1 was significantly increased in HCC patients when compared with chronic hepatitis B patients or health donors (both P < 0.05). Optimal cutoff values for STIP1 in resection and TACE groups were 83.43 and 112.06 ng/ml, respectively. High pretreatment STIP1 was identified as an independent prognosticator. Dynamic changes in high STIP1 status were significantly associated with long-term prognosis, regardless of treatment approaches. Moreover, post-TACE STIP1 was identified as an independent predictor for OR, with a higher area under ROC curve (AUC-ROC) than other clinicopathological features. Specifically, pretreatment STIP1 was significantly increased in patients with microvascular invasion (MVI), and was confirmed as a novel, powerful predictor for MVI. Conclusions: Serum STIP1 is a promising biomarker for outcome evaluation, therapeutic response assessment, and MVI prediction in HCC. Integration serum STIP1 detection into HCC management might facilitate early clinical decision making to improve the prognosis of HCC.
Collapse
Affiliation(s)
- Xiao-Lu Ma
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Wei-Guo Tang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Min-Jie Yang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
| | - Su-Hong Xie
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Min-Le Wu
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Guo Lin
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ren-Quan Lu
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
17
|
STIP1/HOP Regulates the Actin Cytoskeleton through Interactions with Actin and Changes in Actin-Binding Proteins Cofilin and Profilin. Int J Mol Sci 2020; 21:ijms21093152. [PMID: 32365744 PMCID: PMC7246624 DOI: 10.3390/ijms21093152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Cell migration plays a vital role in both health and disease. It is driven by reorganization of the actin cytoskeleton, which is regulated by actin-binding proteins cofilin and profilin. Stress-inducible phosphoprotein 1 (STIP1) is a well-described co-chaperone of the Hsp90 chaperone system, and our findings identify a potential regulatory role of STIP1 in actin dynamics. We show that STIP1 can be isolated in complex with actin and Hsp90 from HEK293T cells and directly interacts with actin in vitro via the C-terminal TPR2AB-DP2 domain of STIP1, potentially due to a region spanning two putative actin-binding motifs. We found that STIP1 could stimulate the in vitro ATPase activity of actin, suggesting a potential role in the modulation of F-actin formation. Interestingly, while STIP1 depletion in HEK293T cells had no major effect on total actin levels, it led to increased nuclear accumulation of actin, disorganization of F-actin structures, and an increase and decrease in cofilin and profilin levels, respectively. This study suggests that STIP1 regulates the cytoskeleton by interacting with actin, or via regulating the ratio of proteins known to affect actin dynamics.
Collapse
|
18
|
Sun X, Cao N, Mu L, Cao W. RETRACTED: Stress induced phosphoprotein 1 promotes tumor growth and metastasis of melanoma via modulating JAK2/STAT3 pathway. Biomed Pharmacother 2019; 116:108962. [PMID: 31103826 DOI: 10.1016/j.biopha.2019.108962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 02/03/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the authors, who have informed the Editor-in-Chief that the M14 cells used in this study were contaminated with HeLa cells, identified by short tandem repeat analysis. The regulatory effects of STIP1 on M14 cell proliferation, colony formation, apoptosis, migration, invasion, and the JAK2/STAT3 pathway experimental data contained within this study cannot be fully repeated using non-contaminated M14 cells. Therefore, the authors no longer have confidence in the reliability of the results. The Editor-in-Chief agreed to retract the article.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Department of Dermatology, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an, Shaanxi Province 710068, China
| | - Ningjia Cao
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an, Shaanxi Province 710068, China
| | - Liang Mu
- Ultrasound Diagnosis Center, Shaanxi Provincial People's Hospital,256 Youyi West Road, Xi'an, Shaanxi Province 710068, China
| | - Wei Cao
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an, Shaanxi Province 710068, China.
| |
Collapse
|
19
|
Chen C, Zheng Q, Kang W, Yu C. Long non-coding RNA LINC00472 suppresses hepatocellular carcinoma cell proliferation, migration and invasion through miR-93-5p/PDCD4 pathway. Clin Res Hepatol Gastroenterol 2019; 43:436-445. [PMID: 30522853 DOI: 10.1016/j.clinre.2018.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/10/2018] [Accepted: 11/14/2018] [Indexed: 02/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer and the second leading cause of cancer-related deaths. In the present study, we have demonstrated that long non-coding RNA (lncRNA) LINC00472 was low expressed in human HCC tissues and cell lines compared with adjacent non-tumor liver tissues and normal liver cell lines respectively. LINC00472 was also low expressed in HCC tissues from patients with metastasis compared with tissues from patients without metastasis. Expression level of LINC00472 was positively correlated with patient overall survival (OS) rate. Forced expression of LINC00472 suppressed cell proliferation, migration, invasion and promoted cell apoptosis in HCC cells Huh-7 and SMMC-7721. MiR-93-5p was a direct target of LINC00472, and miR-93-5p directly targeted PDCD4. The miR-93-5p/PDCD4 pathway mediated the suppressing role of LINC00472 in HCC cells. Therefore, LINC00472 was an important tumor suppressor in human HCC, which could be used as a bio-marker for HCC therapy.
Collapse
Affiliation(s)
- Changyu Chen
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, 218, Jixi avenue, Hefei 230022, Anhui, PR China
| | - Qiang Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, 218, Jixi avenue, Hefei 230022, Anhui, PR China
| | - Weibiao Kang
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, 218, Jixi avenue, Hefei 230022, Anhui, PR China
| | - Changjun Yu
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, 218, Jixi avenue, Hefei 230022, Anhui, PR China.
| |
Collapse
|
20
|
Xiong H, Yan J, Cai S, He Q, Peng D, Liu Z, Liu Y. Cancer protein biomarker discovery based on nucleic acid aptamers. Int J Biol Macromol 2019; 132:190-202. [PMID: 30926499 DOI: 10.1016/j.ijbiomac.2019.03.165] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 01/11/2023]
Abstract
Identification of biomarkers is essential for diagnosis, targeted therapy and prognosis evaluation of diseases, especially cancers. Currently, the number of ideal clinical biomarkers is still limited partially because of lacking efficient methods in biomarker discovery. Nucleic acid aptamers are artificial single-stranded DNA or RNA sequences that can selectively bind to various targets with high specificity and affinity. Moreover, aptamers possess desirable advantages, including easy synthesis, convenient modification, relative chemical stability and low immunogenicity. Recently, different aptamer-based strategies have been developed to facilitate the discovery of biomarkers. Based on cell-SELEX technology, the selected aptamers can be used to identify cell-surface protein biomarkers of different cancer cells. SOMAscan can analyze thousands of proteins of different biological samples, which becomes a multiplexed protein biomarker discovery platform. Additionally, secreted protein biomarkers can be discovered by aptamers screened through secretome SELEX. In order to facilitate the identification of target proteins, several covalent cross-linking strategies have been developed, such as aptamer-based affinity labeling (ABAL), DNA-templated aptamer and protein-aptamer template (PAT). In this review, we mainly highlight the emerging nucleic acid aptamer-based biomarker discovery strategies and demonstrate their unique technological advantages in discovering cancer biomarkers. The challenges and perspectives of aptamer-based methods are also discussed.
Collapse
Affiliation(s)
- Hongjie Xiong
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Jianhua Yan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Shundong Cai
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Qunye He
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Dongming Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China.
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China.
| |
Collapse
|
21
|
Zhang S, Shao J, Su F. Prognostic significance of STIP1 expression in human cancer: A meta-analysis. Clin Chim Acta 2018; 486:168-176. [DOI: 10.1016/j.cca.2018.07.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022]
|