1
|
Zhang Y, Liu J, Zhuo H, Lin L, Li J, Fu S, Xue H, Wen H, Zhou X, Guo C, Wu G. Differential Toxicity Responses between Hepatopancreas and Gills in Litopenaeus vannamei under Chronic Ammonia-N Exposure. Animals (Basel) 2023; 13:3799. [PMID: 38136836 PMCID: PMC10741007 DOI: 10.3390/ani13243799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Ammonia nitrogen is one of the main toxic substances in aquatic cultivation environments. Chronic exposure to excessive amounts of ammonia-N creates toxic consequences, retarding the growth of aquatic organisms. This study investigated the growth performance, morphological and physiological alterations, and transcriptome changes in the hepatopancreas and gills of white shrimp Litopenaeus vannamei. The results showed that there was no significant difference in the survival rate (p > 0.05), whereas growth performance was reduced significantly in the treated groups compared to the control groups (p < 0.05). Significant structural damage and vacuolation occurred in hepatopancreas and gill tissues in the treated groups. Superoxide dismutase (SOD) activity and Na+/K+-ATPase content were significantly increased by chronic ammonia-N exposure in the two tissue groups. In addition, catalase (CAT) activity and malondialdehyde (MDA) levels were significantly altered in the hepatopancreas groups (p < 0.05), whereas no differences were observed in the gill groups (p > 0.05). There were 890 and 1572 differentially expressed genes identified in the hepatopancreas (treated versus control groups) and gills (treated versus control groups), respectively, of L. vannamei under chronic ammonia-N exposure. Functional enrichment analysis revealed associations with oxidative stress, protein synthesis, lipid metabolism, and different serine proteases. The gills maintained cellular homeostasis mainly through high expression of cytoskeleton and transcription genes, whereas the hepatopancreas down-regulated related genes in the ribosome, proteasome, and spliceosome pathways. These genes and pathways are important in the biosynthesis and transformation of living organisms. In addition, both tissues maintained organismal growth primarily through lipid metabolism, which may serve as an effective strategy for ammonia-N resistance in L. vannamei. These results provided a new perspective in understanding the mechanisms of ammonia-N resistance in crustaceans.
Collapse
Affiliation(s)
- Yuan Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Y.Z.); (H.Z.); (L.L.); (J.L.); (S.F.); (H.X.); (H.W.); (X.Z.); (C.G.); (G.W.)
- Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianyong Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Y.Z.); (H.Z.); (L.L.); (J.L.); (S.F.); (H.X.); (H.W.); (X.Z.); (C.G.); (G.W.)
- Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongbiao Zhuo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Y.Z.); (H.Z.); (L.L.); (J.L.); (S.F.); (H.X.); (H.W.); (X.Z.); (C.G.); (G.W.)
- Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lanting Lin
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Y.Z.); (H.Z.); (L.L.); (J.L.); (S.F.); (H.X.); (H.W.); (X.Z.); (C.G.); (G.W.)
- Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jinyan Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Y.Z.); (H.Z.); (L.L.); (J.L.); (S.F.); (H.X.); (H.W.); (X.Z.); (C.G.); (G.W.)
- Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuo Fu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Y.Z.); (H.Z.); (L.L.); (J.L.); (S.F.); (H.X.); (H.W.); (X.Z.); (C.G.); (G.W.)
- Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China
| | - Haiqiong Xue
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Y.Z.); (H.Z.); (L.L.); (J.L.); (S.F.); (H.X.); (H.W.); (X.Z.); (C.G.); (G.W.)
| | - Haimin Wen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Y.Z.); (H.Z.); (L.L.); (J.L.); (S.F.); (H.X.); (H.W.); (X.Z.); (C.G.); (G.W.)
| | - Xiaoxun Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Y.Z.); (H.Z.); (L.L.); (J.L.); (S.F.); (H.X.); (H.W.); (X.Z.); (C.G.); (G.W.)
- Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chaoan Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Y.Z.); (H.Z.); (L.L.); (J.L.); (S.F.); (H.X.); (H.W.); (X.Z.); (C.G.); (G.W.)
- Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangbo Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Y.Z.); (H.Z.); (L.L.); (J.L.); (S.F.); (H.X.); (H.W.); (X.Z.); (C.G.); (G.W.)
- Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
2
|
Barranger A, Klopp C, Le Bot B, Saramito G, Dupont L, Llopis S, Wiegand C, Binet F. Insights into the molecular mechanisms of pesticide tolerance in the Aporrectodea caliginosa earthworm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120945. [PMID: 36572272 DOI: 10.1016/j.envpol.2022.120945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Diffuse pollution of the environment by pesticides has become a major soil threat to non-target organisms, such as earthworms for which declines have been reported. However some endogeic species are still abundant and persist in intensively cultivated fields, suggesting they become tolerant to long-term anthropogenic pressure. We thus considered the working hypothesis that populations of Aporrectodea caliginosa earthworms from conventionally managed fields developed a tolerance to pesticides compared with those from organically managed fields. To investigate this hypothesis, we studied earthworm populations of the same genetic lineage from soils that were either lowly or highly contaminated by pesticides to detect any constitutive expression of differentially expressed molecular pathways between these populations. Earthworm populations were then experimentally exposed to a fungicide-epoxiconazole-in the laboratory to identify different molecular responses when newly exposed to a pesticide. State-of-the-art omics technology (RNA sequencing) and bioinformatics were used to characterize molecular mechanisms of tolerance in a non-targeted way. Additional physiological traits (respirometry, growth, bioaccumulation) were monitored to assess tolerance at higher levels of biological organization. In the present study, we generated the de novo assembly transcriptome of A. caliginosa consisting of 64,556 contigs with N50 = 2862 pb. In total, 43,569 Gene Ontology terms were identified for 21,593 annotated sequences under the three main ontologies (biological processes, cellular components and molecular functions). Overall, we revealed that two same lineage populations of A. caliginosa earthworms, inhabiting similar pedo-climatic environment, have distinct gene expression pathways after they long-lived in differently managed agricultural soils with a contrasted pesticide exposure history for more than 22 years. The main difference was observed regarding metabolism, with upregulated pathways linked to proteolytic activities and the mitochondrial respiratory chain in the highly exposed population. This study improves our understanding of the long-term impact of chronic exposure of soil engineers to pesticide residues.
Collapse
Affiliation(s)
- Audrey Barranger
- UMR CNRS ECOBIO 6553, Université de Rennes1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042, Rennes, Cedex, France.
| | - Christophe Klopp
- UR INRAE 875 MIAT, GENOTOUL, 24 Chemin de Borde Rouge, 31326, Castanet-Tolosan, Cedex, France
| | - Barbara Le Bot
- Université de Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F 35000, Rennes, France
| | - Gaëlle Saramito
- Université de Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F 35000, Rennes, France
| | - Lise Dupont
- Université Paris Est Créteil (UPEC), Sorbonne Université, CNRS, INRAE, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 94010, Créteil, Cedex, France
| | - Stéphanie Llopis
- UMR CNRS ECOBIO 6553, Université de Rennes1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042, Rennes, Cedex, France
| | - Claudia Wiegand
- UMR CNRS ECOBIO 6553, Université de Rennes1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042, Rennes, Cedex, France
| | - Françoise Binet
- UMR CNRS ECOBIO 6553, Université de Rennes1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042, Rennes, Cedex, France
| |
Collapse
|
3
|
Liu X, Zhang Z, Zhang M, Zhao X, Zhang T, Liu W, Zhang J. A ras-related nuclear protein Ran participates in the 20E signaling pathway and is essential for the growth and development of Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104945. [PMID: 34446211 DOI: 10.1016/j.pestbp.2021.104945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The small GTPase Ran is a member of the Ras superfamily of small GTP-binding proteins, which plays a key role in the translocation of RNA and proteins through the nuclear pore complex. In this study, the full-length cDNA sequence of LmRan gene was obtained, which consists of 648-nucleotides open reading frame (ORF) and encodes 215 amino acids. RT-qPCR results revealed that LmRan was expressed in all developmental days and tissues investigated. Injection of dsLmRan into 4th and 5th instar nymphs, resulted in a significant down-regulation of LmRan transcripts, respectively. All dsLmRan-injected nymphs died before molting. Further hematoxylin and eosin staining of the integument showed that there was no apolysis occurred after silencing LmRan. In addition, the weight of dsLmRan-injected nymphs was significantly lower than that of the control group, and the gastric caecum and midgut was severely smaller. Especiallly, the mRNA level of LmCYP302a1, LmCYP315a1 and LmCYP314a1 responsible for 20E synthesis, LmE75 and LmE74 genes involved in the 20E signaling pathway, LmGfat, LmUAP1 and LmCHT10 genes involved in chitin metabolism pathway were dramatically decreased in the dsLmRan-injected nymphs. Together, the results indicated that LmRan participate in the 20E signaling pathway, which is essential for the growth and development of locusts.
Collapse
Affiliation(s)
- Xiaojian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zheng Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Min Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiaoming Zhao
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Tingting Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Weimin Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
4
|
Ge M, Zhang T, Zhang M, Cheng L. Ran participates in deltamethrin stress through regulating the nuclear import of Nrf2. Gene 2020; 769:145213. [PMID: 33069802 DOI: 10.1016/j.gene.2020.145213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
The small GTPase Ran has a variety of biological functions, one of the most prominent of which is to regulate nucleocytoplasmic transport. In our previous study, it was suggested that Ran is involved in the deltamethrin (DM) stress. In addition, Keap1-Nrf2-ARE pathway was also confirmed to be associated with DM stress. We report here that under DM stress, interfering Ran or nuclear transport factor Ntf2 by RNAi could suppress the nuclear import of nuclear transcription factor Nrf2 which then down-regulates the expressions of detoxification enzyme genes (Cyp4d20, Cyp4ae1, GstD5, Sod3, etc.), ultimately resulting in a significant apoptosis of Drosophila Kc cells. In contrast, after overexpressing Ran in Kc cells, Nrf2 has a higher concentration in the nucleus, and the expressions of detoxification enzyme genes are up-regulated, while the DM-induced apoptosis is significantly lower than that of the control group. Additionally, we preliminary found silencing Ntf2 or Ran could prevent the nuclear import of transcription factor Dif under DM stress, subsequently decreased expressions of antimicrobial peptide genes (Drsl1). In summary, our data mainly indicates that Ran may participate in DM stress through regulating the nuclear import of Nrf2, which could help to study the mechanism of deltamethrin resistance.
Collapse
Affiliation(s)
- Mengying Ge
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Tingting Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Man Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Luogen Cheng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
5
|
Chen L, Zhang T, Ge M, Liu Y, Xing Y, Liu L, Li F, Cheng L. The Nrf2-Keap1 pathway: A secret weapon against pesticide persecution in Drosophila Kc cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 164:47-57. [PMID: 32284136 DOI: 10.1016/j.pestbp.2019.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 12/10/2019] [Accepted: 12/26/2019] [Indexed: 06/11/2023]
Abstract
Nrf2-Keap1 pathway defends organisms against the detrimental effects of oxidative stress, and play pivotal roles in preventing xenobiotic-related toxicity. We designed experiments to explore and verify its role and function under deltamethrin (DM) stress. In experiments, DM was selected as the inducer, and Drosophila Kc cells were treated as the objects. The result showed the oxidative stress of cells proliferated in a very short time after DM treatment, reaching the maximum after one hour of treatment. The experimental data showed Nrf2 could be up-regulated and activated by DM which were manifested by the increase of Nrf2 mRNA, Nrf2 protein in the nucleus and the expression of detoxification enzyme genes. We further tested the activity of all groups, and found the survival rate of cells was basically proportional to the expression of Nrf2. Based on the above experimental results, Keap1 overexpression (K+), Nrf2 overexpression (N+) or interference (N-) cells were used to verified the relationship between Nrf2, cell survival and detoxification enzymes expression. We found the cell survival rate of N+ group was significantly higher than that of other groups and the expression of detoxification enzymes were increased compared to the control group. These results demonstrated that Nrf2 is related to cell detoxification and associated with the tolerance to DM. Our evidence suggested Nrf2 is a potential therapeutic target for oxidative stress and a potential molecular target gene of resistance control.
Collapse
Affiliation(s)
- Lu Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Tingting Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Mengying Ge
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yahui Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yuping Xing
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Liu Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Fengliang Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | - Luogen Cheng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|