1
|
Guga S, Wang Y, Graham DC, Vyse TJ. A review of genetic risk in systemic lupus erythematosus. Expert Rev Clin Immunol 2023; 19:1247-1258. [PMID: 37496418 DOI: 10.1080/1744666x.2023.2240959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/10/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Systemic Lupus Erythematosus (SLE) is a complex multisystem autoimmune disease with a wide range of signs and symptoms in affected individuals. The utilization of genome-wide association study (GWAS) technology has led to an explosion in the number of genetic risk factors mapped for autoimmune diseases, including SLE. AREAS COVERED In this review, we summarize the more recent genetic risk loci mapped in SLE, which bring the total number of loci mapped to approximately 200. We review prioritization analyses of the associated variants and experimental validation of the putative causal variants. This includes the implementation of new bioinformatic techniques to align genomic and functional data and the use of transcriptomics with single-cell RNA-sequencing, CRISPR genome editing, and Massive Parallel Reporter Assays to analyze non-coding regulatory genetics. EXPERT OPINION Despite progress in identifying more genetic risk loci and variant-gene pairs for SLE, understanding its pathogenesis and applying findings clinically remains challenging. The polygenic risk score (PRS) has been used as an application of SLE genetics, but with limited performance in non-EUR populations. In the next few years, advancements in proteomics, post-translational modification estimation, and whole-genome sequencing will enhance disease understanding.
Collapse
Affiliation(s)
- Suri Guga
- Department of Medical & Molecular Genetics, King's College London, London, UK
| | - Yuxuan Wang
- Department of Medical & Molecular Genetics, King's College London, London, UK
| | | | - Timothy J Vyse
- Department of Medical & Molecular Genetics, King's College London, London, UK
| |
Collapse
|
2
|
Zhang T, Xie Q, Wang L, Wang Y, Yan Z, Li Z, Teng Y, Xu Z, Chen Y, Pan F, Tao J, Cai J, Liang C, Pan H, Su H, Cheng J, Hu W, Zou Y. Impact of climate factors and climate-gene interaction on systemic lupus erythematosus patients' response to glucocorticoids therapy. J Clin Lab Anal 2023; 37:e24945. [PMID: 37488812 PMCID: PMC10492452 DOI: 10.1002/jcla.24945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/08/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Glucocorticoids (GCs) were the essential drugs for systemic lupus erythematosus (SLE). However, different patients differ substantially in their response to GCs treatment. Our current study aims at investigating whether climate variability and climate-gene interaction influence SLE patients' response to the therapy of GCs. METHODS In total, 778 SLE patients received therapy of GCs for a study of 12-week follow-up. The efficacy of GCs treatment was evaluated using the Systemic Lupus Erythematosus Disease Activity Index. The climatic data were provided by China Meteorological Data Service Center. Additive and multiplicative interactions were examined. RESULTS Compared with patients with autumn onset, the efficacy of GCs in patients with winter onset is relatively poor (ORadj = 1.805, 95%CIadj : 1.181-3.014, padj = 0.020). High mean relative humidity during treatment decreased the efficacy of GCs (ORadj = 1.033, 95%CIadj : 1.008-1.058, padj = 0.011), especially in female (ORadj = 1.039, 95%CIadj : 1.012-1.067, padj = 0.004). There was a significant interaction between sunshine during treatment and TRAP1 gene rs12597773 on GCs efficacy (Recessive model: AP = 0.770). No evidence of significant interaction was found between climate factors and the GR gene polymorphism on the improved GCs efficacy in the additive model. Multiplicative interaction was found between humidity in the month prior to treatment and GR gene rs4912905 on GCs efficacy (Dominant model: OR = 0.470, 95%CI: 0.244-0.905, p = 0.024). CONCLUSIONS Our findings suggest that climate variability influences SLE patients' response to the therapy of GCs. Interactions between climate and TRAP1/GR gene polymorphisms were related to GCs efficacy. The results guide the individualized treatment of SLE patients.
Collapse
Affiliation(s)
- Tingyu Zhang
- Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- The Key Laboratory of Anhui Medical Autoimmune DiseasesHefeiAnhuiChina
| | - Qiaomei Xie
- Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- The Key Laboratory of Anhui Medical Autoimmune DiseasesHefeiAnhuiChina
| | - Linlin Wang
- Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- The Key Laboratory of Anhui Medical Autoimmune DiseasesHefeiAnhuiChina
| | - Yuhua Wang
- Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- The Key Laboratory of Anhui Medical Autoimmune DiseasesHefeiAnhuiChina
| | - Ziye Yan
- Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- The Key Laboratory of Anhui Medical Autoimmune DiseasesHefeiAnhuiChina
| | - Zhen Li
- Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- The Key Laboratory of Anhui Medical Autoimmune DiseasesHefeiAnhuiChina
| | - Ying Teng
- Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- The Key Laboratory of Anhui Medical Autoimmune DiseasesHefeiAnhuiChina
| | - Zhiwei Xu
- School of Public Health, Faculty of MedicineUniversity of QueenslandHerstonQueenslandAustralia
| | - Yangfan Chen
- Department of Rheumatology and ImmunologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- The Key Laboratory of Anhui Medical Autoimmune DiseasesHefeiAnhuiChina
| | - Jinhui Tao
- Department of Rheumatology and ImmunologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiAnhuiChina
| | - Jing Cai
- Department of Rheumatology and ImmunologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Chunmei Liang
- Department of Laboratory Medicine, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
| | - Haifeng Pan
- Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- The Key Laboratory of Anhui Medical Autoimmune DiseasesHefeiAnhuiChina
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- The Key Laboratory of Anhui Medical Autoimmune DiseasesHefeiAnhuiChina
| | - Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- The Key Laboratory of Anhui Medical Autoimmune DiseasesHefeiAnhuiChina
| | - Wenbiao Hu
- School of Public Health and Social WorkQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Yanfeng Zou
- Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- The Key Laboratory of Anhui Medical Autoimmune DiseasesHefeiAnhuiChina
- Key Laboratory of Dermatology (Anhui Medical University)Ministry of EducationHefeiAnhuiChina
| |
Collapse
|
3
|
Ikeno R, Ohhara Y, Goda T, Yamakawa-Kobayashi K. Combined effect of genetic variations in the genes for HSP90/HSP70 families and lifestyle factors for determining metabolic parameters: A population based study. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
4
|
Korn MA, Steffensen M, Brandl C, Royzman D, Daniel C, Winkler TH, Nitschke L. Epistatic effects of Siglec-G and DNase1 or DNase1l3 deficiencies in the development of systemic lupus erythematosus. Front Immunol 2023; 14:1095830. [PMID: 36969253 PMCID: PMC10030676 DOI: 10.3389/fimmu.2023.1095830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a severe autoimmune disease that displays considerable heterogeneity not only in its symptoms, but also in its environmental and genetic causes. Studies in SLE patients have revealed that many genetic variants contribute to disease development. However, often its etiology remains unknown. Existing efforts to determine this etiology have focused on SLE in mouse models revealing not only that mutations in specific genes lead to SLE development, but also that epistatic effects of several gene mutations significantly amplify disease manifestation. Genome-wide association studies for SLE have identified loci involved in the two biological processes of immune complex clearance and lymphocyte signaling. Deficiency in an inhibitory receptor expressed on B lymphocytes, Siglec-G, has been shown to trigger SLE development in aging mice, as have mutations in DNA degrading DNase1 and DNase1l3, that are involved in clearance of DNA-containing immune complexes. Here, we analyze the development of SLE-like symptoms in mice deficient in either Siglecg and DNase1 or Siglecg and DNase1l3 to evaluate potential epistatic effects of these genes. We found that germinal center B cells and follicular helper T cells were increased in aging Siglecg -/- x Dnase1 -/- mice. In contrast, anti-dsDNA antibodies and anti-nuclear antibodies were strongly increased in aging Siglecg-/- x Dnase1l3-/- mice, when compared to single-deficient mice. Histological analysis of the kidneys revealed glomerulonephritis in both Siglecg -/- x Dnase1 -/- and Siglecg-/- x Dnase1l3-/- mice, but with a stronger glomerular damage in the latter. Collectively, these findings underscore the impact of the epistatic effects of Siglecg with DNase1 and Dnase1l3 on disease manifestation and highlight the potential combinatory effects of other gene mutations in SLE.
Collapse
Affiliation(s)
- Marina A. Korn
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Marie Steffensen
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Carolin Brandl
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Dmytro Royzman
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
- Department of Immune Modulation, University Hospital of Erlangen, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, University Hospital of Erlangen, Erlangen, Germany
| | - Thomas H. Winkler
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
- *Correspondence: Lars Nitschke,
| |
Collapse
|
5
|
Li Z, Zong QQ, Zhai CX, Yu GH, Hu WQ, Wang YH, Wang LL, Yan ZY, Zhang TY, Teng Y, Liu S, Cai J, Li M, Chen YF, Ni J, Cai GQ, Cai PY, Pan HF, Zou YF. An association study on the risk, glucocorticoids effectiveness, and prognosis of systemic lupus erythematosus: insight from mitochondrial DNA copy number. Immunol Res 2022; 70:850-859. [PMID: 36103009 DOI: 10.1007/s12026-022-09318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
|
6
|
Barliana MI, Afifah NN, Amalia R, Hamijoyo L, Abdulah R. Genetic Polymorphisms and the Clinical Response to Systemic Lupus Erythematosus Treatment Towards Personalized Medicine. Front Pharmacol 2022; 13:820927. [PMID: 35370680 PMCID: PMC8972168 DOI: 10.3389/fphar.2022.820927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by a broad spectrum of clinical manifestations, an aberrant autoimmune response to self-antigens, which affect organs and tissues. There are several immune-pathogenic pathways, but the exact one is still not well known unless it is related to genetics. SLE and other autoimmune diseases are known to be inseparable from genetic factors, not only pathogenesis but also regarding the response to therapy. Seventy-one human studies published in the last 10 years were collected. Research communications, thesis publication, reviews, expert opinions, and unrelated studies were excluded. Finally, 32 articles were included. A polymorphism that occurs on the genes related to drugs pharmacokinetic, such as CYP, OATP, ABC Transporter, UGT, GST or drug-target pharmacodynamics, such as FCGR, TLR, and BAFF, can change the level of gene expression or its activity, thereby causing a variation on the clinical response of the drugs. A study that summarizes gene polymorphisms influencing the response to SLE therapy is urgently needed for personalized medicine practices. Personalized medicine is an effort to provide individual therapy based on genetic profiles, and it gives better and more effective treatments for SLE and other autoimmune disease patients.
Collapse
Affiliation(s)
- Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Centre of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- *Correspondence: Melisa Intan Barliana,
| | - Nadiya Nurul Afifah
- Centre of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Riezki Amalia
- Centre of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Laniyati Hamijoyo
- Department of Internal Medicine, Rheumatology Division, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung, Indonesia
| | - Rizky Abdulah
- Centre of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
7
|
Teng Y, Yan ZY, Wang LL, Wang YH, Zhang TY, Li Z, Liu S, Cai J, Chen YF, Li M, Liu SX, Xu ZZ, Huang HL, Wang F, Pan FM, Pan HF, Su H, Zou YF. Mitochondrial DNA genetic variants are associated with systemic lupus erythematosus susceptibility, glucocorticoids efficacy, and prognosis. Rheumatology (Oxford) 2021; 61:2652-2662. [PMID: 34718439 DOI: 10.1093/rheumatology/keab806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/08/2021] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To investigate the associations of mitochondrial DNA (mtDNA) genetic variants with systemic lupus erythematosus (SLE) susceptibility, glucocorticoids (GCs) efficacy, and prognosis. METHODS Our study was done in two stages. First, we performed the whole mitochondrial genome sequencing in 100 patients and 100 controls to initially screen potential mtDNA variants associated with disease and glucocorticoids efficacy. Then, we validated the results in an independent set of samples. In total, 605 SLE patients and 604 normal controls were included in our two-stage study. A two-stage efficacy study was conducted in 512 patients treated with GCs for 12 weeks. We also explored the association between mtDNA variants and SLE prognosis. RESULTS In the combined sample, four mtDNA variants (A4833G, T5108C, G14569A, CA514-515-) were associated with SLE susceptibility (all P BH<0.05). We confirmed that T16362C was related to GCs efficacy (P BH=0.014). Significant associations were detected between T16362C and T16519C and the efficacy of GCs in females with SLE (P BH<0.05). In the prognosis study, variants A4833G (P BH=0.003) and G14569A (P BH=9.744 × 1 0 -4) substantially increased SLE relapse risk. Female patients harbouring variants T5108C and T16362C were more prone to relapse (P BH<0.05). Haplotype analysis showed that haplogroup G was linked with SLE susceptibility (P BH=0.001) and prognosis (P BH=0.013). Moreover, mtDNA variants-environment interactions were observed. CONCLUSION We identified novel mtDNA genetic variants that were associated with SLE susceptibility, GCs efficacy, and prognosis. Interactions between mtDNA variants and environmental factors were related to SLE risk and GCs efficacy. Our findings provide important information for future understanding the occurrence and development of SLE.
Collapse
Affiliation(s)
- Ying Teng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, Anhui, China
| | - Zi-Ye Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, Anhui, China
| | - Lin-Lin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, Anhui, China
| | - Yu-Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, Anhui, China
| | - Ting-Yu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, Anhui, China
| | - Zhen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, Anhui, China
| | - Shuang Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing Cai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang-Fan Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mu Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Sheng-Xiu Liu
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhou-Zhou Xu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hai-Liang Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Fang Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fa-Ming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, Anhui, China
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, Anhui, China
| | - Yan-Feng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, Anhui, China
| |
Collapse
|
8
|
Felux J, Erbacher A, Breckler M, Hervé R, Lemeiter D, Mannherz HG, Napirei M, Rammensee HG, Decker P. Deoxyribonuclease 1-Mediated Clearance of Circulating Chromatin Prevents From Immune Cell Activation and Pro-inflammatory Cytokine Production, a Phenomenon Amplified by Low Trap1 Activity: Consequences for Systemic Lupus Erythematosus. Front Immunol 2021; 12:613597. [PMID: 33746957 PMCID: PMC7969502 DOI: 10.3389/fimmu.2021.613597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Increased concentrations of circulating chromatin, especially oligo-nucleosomes, are observed in sepsis, cancer and some inflammatory autoimmune diseases like systemic lupus erythematosus (SLE). In SLE, circulating nucleosomes mainly result from increased apoptosis and decreased clearance of apoptotic cells. Once released, nucleosomes behave both as an autoantigen and as a damage-associated molecular pattern (DAMP) by activating several immune cells, especially pro-inflammatory cells. Deoxyribonuclease 1 (DNase1) is a major serum nuclease whose activity is decreased in mouse and human lupus. Likewise, the mitochondrial chaperone tumor necrosis factor (TNF) receptor-associated protein-1 (Trap1) protects against oxidative stress, which is increased in SLE. Here, using wild type, DNase1-deficient and DNase1/Trap1-deficient mice, we demonstrate that DNase1 is a major serum nuclease involved in chromatin degradation, especially when the plasminogen system is activated. In vitro degradation assays show that chromatin digestion is strongly impaired in serum from DNase1/Trap1-deficient mice as compared to wild type mice. In vivo, after injection of purified chromatin, clearance of circulating chromatin is delayed in DNase1/Trap1-deficient mice in comparison to wild type mice. Since defective chromatin clearance may lead to chromatin deposition in tissues and subsequent immune cell activation, spleen cells were stimulated in vitro with chromatin. Splenocytes were activated by chromatin, as shown by interleukin (IL)-12 secretion and CD69 up-regulation. Moreover, cell activation was exacerbated when Trap1 is deficient. Importantly, we also show that cytokines involved in lupus pathogenesis down-regulate Trap1 expression in splenocytes. Therefore, combined low activities of both DNase1 and Trap1 lead to an impaired degradation of chromatin in vitro, delayed chromatin clearance in vivo and enhanced activation of immune cells. This situation may be encountered especially, but not exclusively, in SLE by the negative action of cytokines on Trap1 expression.
Collapse
Affiliation(s)
- Jasmin Felux
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Annika Erbacher
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Magali Breckler
- Li2P, University Sorbonne Paris Nord, Bobigny, France.,INSERM UMR 1125, Bobigny, France
| | - Roxane Hervé
- Li2P, University Sorbonne Paris Nord, Bobigny, France.,INSERM UMR 1125, Bobigny, France
| | - Delphine Lemeiter
- Li2P, University Sorbonne Paris Nord, Bobigny, France.,INSERM UMR 1125, Bobigny, France
| | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Markus Napirei
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Patrice Decker
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Li2P, University Sorbonne Paris Nord, Bobigny, France.,INSERM UMR 1125, Bobigny, France
| |
Collapse
|
9
|
Vural B, ÇaliŞkan M, SezgİntÜrk MK. Development of a biosensor platform based on ITO sheets modified with 3-glycidoxypropyltrimethoxysilane for early detection of TRAP1. Turk J Chem 2021; 44:461-471. [PMID: 33488170 PMCID: PMC7671199 DOI: 10.3906/kim-1909-53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/19/2020] [Indexed: 11/03/2022] Open
Abstract
The aim of this research was to design an electrochemical immunosensor for determination of tumour necrosis factor receptor-associated protein-1(TRAP1) antigen, a heat shock protein linked to tumour necrosis factor. The indium-tin oxide covered polyethylene terephthalate (ITO-PET) electrode surface was cleaned and was prepared for the introduction of hydroxyl groups on its surface by using NH4 OH/H2 O2 /H2 O. As a silanization agent for covalent attachment of anti-TRAP1 on the surface of the ITO working electrode, 3-glycidoxypropyltrimethoxysilane (3-GOPS) was used. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the immobilization steps. A variety of parameters, 3-GOPS and anti-TRAP1 concentrations, and anti-TRAP1 and TRAP1 incubation durations were optimized. After determining the optimum conditions, characterization studies such as repeatability, reproducibility, regeneration, square wave voltammetry, and single frequency impedance were performed. The electrochemical immunosensor has presented an extremely wide determination range for TRAP1 from 0.1 pg/mL to 100 pg/mL.
Collapse
Affiliation(s)
- Berfin Vural
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale Turkey
| | - Meltem ÇaliŞkan
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale Turkey
| | - Mustafa Kemal SezgİntÜrk
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale Turkey
| |
Collapse
|
10
|
Cavalcante P, Mantegazza R, Bernasconi P. Pharmacogenetic and pharmaco-miR biomarkers for tailoring and monitoring myasthenia gravis treatments. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1804865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Paola Cavalcante
- Neurology IV Unit ‒ Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Mantegazza
- Neurology IV Unit ‒ Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pia Bernasconi
- Neurology IV Unit ‒ Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
11
|
Wu Y, Xia Y, Li P, Qu HQ, Liu Y, Yang Y, Lin J, Zheng M, Tian L, Wu Z, Huang S, Qin X, Zhou X, Chen S, Liu Y, Wang Y, Li X, Zeng H, Hakonarson H, Zhuang J. Role of the ADCY9 gene in cardiac abnormalities of the Rubinstein-Taybi syndrome. Orphanet J Rare Dis 2020; 15:101. [PMID: 32321550 PMCID: PMC7178576 DOI: 10.1186/s13023-020-01378-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rubinstein-Taybi syndrome (RTS) is a rare, congenital, plurimalformative, and neurodevelopmental disorder. Previous studies have reported that large deletions contribute to more severe RTS phenotypes than those caused by CREBBP point mutations, suggesting a concurrent pathogenetic role of flanking genes, typical of contiguous gene syndromes, but the detailed genetics are unclear. RESULTS This study presented a rare case of Rubinstein-Taybi (RT) syndrome with serious cardiac abnormalities. Based on the clinical and genetic analysis of the patient, the ADCY9 gene deletion was highlighted as a plausible explanation of cardiac abnormalities. In adcy9 morphant zebrafish, cardiac malformation was observed. Immunofluorescence study disclosed increased macrophage migration and cardiac apoptosis. RNA sequencing in zebrafish model highlighted the changes of a number of genes, including increased expression of the mmp9 gene which encodes a matrix metalloproteinase with the main function to degrade and remodel extracellular matrix. CONCLUSIONS In this study, we identified a plausible new candidate gene ADCY9 of CHD through the clinical and genetic analysis of a rare case of Rubinstein-Taybi (RT) syndrome with serious cardiac abnormalities. By functional study of zebrafish, we demonstrated that deletion of adcy9 is the causation for the cardiac abnormalities. Cardiac apoptosis and increased expression of the MMP9 gene are involved in the pathogenesis.
Collapse
Affiliation(s)
- Yueheng Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yu Xia
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ping Li
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Hui-Qi Qu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yichuan Liu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yongchao Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jijin Lin
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Meng Zheng
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lifeng Tian
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zhuanbin Wu
- Shanghai Model Organisms Center Inc, Shanghai, China
| | - Shufang Huang
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xianyu Qin
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xianwu Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Shaoxian Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yanying Liu
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yonghua Wang
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xiaofeng Li
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Hanshi Zeng
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Pediatrics and Division of Human Genetics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Kenny EF, Raupach B, Abu Abed U, Brinkmann V, Zychlinsky A. Dnase1-deficient mice spontaneously develop a systemic lupus erythematosus-like disease. Eur J Immunol 2019; 49:590-599. [PMID: 30758851 DOI: 10.1002/eji.201847875] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/13/2018] [Accepted: 02/12/2019] [Indexed: 11/08/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that has high morbidity and can result in multi-organ damage. SLE is characterized by dysregulated activation of T- and B-lymphocytes and the production of autoantibodies directed against nuclear components. The endonuclease deoxyribonuclease 1 (DNase1) is abundant in blood and a subset of SLE patients have mutations in DNASE1. Furthermore, a report showed that Dnase1-deficient mice develop an SLE-like disease, but these mice also carry a deletion of the gene adjacent to Dnase1, which encodes the chaperone TRAP1/HSP75. We generated a murine strain deficient in Dnase1 with an intact Trap1 gene to examine if a lack of DNase1 is responsible for the development of a spontaneous SLE-like disease. We show that the Dnase1-deficient mice do indeed develop an SLE-like phenotype with elevated autoantibody production by 9 months and kidney damage by 12 months. Notably, this model recapitulates the female bias seen in human SLE patients since female Dnase1-deficient mice produced the highest concentrations of autoantibodies and had more severe kidney damage than males. Since there is currently no cure for SLE the protective role of DNase1 as demonstrated in our study remains of great therapeutic interest.
Collapse
Affiliation(s)
- Elaine F Kenny
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Bärbel Raupach
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Ulrike Abu Abed
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Arturo Zychlinsky
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|