1
|
Pang X, Han C, Guo B, Liu K, Lin X, Lu X. The First Complete Mitochondrial Genome of Eucrate crenata (Decapoda: Brachyura: Goneplacidae) and Phylogenetic Relationships within Infraorder Brachyura. Genes (Basel) 2022; 13:genes13071127. [PMID: 35885910 PMCID: PMC9323885 DOI: 10.3390/genes13071127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Characterizing the complete mitochondrial genome (mitogenome) of an organism is useful for genomic studies in taxonomy and evolution. The mitogenomic characteristics of Eucrate crenata (Decapoda: Brachyura: Goneplacidae) have never been studied. The present study decodes the first mitogenome of E. crenata by high-throughput sequencing (HTS). The length of the mitogenome is 15,597 bp, and it contains 13 protein-coding genes, 2 ribosomal RNA genes (rrnS and rrnL), and 22 transfer RNA genes. There are 14 and 23 genes observed on the heavy and light strands, respectively. E. crenata possesses a trnH-cac translocation, with the trnH-cac shifted between trnE-gaa and trnF-ttc instead of the usual location between nad5 and nad4 in decapods. Phylogenetic analyses based on the current dataset of 33 Brachyuran mitogenomes indicate that E. crenata. is closely related to Ashtoret lunaris of Matutidae. The similar codon usage and rearrangements in the two species provide evidence for their close phylogenetic relationship. Positive selection analysis showed that one residue located in cox1 was identified as a positively selected site with high BEB value (>95%), indicating that this gene was under positive selection pressure. This study is the first complete mitogenome record for the family Goneplacidae, and the results obtained may improve the understanding of the phylogeny of Goneplacidae in Brachyura.
Collapse
Affiliation(s)
- Xiaoke Pang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; (X.P.); (C.H.)
| | - Chenglong Han
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; (X.P.); (C.H.)
| | - Biao Guo
- Tianjin Fisheries Research Institute, Tianjin 300457, China; (B.G.); (K.L.)
| | - Kefeng Liu
- Tianjin Fisheries Research Institute, Tianjin 300457, China; (B.G.); (K.L.)
| | - Xiaolong Lin
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (X.L.); (X.L.)
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; (X.P.); (C.H.)
- Correspondence: (X.L.); (X.L.)
| |
Collapse
|
2
|
Cejp B, Ravara A, Aguado MT. First mitochondrial genomes of Chrysopetalidae (Annelida) from shallow-water and deep-sea chemosynthetic environments. Gene 2022; 815:146159. [PMID: 34995739 DOI: 10.1016/j.gene.2021.146159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023]
Abstract
Among Annelida, Chrysopetalidae is an ecologically and morphologically diverse group, which includes shallow-water, deep-sea, free-living, and symbiotic species. Here, the four first mitochondrial genomes of this group are presented and described. One of the free-living shallow-water species Chrysopetalum debile (Chrysopetalinae), one of the yet undescribed free-living deep-sea species Boudemos sp., and those of the two deep-sea bivalve endosymbionts Craseoschema thyasiricola and Iheyomytilidicola lauensis (Calamyzinae). An updated phylogeny of Chrysopetalidae is performed, which supports previous phylogenetic hypotheses within Chrysopetalinae and indicates a complex ecological evolution within Calamyzinae. Additionally, analyses of natural selection pressure in the four mitochondrial genomes and additional genes from the two shallow-water species Bhawania goodei and Arichlidon gathofi were performed. Relaxed selection pressure in the mitochondrion of deep-sea and symbiotic species was found, with many sites under selection identified in the COX3 gene of deep-sea species.
Collapse
Affiliation(s)
- Benjamin Cejp
- Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute for Zoology & Anthropology, Georg-August-University Göttingen, 37073, Germany.
| | - Ascensão Ravara
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - M Teresa Aguado
- Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute for Zoology & Anthropology, Georg-August-University Göttingen, 37073, Germany.
| |
Collapse
|
3
|
OUP accepted manuscript. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
4
|
Characterization of the complete mitochondrial genome of Uca lacteus and comparison with other Brachyuran crabs. Genomics 2020; 112:10-19. [DOI: 10.1016/j.ygeno.2019.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/13/2019] [Accepted: 06/03/2019] [Indexed: 01/15/2023]
|
5
|
Sun S, Sha Z, Wang Y. The complete mitochondrial genomes of two vent squat lobsters, Munidopsis lauensis and M. verrilli: Novel gene arrangements and phylogenetic implications. Ecol Evol 2019; 9:12390-12407. [PMID: 31788185 PMCID: PMC6875667 DOI: 10.1002/ece3.5542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/31/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
Hydrothermal vents are considered as one of the most extremely harsh environments on the Earth. In this study, the complete mitogenomes of hydrothermal vent squat lobsters, Munidopsis lauensis and M. verrilli, were determined through Illumina sequencing and compared with other available mitogenomes of anomurans. The mitogenomes of M. lauensis (17,483 bp) and M. verrilli (17,636 bp) are the largest among all Anomura mitogenomes, while the A+T contents of M. lauensis (62.40%) and M. verrilli (63.99%) are the lowest. The mitogenomes of M. lauensis and M. verrilli display novel gene arrangements, which might be the result of three tandem duplication-random loss (tdrl) events from the ancestral pancrustacean pattern. The mitochondrial gene orders of M. lauensis and M. verrilli shared the most similarities with S. crosnieri. The phylogenetic analyses based on both gene order data and nucleotide sequences (PCGs and rRNAs) revealed that the two species were closely related to Shinkaia crosnieri. Positive selection analysis revealed that eighteen residues in seven genes (atp8, Cytb, nad3, nad4, nad4l, nad5, and nad6) of the hydrothermal vent anomurans were positively selected sites.
Collapse
Affiliation(s)
- Shao'e Sun
- Deep Sea Research CenterInstitute of OceanologyChinese Academy of ScienceQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Zhongli Sha
- Deep Sea Research CenterInstitute of OceanologyChinese Academy of ScienceQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yanrong Wang
- Deep Sea Research CenterInstitute of OceanologyChinese Academy of ScienceQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| |
Collapse
|
6
|
Sun S, Sha Z, Wang Y. Divergence history and hydrothermal vent adaptation of decapod crustaceans: A mitogenomic perspective. PLoS One 2019; 14:e0224373. [PMID: 31661528 PMCID: PMC6818795 DOI: 10.1371/journal.pone.0224373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 10/13/2019] [Indexed: 01/08/2023] Open
Abstract
Decapod crustaceans, such as alvinocaridid shrimps, bythograeid crabs and galatheid squat lobsters are important fauna in the hydrothermal vents and have well adapted to hydrothermal vent environments. In this study, eighteen mitochondrial genomes (mitogenomes) of hydrothermal vent decapods were used to explore the evolutionary history and their adaptation to the hydrothermal vent habitats. BI and ML algorithms produced consistent phylogeny for Decapoda. The phylogenetic relationship revealed more evolved positions for all the hydrothermal vent groups, indicating they migrated from non-vent environments, instead of the remnants of ancient hydrothermal vent species, which support the extinction/repopulation hypothesis. The divergence time estimation on the Alvinocarididae, Bythograeidae and Galatheoidea nodes are located at 75.20, 56.44 and 47.41–50.43 Ma, respectively, which refers to the Late Cretaceous origin of alvinocaridid shrimps and the Early Tertiary origin of bythograeid crabs and galatheid squat lobsters. These origin stories are thought to associate with the global deep-water anoxic/dysoxic events. Total eleven positively selected sites were detected in the mitochondrial OXPHOS genes of three lineages of hydrothermal vent decapods, suggesting a link between hydrothermal vent adaption and OXPHOS molecular biology in decapods. This study adds to the understanding of the link between mitogenome evolution and ecological adaptation to hydrothermal vent habitats in decapods.
Collapse
Affiliation(s)
- Shao’e Sun
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Science, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhongli Sha
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Science, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| | - Yanrong Wang
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Science, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
7
|
Yang M, Gong L, Sui J, Li X. The complete mitochondrial genome of Calyptogena marissinica (Heterodonta: Veneroida: Vesicomyidae): Insight into the deep-sea adaptive evolution of vesicomyids. PLoS One 2019; 14:e0217952. [PMID: 31536521 PMCID: PMC6752807 DOI: 10.1371/journal.pone.0217952] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/23/2019] [Indexed: 12/27/2022] Open
Abstract
The deep-sea chemosynthetic environment is one of the most extreme environments on the Earth, with low oxygen, high hydrostatic pressure and high levels of toxic substances. Species of the family Vesicomyidae are among the dominant chemosymbiotic bivalves found in this harsh habitat. Mitochondria play a vital role in oxygen usage and energy metabolism; thus, they may be under selection during the adaptive evolution of deep-sea vesicomyids. In this study, the mitochondrial genome (mitogenome) of the vesicomyid bivalve Calyptogena marissinica was sequenced with Illumina sequencing. The mitogenome of C. marissinica is 17,374 bp in length and contains 13 protein-coding genes, 2 ribosomal RNA genes (rrnS and rrnL) and 22 transfer RNA genes. All of these genes are encoded on the heavy strand. Some special elements, such as tandem repeat sequences, “G(A)nT” motifs and AT-rich sequences, were observed in the control region of the C. marissinica mitogenome, which is involved in the regulation of replication and transcription of the mitogenome and may be helpful in adjusting the mitochondrial energy metabolism of organisms to adapt to the deep-sea chemosynthetic environment. The gene arrangement of protein-coding genes was identical to that of other sequenced vesicomyids. Phylogenetic analyses clustered C. marissinica with previously reported vesicomyid bivalves with high support values. Positive selection analysis revealed evidence of adaptive change in the mitogenome of Vesicomyidae. Ten potentially important adaptive residues were identified, which were located in cox1, cox3, cob, nad2, nad4 and nad5. Overall, this study sheds light on the mitogenomic adaptation of vesicomyid bivalves that inhabit the deep-sea chemosynthetic environment.
Collapse
Affiliation(s)
- Mei Yang
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Gong
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jixing Sui
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinzheng Li
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|