1
|
Mhetre VB, Patel V, Singh S, Mishra GP, Verma M, Kumar C, Dahuja A, Kumar S, Singh R, Wasim Siddiqui M. Unraveling the pathways influencing the berry color and firmness of grapevine cv. Flame Seedless treated with bioregulators using biochemical and RNA-Seq analysis under semi-arid subtropics. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 5:100116. [PMID: 35818381 PMCID: PMC9270244 DOI: 10.1016/j.fochms.2022.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/11/2022] [Accepted: 06/18/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Vishal B. Mhetre
- Division of Fruits and Horticultural Technology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| | - V.B. Patel
- Division of Fruits and Horticultural Technology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
- Corresponding author.
| | - S.K. Singh
- Division of Fruits and Horticultural Technology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| | - Gyan P. Mishra
- Division of Genetics, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| | - M.K. Verma
- Division of Fruits and Horticultural Technology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| | - Chavlesh Kumar
- Division of Fruits and Horticultural Technology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| | - Anil Dahuja
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sanjeev Kumar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Rakesh Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - M. Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Sabour 813210, Bhagalpur, Bihar, India
| |
Collapse
|
2
|
Li R, Su X, Zhou R, Zhang Y, Wang T. Molecular mechanism of mulberry response to drought stress revealed by complementary transcriptomic and iTRAQ analyses. BMC PLANT BIOLOGY 2022; 22:36. [PMID: 35039015 PMCID: PMC8762937 DOI: 10.1186/s12870-021-03410-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The use of mulberry leaves has long been limited to raising silkworms, but with the continuous improvement of mulberry (Morus alba) resource development and utilization, various mulberry leaf extension products have emerged. However, the fresh leaves of mulberry trees have a specific window of time for picking and are susceptible to adverse factors, such as drought stress. Therefore, exploring the molecular mechanism by which mulberry trees resist drought stress and clarifying the regulatory network of the mulberry drought response is the focus of the current work. RESULTS In this study, natural and drought-treated mulberry grafted seedlings were used for transcriptomic and proteomic analyses (CK vs. DS9), aiming to clarify the molecular mechanism of the mulberry drought stress response. Through transcriptome and proteome sequencing, we identified 9889 DEGs and 1893 DEPs enriched in stress-responsive GO functional categories, such as signal transducer activity, antioxidant activity, and transcription regulator activity. KEGG enrichment analysis showed that a large number of codifferentially expressed genes were enriched in flavonoid biosynthesis pathways, hormone signalling pathways, lignin metabolism and other pathways. Through subsequent cooperation analysis, we identified 818 codifferentially expressed genes in the CK vs. DS9 comparison group, including peroxidase (POD), superoxide dismutase (SOD), aldehyde dehydrogenase (ALDHs), glutathione s-transferase (GST) and other genes closely related to the stress response. In addition, we determined that the mulberry gene MaWRKYIII8 (XP_010104968.1) underwent drought- and abscisic acid (ABA)-induced expression, indicating that it may play an important role in the mulberry response to drought stress. CONCLUSIONS Our research shows that mulberry can activate proline and ABA biosynthesis pathways and produce a large amount of proline and ABA, which improves the drought resistance of mulberry. MaWRKYIII8 was up-regulated and induced by drought and exogenous ABA, indicating that MaWRKYIII8 may be involved in the mulberry response to drought stress. These studies will help us to analyse the molecular mechanism underlying mulberry drought tolerance and provide important gene information and a theoretical basis for improving mulberry drought tolerance through molecular breeding in the future.
Collapse
Affiliation(s)
- Ruixue Li
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Xueqiang Su
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Rong Zhou
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Yuping Zhang
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Taichu Wang
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China.
| |
Collapse
|
3
|
Theine J, Holtgräwe D, Herzog K, Schwander F, Kicherer A, Hausmann L, Viehöver P, Töpfer R, Weisshaar B. Transcriptomic analysis of temporal shifts in berry development between two grapevine cultivars of the Pinot family reveals potential genes controlling ripening time. BMC PLANT BIOLOGY 2021; 21:327. [PMID: 34233614 PMCID: PMC8265085 DOI: 10.1186/s12870-021-03110-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/22/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Grapevine cultivars of the Pinot family represent clonally propagated mutants with major phenotypic and physiological differences, such as different colour or shifted ripening time, as well as changes in important viticultural traits. Specifically, the cultivars 'Pinot Noir' (PN) and 'Pinot Noir Precoce' (PNP, early ripening) flower at the same time, but vary in the beginning of berry ripening (veraison) and, consequently, harvest time. In addition to genotype, seasonal climatic conditions (i.e. high temperatures) also affect ripening times. To reveal possible regulatory genes that affect the timing of veraison onset, we investigated differences in gene expression profiles between PN and PNP throughout berry development with a closely meshed time series and over two separate years. RESULTS The difference in the duration of berry formation between PN and PNP was quantified to be approximately two weeks under the growth conditions applied, using plant material with a proven PN and PNP clonal relationship. Clusters of co-expressed genes and differentially expressed genes (DEGs) were detected which reflect the shift in the timing of veraison onset. Functional annotation of these DEGs fit to observed phenotypic and physiological changes during berry development. In total, we observed 3,342 DEGs in 2014 and 2,745 DEGs in 2017 between PN and PNP, with 1,923 DEGs across both years. Among these, 388 DEGs were identified as veraison-specific and 12 were considered as berry ripening time regulatory candidates. The expression profiles revealed two candidate genes for ripening time control which we designated VviRTIC1 and VviRTIC2 (VIT_210s0071g01145 and VIT_200s0366g00020, respectively). These genes likely contribute the phenotypic differences observed between PN and PNP. CONCLUSIONS Many of the 1,923 DEGs show highly similar expression profiles in both cultivars if the patterns are aligned according to developmental stage. In our work, putative genes differentially expressed between PNP and PN which could control ripening time as well as veraison-specific genes were identified. We point out connections of these genes to molecular events during berry development and discuss potential candidate genes which may control ripening time. Two of these candidates were observed to be differentially expressed in the early berry development phase. Several down-regulated genes during berry ripening are annotated as auxin response factors / ARFs. Conceivably, general changes in auxin signaling may cause the earlier ripening phenotype of PNP.
Collapse
Affiliation(s)
- Jens Theine
- Genetics and Genomics of Plants, Faculty of Biology & Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Daniela Holtgräwe
- Genetics and Genomics of Plants, Faculty of Biology & Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Katja Herzog
- Julius Kühn-Institute, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Florian Schwander
- Julius Kühn-Institute, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Anna Kicherer
- Julius Kühn-Institute, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Ludger Hausmann
- Julius Kühn-Institute, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Prisca Viehöver
- Genetics and Genomics of Plants, Faculty of Biology & Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Reinhard Töpfer
- Julius Kühn-Institute, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Faculty of Biology & Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
4
|
Zombardo A, Crosatti C, Bagnaresi P, Bassolino L, Reshef N, Puccioni S, Faccioli P, Tafuri A, Delledonne M, Fait A, Storchi P, Cattivelli L, Mica E. Transcriptomic and biochemical investigations support the role of rootstock-scion interaction in grapevine berry quality. BMC Genomics 2020; 21:468. [PMID: 32641089 PMCID: PMC7341580 DOI: 10.1186/s12864-020-06795-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Background In viticulture, rootstock genotype plays a critical role to improve scion physiology, berry quality and to adapt grapevine (Vitis vinifera L.) to different environmental conditions. This study aimed at investigating the effect of two different rootstocks (1103 Paulsen - P - and Mgt 101–14 - M) in comparison with not grafted plants - NGC - on transcriptome (RNA-seq and small RNA-seq) and chemical composition of berry skin in Pinot noir, and exploring the influence of rootstock-scion interaction on grape quality. Berry samples, collected at veraison and maturity, were investigated at transcriptional and biochemical levels to depict the impact of rootstock on berry maturation. Results RNA- and miRNA-seq analyses highlighted that, at veraison, the transcriptomes of the berry skin are extremely similar, while variations associated with the different rootstocks become evident at maturity, suggesting a greater diversification at transcriptional level towards the end of the ripening process. In the experimental design, resembling standard agronomic growth conditions, the vines grafted on the two different rootstocks do not show a high degree of diversity. In general, the few genes differentially expressed at veraison were linked to photosynthesis, putatively because of a ripening delay in not grafted vines, while at maturity the differentially expressed genes were mainly involved in the synthesis and transport of phenylpropanoids (e.g. flavonoids), cell wall loosening, and stress response. These results were supported by some differences in berry phenolic composition detected between grafted and not grafted plants, in particular in resveratrol derivatives accumulation. Conclusions Transcriptomic and biochemical data demonstrate a stronger impact of 1103 Paulsen rootstock than Mgt 101–14 or not grafted plants on ripening processes related to the secondary metabolite accumulations in berry skin tissue. Interestingly, the MYB14 gene, involved in the feedback regulation of resveratrol biosynthesis was up-regulated in 1103 Paulsen thus supporting a putative greater accumulation of stilbenes in mature berries.
Collapse
Affiliation(s)
- A Zombardo
- CREA Research Centre for Viticulture and Enology, viale Santa Margherita 80, 52100, Arezzo, Italy.,Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144, Florence, Italy
| | - C Crosatti
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - P Bagnaresi
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - L Bassolino
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy.,CREA Research Centre for Cereal and Industrial Crops, via di Corticella 133, 40128, Bologna, Italy
| | - N Reshef
- French Associates institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel.,Present address: Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - S Puccioni
- CREA Research Centre for Viticulture and Enology, viale Santa Margherita 80, 52100, Arezzo, Italy
| | - P Faccioli
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - A Tafuri
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - M Delledonne
- Department of Biotechnologies, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - A Fait
- French Associates institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - P Storchi
- CREA Research Centre for Viticulture and Enology, viale Santa Margherita 80, 52100, Arezzo, Italy
| | - L Cattivelli
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - E Mica
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy.
| |
Collapse
|