1
|
Nipu N, Wei L, Hamilton L, Lee H, Thomas J, Mennigen JA. Methylene blue at recommended concentrations alters metabolism in early zebrafish development. Commun Biol 2025; 8:120. [PMID: 39856203 PMCID: PMC11760885 DOI: 10.1038/s42003-025-07471-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Methylene blue (MB) is an antifungal agent widely used during critical stages of zebrafish development. Most guidelines recommend 0.00005% or 0.0001% of MB for embryo/larval rearing. The Organisation for Economic Co-operation and Development zebrafish embryo toxicity test guideline omits MB recommendations, leading to inconsistent MB use in zebrafish research. Because MB affects oxidative energy metabolism in vitro and in vivo, we investigate possible metabolic effects of recommended MB concentrations in developing zebrafish (1-5 days post-fertilization (dpf)). MB increases O2 consumption rate at 1 dpf, followed by an overall reduction in oxidative energy metabolism in post-hatch eleutheroembryos (4-5 dpf). Concomitantly, mitochondrial transcripts decrease in 1 and 4 dpf zebrafish. Our findings show that MB, at recommended husbandry concentrations, affects oxidative metabolism and can thus confound experiments. Since the zebrafish embryo/larval model is gaining traction as a high-throughput New Approach Methodology (NAM) for toxicity assessment, researchers should reconsider MB use.
Collapse
Affiliation(s)
- Niepukolie Nipu
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Lai Wei
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Lauren Hamilton
- Regulatory Toxicology Research Division, Health Products and Food Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Hyojin Lee
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Jith Thomas
- Regulatory Toxicology Research Division, Health Products and Food Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
2
|
Yuan H, Xie M, Chen J, Hu N, Wang H, Tan B, Shi L, Zhang S. Combined intestinal microbiota and transcriptomic analysis to investigate the effect of different stocking densities on the ability of Pacific white shrimp ( Litopenaeus vannamei) to utilize Chlorella sorokiniana. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:203-219. [PMID: 39281052 PMCID: PMC11401160 DOI: 10.1016/j.aninu.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 09/18/2024]
Abstract
Aiming to investigate the impact of different stocking densities on the ability of Pacific white shrimp (Litopenaeus vannamei) to utilize Chlorella sorokiniana (CHL), a 3 × 2 factorial design stocking experiment was used in this study. Specifically, shrimp was fed with two dietary protein sources (fishmeal [FM] and CHL) at low (LSD; 100 per m3), medium (MSD; 200 per m3) and high (HSD; 300 per m3) stocking densities for 8 weeks. The growth performance and resistance to Vibrio parahaemolyticus (1.0 × 107 CFU/mL) of shrimp decreased with the increase of stocking density, but dietary CHL improved this result. Differences between the CHL and FM groups for V. parahaemolyticus resistance were significant only under high-density conditions (P < 0.05). Significant interactions between stocking density and protein source were found on the activities of catalase (CAT), superoxide dismutase (SOD) and phenol oxidase (PO), and the contents of malondialdehyde (MDA) in the hepatopancreas and the activities of intestinal amylase, most of which were significantly different between CHL and FM groups only at high stocking density (P < 0.05). Analysis of 16S rDNA sequencing showed that dietary CHL increased the alpha diversity of intestinal microbiota, inhibited the colonization of pathogenic bacteria and enhanced the abundance of beneficial bacteria. Transcriptomic results showed that at high stocking densities, differentially expressed genes (DEGs) in the FM vs CHL group were mostly upregulated and primarily enriched in immune and metabolic related pathways including Toll, immune deficiency (Imd) and glycolysis-gluconeogenesis pathways. Pearson correlation analysis revealed significant correlation between the top ten intestinal bacteria at the genus level and markedly enriched DEGs, also more were detected under high density situations. In conclusion, CHL has great potential as a novel protein source in the intensive farming of shrimp.
Collapse
Affiliation(s)
- Hang Yuan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Minghua Xie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Jian Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Naijie Hu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Honming Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
3
|
Talarico GGM, Thoral E, Farhat E, Teulier L, Mennigen JA, Weber JM. Lactate signaling and fuel selection in rainbow trout: mobilization of energy reserves. Am J Physiol Regul Integr Comp Physiol 2023; 325:R556-R567. [PMID: 37694336 DOI: 10.1152/ajpregu.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Lactate is now recognized as a regulator of fuel selection in mammals because it inhibits lipolysis by binding to the hydroxycarboxylic acid receptor 1 (HCAR1). The goals of this study were to quantify the effects of exogenous lactate on: 1) lipolytic rate or rate of appearance of glycerol in the circulation (Ra glycerol) and hepatic glucose production (Ra glucose), and 2) key tissue proteins involved in lactate signaling, glucose transport, glycolysis, gluconeogenesis, lipolysis, and β-oxidation in rainbow trout. Measurements of fuel mobilization kinetics show that lactate does not affect lipolysis as it does in mammals (Ra glycerol remains at 7.3 ± 0.5 µmol·kg-1·min-1), but strongly reduces hepatic glucose production (16.4 ± 2.0 to 8.9 ± 1.2 µmol·kg-1·min-1). This reduction is likely induced by decreasing gluconeogenic flux through the inhibition of cytosolic phosphoenolpyruvate carboxykinase (Pck1, alternatively called Pepck1; 60% and 24% declines in gene expression and protein level, respectively). It is also caused by lactate substituting for glucose as a fuel in all tissues except white muscle that increases glut4a expression and has limited capacity for monocarboxylate transporter (Mct)-mediated lactate import. We conclude that lipolysis is not affected by hyperlactatemia because trout show no activation of autocrine Hcar1 signaling (gene expression of the receptor is unchanged or even repressed in red muscle). Lactate regulates fuel mobilization via Pck1-mediated suppression of gluconeogenesis and by replacing glucose as a fuel. This study highlights important functional differences in the Hcar1 signaling system between fish and mammals for the regulation of fuel selection.
Collapse
Affiliation(s)
| | - Elisa Thoral
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, École Nationale des Travaux Publics de l'État, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - Elie Farhat
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | - Loïc Teulier
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, École Nationale des Travaux Publics de l'État, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - Jan A Mennigen
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
4
|
Yuan H, Xie M, Hu N, Zheng Y, Hou C, Tan B, Shi L, Zhang S. Growth, immunity and transcriptome response to different stocking densities in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108924. [PMID: 37406891 DOI: 10.1016/j.fsi.2023.108924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/11/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
The effects of different stocking densities on Litopenaeus vannamei were investigated from the aspects of growth performance, immune response and transcriptome in this experiment. L. vannamei (initial body weight: 0.30 ± 0.02 g) were reared for 8 weeks at three stocking densities of 100 (LSD), 200 (MSD) and 300 (HSD) shrimp/m³, respectively. The results showed that the survival rate (SR), final body weight (FBW), weight gain rate (WGR), specific growth ratio (SGR) and protein efficiency ratio (PER) of L. vannamei significantly decreased, while the feed factor (FCR) significantly increased with the increase of stocking density. After Vibrio parahemolyticus infection, the SR of L. vannamei in the HSD group was significantly lower than that in the LSD and MSD groups. Increasing stocking density significantly increased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lysozyme (LYS) while significantly decreased the activities of catalase (CAT) and phenol oxidase (PO) in the serum of L. vannamei. Similar changes of the gene expression as the activities of immune enzymes were found in the hemocytes. Pairwise comparison between the LSD, MSD and HSD group in the transcriptome analysis identified that there were 304, 1376 and 2083 differentially expressed genes (DEGs) in LSD vs MSD, MSD vs HSD and LSD vs HSD, respectively. Among them, most of the immune-related DEGs were down-regulated and metabolism-related DEGs were up-regulated with the increasing stocking density. In addition, KEGG enrichment pathway analysis revealed that several immune and metabolic related pathways including PI3K-Akt signaling pathway and AMPK signaling pathway were significantly enriched. Of these, the PI3K-Akt signaling pathway had the most DEGs and was also the most significantly enriched pathway. Furthermore, 16 DEGs (such as FOXO, PCK2 and CTSC, etc.) and partial immune enzyme activity (such as AST, CAT and PO, etc.) changes were closely correlated with the increase of stocking density when partial immune-related DEGs and immune-related enzymes were analyzed jointly. All these results indicated that changes in stocking density had a significant effect on the growth performance, immunity and transcriptome of L. vannamei.
Collapse
Affiliation(s)
- Hang Yuan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Minghua Xie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Naijie Hu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Yudong Zheng
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Cuihong Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China.
| |
Collapse
|
5
|
Liao C, Zhang F, Teng Z, Zhang G, Yang Y, Xu P, Huang X, Wang L, Yang F, Yang Z, Zhang X. Molecular characterization and expression analysis of selenoprotein W gene in rainbow trout (Oncorhynchus mykiss) with dietary selenium levels. Biometals 2022; 35:1359-1370. [PMID: 36261677 DOI: 10.1007/s10534-022-00451-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
Selenium (Se) plays an essential role in the growth of fish and performs its physiological functions mainly through incorporation into selenoproteins. Our previous studies suggested that the selenoprotein W gene (selenow) is sensitive to changes in dietary Se in rainbow trout. However, the molecular characterization and tissue expression pattern of selenow are still unknown. Here, we revealed the molecular characterization, the tissue expression pattern of rainbow trout selenow and analyzed its response to dietary Se. The open reading frame (ORF) of the selenow gene was composed of 393 base pairs (bp) and encodes a 130-amino-acid protein. The 3' untranslated region (UTR) was 372 bp with a selenocysteine insertion sequence (SECIS) element. Remarkably, the rainbow trout selenow gene sequence was longer than those reported for mammals and most other fish. A β1-α1-β2-β3-β4-α2 pattern made up the secondary structure of SELENOW. Furthermore, multiple sequence alignment revealed that rainbow trout SELENOW showed a high level of identity with SELENOW from Salmo salar. In addition, the selenow gene was ubiquitously distributed in 13 tissues with various abundances and was predominantly expressed in muscle and brain. Interestingly, dietary Se significantly increased selenow mRNA expression in muscle. Our results highlight the vital role of selenow in rainbow trout muscle response to dietary Se levels and provide a theoretical basis for studies of selenow.
Collapse
Affiliation(s)
- Chenlei Liao
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China
| | - Feng Zhang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China
| | - Zhenlei Teng
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China
| | - Guirong Zhang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China
| | - Ying Yang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China
| | - Pengke Xu
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China
| | - Xixuan Huang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China
| | - Li Wang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China
| | - Fan Yang
- Angel Yeast Co., Ltd, Yichang, 443003, People's Republic of China
| | - Zhilong Yang
- Angel Yeast Co., Ltd, Yichang, 443003, People's Republic of China
| | - Xuezhen Zhang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
6
|
Mennigen JA, Magnan J, Touma K, Best C, Culbert BM, Bernier NJ, Gilmour KM. Social status-dependent regulation and function of the somatotropic axis in juvenile rainbow trout. Mol Cell Endocrinol 2022; 554:111709. [PMID: 35787462 DOI: 10.1016/j.mce.2022.111709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/12/2023]
Abstract
Juvenile rainbow trout (Oncorhynchus mykiss) develop social hierarchies when competing for resources in a constrained environment. Among the physiological consequences of social status are changes in organismal energy metabolism, which generally favour anabolic pathways in dominant fish and catabolic pathways in subordinate fish. The somatotropic axis is an important regulator of metabolism and growth that could be involved in mediating metabolic changes in response to social status in juvenile rainbow trout. Here we used juvenile trout housed either in dyads or individually (sham controls) to determine whether social status changes indices of somatotropic axis function. Although pituitary growth hormone expression (gh1 and gh2) did not differ among groups, circulating growth hormone (GH) increased ∼12-fold in subordinate fish compared to sham and dominant fish. Social status caused consistent differential expression of GH receptor paralogues in liver and muscle, two principal target tissues of GH. Compared to dominant and/or sham fish, ghra paralogue expression (ghra1 and ghra2) was lower, while ghrb1 expression was higher in subordinate fish. Across tissues, ghra paralogue expression was generally positively correlated with expression of insulin growth factors (igf1, igf2), while ghrb1 expression was positively correlated with transcript abundance of hormone sensitive lipase (hsl1). Because igf and hsl expression are subject to context-dependent GH control in rainbow trout, these results suggest that increased circulating GH in conjunction with differential expression of ghr paralogues may translate into prioritization of downstream catabolic lipolytic pathways in subordinate rainbow trout. These findings support a social context-dependent role for GH signalling in mediating metabolic changes in juvenile rainbow trout.
Collapse
Affiliation(s)
- Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Julianne Magnan
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kenan Touma
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carol Best
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
7
|
Kostyniuk DJ, Mennigen JA. Meta-analysis of differentially-regulated hepatic microRNAs identifies candidate post-transcriptional regulation networks of intermediary metabolism in rainbow trout. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100750. [PMID: 33038710 DOI: 10.1016/j.cbd.2020.100750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/14/2020] [Accepted: 09/25/2020] [Indexed: 12/01/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs which act as post-transcriptional regulators by decreasing targeted mRNA translation and stability. Principally targeting small 3' UTR elements of protein-coding mRNAs through complementary base-pairing, miRNAs are promiscuous regulators of the transcriptome. While potent roles for hepatic miRNAs in the regulation of energy metabolism have emerged in rodent models, comparative roles in other vertebrates remain largely unexplored. Indeed, while several miRNAs are deeply conserved among vertebrates, the acquisition of lineage- and species-specific miRNAs, as well as the rewiring between miRNA-mRNA target relationships beg the question of regulatory and functional conservation and innovation of miRNAs and their targets involved in energy metabolism. Here we provide a meta-analysis of differentially expressed hepatic miRNAs in rainbow trout, a scientifically and economically important teleost species with a 'glucose-intolerant' phenotype. Following exposure to nutritional and social context-dependent metabolic challenges, we analyzed differential miRNA expression from small-RNA-sequencing datasets generated with a consistent bioinformatics pipeline in conjunction with an in silico target prediction of metabolic transcripts and pathways. We provide evidence for evolutionary conserved (let-7, miRNA-27 family) and rewired (miRNA-30 family, miRNA-152, miRNA-722) miRNA-metabolic target gene networks in the context of the salmonid genome. These findings represent important first steps in our understanding of the comparative regulation and function of hepatic miRNAs in rainbow trout energy metabolism. We propose that the identified miRNA families should be prioritized for future comparative functional investigation in the context of hepatic energy- and glucose metabolism in rainbow trout.
Collapse
Affiliation(s)
- Daniel J Kostyniuk
- Department of Biology, University of Ottawa, 20 Marie Curie, K1N6N5, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, 20 Marie Curie, K1N6N5, ON, Canada.
| |
Collapse
|
8
|
Mao ZJ, Lin M, Zhang X, Qin LP. Combined Use of Astragalus Polysaccharide and Berberine Attenuates Insulin Resistance in IR-HepG2 Cells via Regulation of the Gluconeogenesis Signaling Pathway. Front Pharmacol 2019; 10:1508. [PMID: 31920677 PMCID: PMC6936338 DOI: 10.3389/fphar.2019.01508] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022] Open
Abstract
Insulin resistance (IR) is likely to induce metabolic syndrome and type 2 diabetes mellitus (T2DM). Gluconeogenesis (GNG) is a complex metabolic process that may result in glucose generation from certain non-carbohydrate substrates. Chinese herbal medicine astragalus polysaccharides and berberine have been documented to ameliorate IR, and combined use of astragalus polysaccharide (AP) and berberine (BBR) are reported to synergistically produce an even better effect. However, what change may occur in the GNG signaling pathway of IR-HepG2 cells in this synergistic effect and whether AP-BBR attenuates IR by regulating the GNG signaling pathway remain unclear. For the first time, we discovered in this study that the optimal time of IR-HepG2 cell model formation was 48 h after insulin intervention. AP-BBR attenuated IR in HepG2 cells and the optimal concentration was 10 mg. AP-BBR reduced the intracellular H2O2 content with no significant effect on apoptosis of IR-HepG2 cells. In addition, a rapid change was observed in intracellular calcium current of the IR-HepG2 cell model, and AP-BBR intervention attenuated this change markedly. The gene sequencing results showed that the GNG signaling pathway was one of the signaling pathways of AP-BBR to attenuate IR in IR-Hepg2 cells. The expression of p-FoxO1Ser256 and PEPCK protein was increased, and the expression of GLUT2 protein was decreased significantly in the IR-HepG2 cell model, and both of these effects could be reversed by AP-BBR intervention. AP-BBR attenuated IR in IR-HepG2 cells, probably by regulating the GNG signaling Pathway.
Collapse
Affiliation(s)
- Zhu-Jun Mao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Lin
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu-Ping Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Aedo JE, Zuloaga R, Bastías-Molina M, Meneses C, Boltaña S, Molina A, Valdés JA. Early transcriptomic responses associated with the membrane-initiated action of cortisol in the skeletal muscle of rainbow trout (Oncorhynchus mykiss). Physiol Genomics 2019; 51:596-606. [DOI: 10.1152/physiolgenomics.00042.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cortisol is a critical neuroendocrine regulator of the stress response in fish. Cortisol practically affects all tissues by interacting with an intracellular receptor and modulating target gene expression. However, cortisol also interacts with components of the plasma membrane in a nongenomic process that activates rapid signaling. Until now, the implication of this novel cortisol signaling for the global transcriptional response has not been explored. In the present work, we evaluated the effects of the membrane-initiated actions of cortisol on the in vivo transcriptome of rainbow trout ( Oncorhynchus mykiss) skeletal muscle. RNA-Seq analyses were performed to examine the transcriptomic changes in rainbow trout stimulated by physiological concentrations of cortisol and cortisol coupled with bovine serum albumin (cortisol-BSA), a membrane-impermeable analog of cortisol. A total of 660 million paired-ends reads were generated. Reads mapped onto the reference genome revealed that 1,737; 897; and 1,012 transcripts were differentially expressed after 1, 3, and 9 h of cortisol-BSA treatment, respectively. Gene Ontology analysis showed that this novel action of cortisol modulates several biological processes, such as mRNA processing, ubiquitin-dependent protein catabolic processes, and transcription regulation. In addition, a KEGG analysis revealed that focal adhesion was the main signaling pathway that was upregulated at all the times tested. Taking these results together, we propose that the membrane-initiated cortisol action contributes significantly in the regulation of stress-mediated gene expression.
Collapse
Affiliation(s)
- Jorge E. Aedo
- Universidad Andrés Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Rodrigo Zuloaga
- Universidad Andrés Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago, Chile
| | - Macarena Bastías-Molina
- Universidad Andrés Bello, Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Santiago, Chile
| | - Claudio Meneses
- Universidad Andrés Bello, Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Santiago, Chile
| | - Sebastián Boltaña
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
- Universidad de Concepción, ThermoFish Lab, Biotechnology Center, Concepción, Chile
| | - Alfredo Molina
- Universidad Andrés Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago, Chile
- Universidad de Concepción, ThermoFish Lab, Biotechnology Center, Concepción, Chile
| | - Juan Antonio Valdés
- Universidad Andrés Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago, Chile
- Universidad de Concepción, ThermoFish Lab, Biotechnology Center, Concepción, Chile
| |
Collapse
|