1
|
Martellucci S, Flütsch A, Carter M, Norimoto M, Pizzo D, Mantuano E, Sadri M, Wang Z, Chillin-Fuentes D, Rosenthal SB, Azmoon P, Gonias SL, Campana WM. Axon-derived PACSIN1 binds to the Schwann cell survival receptor, LRP1, and transactivates TrkC to promote gliatrophic activities. Glia 2024; 72:916-937. [PMID: 38372375 DOI: 10.1002/glia.24510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/20/2024]
Abstract
Schwann cells (SCs) undergo phenotypic transformation and then orchestrate nerve repair following PNS injury. The ligands and receptors that activate and sustain SC transformation remain incompletely understood. Proteins released by injured axons represent important candidates for activating the SC Repair Program. The low-density lipoprotein receptor-related protein-1 (LRP1) is acutely up-regulated in SCs in response to injury, activating c-Jun, and promoting SC survival. To identify novel LRP1 ligands released in PNS injury, we applied a discovery-based approach in which extracellular proteins in the injured nerve were captured using Fc-fusion proteins containing the ligand-binding motifs of LRP1 (CCR2 and CCR4). An intracellular neuron-specific protein, Protein Kinase C and Casein Kinase Substrate in Neurons (PACSIN1) was identified and validated as an LRP1 ligand. Recombinant PACSIN1 activated c-Jun and ERK1/2 in cultured SCs. Silencing Lrp1 or inhibiting the LRP1 cell-signaling co-receptor, the NMDA-R, blocked the effects of PACSIN1 on c-Jun and ERK1/2 phosphorylation. Intraneural injection of PACSIN1 into crush-injured sciatic nerves activated c-Jun in wild-type mice, but not in mice in which Lrp1 is conditionally deleted in SCs. Transcriptome profiling of SCs revealed that PACSIN1 mediates gene expression events consistent with transformation to the repair phenotype. PACSIN1 promoted SC migration and viability following the TNFα challenge. When Src family kinases were pharmacologically inhibited or the receptor tyrosine kinase, TrkC, was genetically silenced or pharmacologically inhibited, PACSIN1 failed to induce cell signaling and prevent SC death. Collectively, these studies demonstrate that PACSIN1 is a novel axon-derived LRP1 ligand that activates SC repair signaling by transactivating TrkC.
Collapse
Affiliation(s)
- Stefano Martellucci
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Andreas Flütsch
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Mark Carter
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Masaki Norimoto
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Donald Pizzo
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Elisabetta Mantuano
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Mahrou Sadri
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Zixuan Wang
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Daisy Chillin-Fuentes
- Center for Computational Biology & Bioinformatics, Altman Clinical & Translational Research Institute, University of California San Diego, La Jolla, California, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, Altman Clinical & Translational Research Institute, University of California San Diego, La Jolla, California, USA
| | - Pardis Azmoon
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Wendy M Campana
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
- Program in Neurosciences, University of California San Diego, La Jolla, California, USA
- Division of Research, San Diego VA Health Care System, San Diego, California, USA
| |
Collapse
|
2
|
Akarsu SA, Gür C, İleritürk M, Akaras N, Küçükler S, Kandemir FM. Effect of syringic acid on oxidative stress, autophagy, apoptosis, inflammation pathways against testicular damage induced by lead acetate. J Trace Elem Med Biol 2023; 80:127315. [PMID: 37801787 DOI: 10.1016/j.jtemb.2023.127315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Heavy metals are one of the environmental pollutants. Lead (Pb) is one of the most common of these heavy metals. In this study, it was aimed at investigating the effects of syringic acid (SA) against testicular toxicity in rats administered lead acetate (PbAc). METHODS In the present study, a total of 35 Sprague-Dawley rats, 7 in each group, were used. The rats were divided into 5 groups, with 7 male rats in each group. Rats were given PbAc and SA orally for 7 days. The effects of PbAc and SA on epididymal sperm quality and apoptosis, inflammation, oxidative stress and histopathological changes in testicular tissue were determined. RESULTS While PbAc disrupted the seminiferous tubules and produced atrophic images, SA corrected these histological abnormalities. PbAc adminisration significantly reduced the levels of SOD, GSH, GPx, CAT, NRF-2 and NQO1 and significantly increased the levels of MDA and 8-OHdG in the testicular tissue of rats, while SA improved this situation. NF-κB, TNF-α, IL-1β, NLRP3, RAGE, ATF6, PERK, IRE1, CHOP, and GRP78 genes expression levels increased with PbAc administration, however these levels decreased with SA administration. In addition, PbAc increased the levels of apoptotic markers Bax, Caspase-3 and APAF-1 and decreased the level of Bcl-2, while SA improved this situation. It was observed that PbAc significantly reduced sperm quality in rats, while SA positively affected sperm quality. CONCLUSION As a result, SA administered against PbAc-induced testicular dysfunction in rats can provide effective protection at doses of 25 mg/kg/bw and 50 mg/kg/bw.
Collapse
Affiliation(s)
- Serkan Ali Akarsu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey.
| | - Cihan Gür
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mustafa İleritürk
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Nurhan Akaras
- Department of Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
3
|
Pan X, Liu Y, Liu L, Pang B, Sun Z, Guan S, Yan Q, Mo T, Chen R, Xu M, Chang Z, Zhou X. Bushen Jieyu Tiaochong Formula reduces apoptosis of granulosa cells via the PERK-ATF4-CHOP signaling pathway in a rat model of polycystic ovary syndrome with chronic stress. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:114923. [PMID: 34923086 DOI: 10.1016/j.jep.2021.114923] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polycystic ovary syndrome (PCOS) is a common and complex endocrine disorder that is also an important cause of infertility. Adverse psychological stress can aggravate the occurrence and development of PCOS. Bushen Jieyu Tiaochong Formula (BJTF), a prescription of Traditional Chinese Medicine (TCM), has been used in the treatment of PCOS and shown to be effective in reducing negative emotion. However, the therapeutic mechanism has yet to be clearly elucidated. In the current study, we investigated the potential mechanism of action of BJTF. AIM OF THE STUDY To investigate the role of PERK-ATF4-CHOP signaling in the molecular mechanisms that mediate the effects of BJTF in a rat model of PCOS, with chronic stress induced by letrozole and a chronic unpredictable mild stress (CUMS) paradigm. MATERIALS AND METHODS In addition to the normal control group, the PCOS combined with CUMS model rats were randomly assigned to a model group, a Diane-35 (ethinylestradiol 35 μg/cyproterone acetate 2 mg)-treated positive control group, or one of three BJTF-treated groups receiving a low, medium, or high dose. Behavioral testing, including the sucrose preference test and open field test, was conducted, and hematoxylin and eosin (H&E) staining was used to observe changes in the pathological morphology of ovarian tissue. Free testosterone (FT), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels in serum were quantified by enzyme-linked immunosorbent assays (ELISA). The hippocampal levels of norepinephrine (NE), 5-hydroxytryptamine/serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) were measured using high-performance liquid chromatography-electrochemical detection (HPLC-ECD). Apoptotic granulosa cells were detected using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Furthermore, quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry were used to detect the expression of glucose-regulated protein 78 (GRP78) and CHOP in the ovarian tissues. The expression levels of GRP78, CHOP, PERK, and ATF4 in ovarian tissues were also measured by western blotting. RESULTS Treatment with either BJTF or Diane-35 ameliorated the abnormal cystic dilatation of follicles in the model rats and reduced the serum levels of FT and LH, and the LH/FSH ratio. BJTF treatment also attenuated chronic psychological stress-like behavior and regulated the expression and metabolism of cerebral monoamine neurotransmitters. The efficacy of BJTF was greater than that of Diane-35, with the optimal effects observed at the medium dose. BJTF also lowered the apoptotic index of ovarian granulosa cells and downregulated the expression of GRP78, CHOP, and ATF4. Although the expression level of PERK was not significantly altered by BJTF, the mean PERK expression level was the lowest in the medium-dose BJTF group. CONCLUSIONS Administration of BJTF has the therapeutic potential to promote the homeostasis of the reproductive endocrine environment and to restore follicular development and ovulation, possibly through the inhibition of the PERK-ATF4-CHOP signaling pathway, leading to downregulation of GRP78 expression to further delay ovarian granule cell apoptosis mediated by endoplasmic reticulum stress (ERS). Moreover, BJTF could improve behavioral performance by regulating cerebral monoamine neurotransmitters in this rat model. These findings provide a new perspective for treating PCOS related to psychological stress using TCM.
Collapse
Affiliation(s)
- Xue Pan
- Post-doctoral Mobile Station, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yanfeng Liu
- Department of Gynecology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.
| | - Liuqing Liu
- Department of Gynecology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.
| | - Bo Pang
- International Medical Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhidi Sun
- Department of Gynecology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.
| | - Siqi Guan
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| | - Qingya Yan
- Department of Gynecology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.
| | - Tingting Mo
- Department of Gynecology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.
| | - Ran Chen
- Department of Gynecology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.
| | - Mengbai Xu
- Department of Gynecology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.
| | - Zhuo Chang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Xueming Zhou
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
4
|
Batu Oto B, Aykut V, Güneş M, Korkmaz R, İsman FK, Agirbasli M. Low levels of soluble low-density lipoprotein receptor-related protein 1 in patients with type 2 diabetes mellitus and diabetic retinopathy. Exp Eye Res 2022; 215:108921. [PMID: 34999080 DOI: 10.1016/j.exer.2022.108921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/15/2021] [Accepted: 01/02/2022] [Indexed: 11/30/2022]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP-1) is a large transmembrane receptor. LRP-1 plays a role in diverse cellular processes, including lipid metabolism, cell growth, migration, and regeneration. Soluble form of LRP-1 (sLRP-1) can be detected in serum. sLRP-1 can serve as a biomarker of atherosclerosis and cardiometabolic diseases. This study investigated the concentrations of the circulating serum sLRP-1 in patients with retinopathy and type 2 diabetes mellitus. Fifty-two patients with diabetic retinopathy and 71 controls were enrolled based on well-defined eligibility criteria. Venous blood samples were collected after 12 h of fasting. sLRP-1 concentrations were measured using the commercially available ELISA in an accredited laboratory. The mean age of patients and control groups were 63.6 and 48.5 years, respectively. The median disease duration was 8.1 years. The median serum sLRP-1 levels were lower in patients with diabetic retinopathy compared to the controls (2.11 μg/mL versus 2.44 μg/mL, p = 0.034). No significant correlation was observed between the sLRP-1 and serum lipid levels. The sLRP-1 levels are low in patients with diabetic retinopathy compared to healthy controls, and future studies are needed to assess sLRP-1 as a potential biomarker in diabetic retinopathy.
Collapse
Affiliation(s)
- Bilge Batu Oto
- Department of Ophthalmology, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Turkey
| | - Veysel Aykut
- Department of Ophthalmology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Turkey
| | - Medine Güneş
- Department of Ophthalmology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Turkey
| | - Rabia Korkmaz
- Department of Clinical Chemistry, Göztepe Prof Dr Süleyman Yalçın Şehir Hastanesi, Istanbul, Turkey; Department of Clinical Chemistry, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Turkey
| | - Ferruh K İsman
- Department of Clinical Chemistry, Göztepe Prof Dr Süleyman Yalçın Şehir Hastanesi, Istanbul, Turkey; Department of Clinical Chemistry, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Turkey
| | - Mehmet Agirbasli
- Department of Cardiology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Turkey; Department of Cardiology, Göztepe Prof Dr Süleyman Yalçın Şehir Hastanesi, Istanbul, Turkey.
| |
Collapse
|
5
|
Semis HS, Kandemir FM, Kaynar O, Dogan T, Arikan SM. The protective effects of hesperidin against paclitaxel-induced peripheral neuropathy in rats. Life Sci 2021; 287:120104. [PMID: 34743946 DOI: 10.1016/j.lfs.2021.120104] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 01/15/2023]
Abstract
Paclitaxel (PTX), which is widely used in the treatment of solid tumors, leads to dose limitation because it causes peripheral neuropathy. This study was conducted to evaluate the potential effects of hesperidin (HES), which has various biological and pharmacological properties, against PTX-induced sciatic nerve damage. For this purpose, Sprague Dawley rats were given PTX 2 mg/kg/b.w for 5 days, then 100 or 200 mg/kg/b.w HES for 10 days, and behavioral tests were conducted at the end of the experiment. The data obtained show that PTX-induced MDA, NF-κB, IL-1β, TNF-α, COX-2, nNOS, JAK2, STAT3, and GFAP levels decreased with HES administration. Moreover, it was observed that SOD, CAT, and GPx activities inhibited by PTX increased with HES administration. It was determined that PTX caused apoptosis in the sciatic nerve by increasing Caspase-3 and Bax levels and suppressing Bcl-2 levels. HES, on the other hand, showed an anti-apoptotic effect, increasing Bcl-2 levels and decreasing Caspase-3 and Bax levels. Also, it was observed that PTX could cause endoplasmic reticulum stress (ERS) by increasing PERK, IRE1, ATF-6, GRP78 and CHOP mRNA transcript levels, while HES could alleviate ERS by suppressing them. The results indicate that neuropathic pain associated with PTX-induced peripheral neuropathy can be alleviated by HES administration and that it is a promising compound for cancer patients. In addition, it is thought that the results of the present study contain information that will shed light for researchers regarding further studies to be conducted with HES.
Collapse
Affiliation(s)
- Halil Sezgin Semis
- Department of Orthopedics and Traumatology, Private Buhara Hospital, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Ozgur Kaynar
- Department of Biochemistry, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Tuba Dogan
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sefik Murat Arikan
- Department of Orthopedics and Traumatology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
6
|
From the low-density lipoprotein receptor-related protein 1 to neuropathic pain: a potentially novel target. Pain Rep 2021; 6:e898. [PMID: 33981930 PMCID: PMC8108589 DOI: 10.1097/pr9.0000000000000898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
The low-density lipoprotein receptor–related protein 1 plays a major role in the regulation of neuroinflammation, neurodegeneration, neuroregeneration, neuropathic pain, and deficient cognitive functions. This review describes the roles of the low-density lipoprotein receptor–related protein 1 (LRP-1) in inflammatory pathways, nerve nerve degeneration and -regeneration and in neuropathic pain. Induction of LRP-1 is able to reduce the activation of the proinflammatory NFκB-mediated pathway and the mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase and p38 signaling pathways, in turn decreasing the production of inflammatory mediators. Low-density lipoprotein receptor-related protein 1 activation also decreases reactive astrogliosis and polarizes microglial cells and macrophages from a proinflammatory phenotype (M1) to an anti-inflammatory phenotype (M2), attenuating the neuroinflammatory environment. Low-density lipoprotein receptor-related protein 1 can also modulate the permeability of the blood–brain barrier and the blood–nerve barrier, thus regulating the infiltration of systemic insults and cells into the central and the peripheral nervous system, respectively. Furthermore, LRP-1 is involved in the maturation of oligodendrocytes and in the activation, migration, and repair phenotype of Schwann cells, therefore suggesting a major role in restoring the myelin sheaths upon injury. Low-density lipoprotein receptor-related protein 1 activation can indirectly decrease neurodegeneration and neuropathic pain by attenuation of the inflammatory environment. Moreover, LRP-1 agonists can directly promote neural cell survival and neurite sprouting, decrease cell death, and attenuate pain and neurological disorders by the inhibition of MAPK c-Jun N-terminal kinase and p38-pathway and activation of MAPK extracellular signal–regulated kinase pathway. In addition, activation of LRP-1 resulted in better outcomes for neuropathies such as Alzheimer disease, nerve injury, or diabetic peripheral neuropathy, attenuating neuropathic pain and improving cognitive functions. To summarize, LRP-1 plays an important role in the development of different experimental diseases of the nervous system, and it is emerging as a very interesting therapeutic target.
Collapse
|
7
|
Nagpal AS, Leet J, Egan K, Garza R. Diabetic Neuropathy: a Critical, Narrative Review of Published Data from 2019. Curr Pain Headache Rep 2021; 25:15. [PMID: 33630186 DOI: 10.1007/s11916-020-00928-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW This manuscript is a systematic, narrative review that compiles and describes all data available from 2019 related to epidemiologic, diagnostic, and therapeutic advances in diabetic neuropathy (DN). RECENT FINDINGS Epidemiology of DN is discussed. Diagnostic modalities include predictive models, electrodiagnostics, imaging, and biomarkers. A majority of studies on the treatment of diabetic peripheral neuropathy (DPN) involve pharmacotherapy, but complementary and alternative medicine, exercise, modalities, psychological, interventional, and surgical options are also explored. DN is a highly prevalent and debilitating consequence of diabetes that can present challenges to the clinician as the assessment is largely subjective with different phenotypic presentations among patients. Treatment of DN is largely symptomatic as the pathogenesis of DN is not fully understood and is likely multifactorial. It is evident from the broad range of treatments that too often provide unsatisfactory relief that there is no consensus about a single most effective treatment for DN, and monotherapy rarely proves to be successful.
Collapse
Affiliation(s)
- Ameet S Nagpal
- Department of Anesthesiology, Joe R. & Thereza Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA.
| | - Jennifer Leet
- Department of Rehabilitation Medicine, Joe R. & Theresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Kaitlyn Egan
- Department of Rehabilitation Medicine, Joe R. & Theresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Rudy Garza
- Department of Anesthesiology, Joe R. & Thereza Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
8
|
Liang W, Sun F, Zhao Y, Shan L, Lou H. Identification of Susceptibility Modules and Genes for Cardiovascular Disease in Diabetic Patients Using WGCNA Analysis. J Diabetes Res 2020; 2020:4178639. [PMID: 32455133 PMCID: PMC7238331 DOI: 10.1155/2020/4178639] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/18/2020] [Accepted: 04/23/2020] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To identify susceptibility modules and genes for cardiovascular disease in diabetic patients using weighted gene coexpression network analysis (WGCNA). METHODS The raw data of GSE13760 were downloaded from the Gene Expression Omnibus (GEO) website. Genes with a false discovery rate < 0.05 and a log2 fold change ≥ 0.5 were included in the analysis. WGCNA was used to build a gene coexpression network, screen important modules, and filter the hub genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for the genes in modules with clinical interest. Genes with a significance over 0.2 and a module membership over 0.8 were used as hub genes. Subsequently, we screened these hub genes in the published genome-wide SNP data of cardiovascular disease. The overlapped genes were defined as key genes. RESULTS Fourteen gene coexpression modules were constructed via WGCNA analysis. Module greenyellow was mostly significantly correlated with diabetes. The GO analysis showed that genes in the module greenyellow were mainly enriched in extracellular matrix organization, extracellular exosome, and calcium ion binding. The KEGG analysis showed that the genes in the module greenyellow were mainly enriched in antigen processing and presentation, phagosome. Fifteen genes were identified as hub genes. Finally, HLA-DRB1, LRP1, and MMP2 were identified as key genes. CONCLUSION This was the first study that used the WGCNA method to construct a coexpression network to explore diabetes-associated susceptibility modules and genes for cardiovascular disease. Our study identified a module and several key genes that acted as essential components in the etiology of diabetes-associated cardiovascular disease, which may enhance our fundamental knowledge of the molecular mechanisms underlying this disease.
Collapse
Affiliation(s)
- Weiwei Liang
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangfang Sun
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Yiming Zhao
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lizhen Shan
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanyu Lou
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Sankrityayan H, Oza MJ, Kulkarni YA, Mulay SR, Gaikwad AB. ER stress response mediates diabetic microvascular complications. Drug Discov Today 2019; 24:2247-2257. [PMID: 31430543 DOI: 10.1016/j.drudis.2019.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022]
Abstract
Endoplasmic reticulum (ER) homeostasis orchestrates the folding, modification, and trafficking of secretory and membrane proteins to the Golgi compartment, thus governing cellular functions. Alterations in ER homeostasis result in the activation of signaling pathways, such as the unfolded protein response (UPR), to regain ER homeostasis. Nevertheless, failure of UPR leads to activation of autophagy-mediated cell death. Several recent studies emphasized the association of the ER stress (ERS) response with the initiation and progression of diabetes. In this review, we highlight the contribution of the ERS response, such as UPR and autophagy, in the initiation and progression of diabetes and associated microvascular complications, including diabetic nephropathy (DN), retinopathy, and neuropathy, in various experimental models, as well as in humans. We highlight the ERS as a putative therapeutic target for the treatment of diabetic microvascular complications and, thus, the urgent need for the development of improved synthetic and natural inhibitors of ERS.
Collapse
Affiliation(s)
- Himanshu Sankrityayan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Manisha J Oza
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India; SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Shrikant R Mulay
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
10
|
Heme, Heme Oxygenase, and Endoplasmic Reticulum Stress-A New Insight into the Pathophysiology of Vascular Diseases. Int J Mol Sci 2019; 20:ijms20153675. [PMID: 31357546 PMCID: PMC6695876 DOI: 10.3390/ijms20153675] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalence of vascular disorders continues to rise worldwide. Parallel with that, new pathophysiological pathways have been discovered, providing possible remedies for prevention and therapy in vascular diseases. Growing evidence suggests that endoplasmic reticulum (ER) stress is involved in a number of vasculopathies, including atherosclerosis, vascular brain events, and diabetes. Heme, which is released from hemoglobin or other heme proteins, triggers various pathophysiological consequence, including heme stress as well as ER stress. The potentially toxic free heme is converted by heme oxygenases (HOs) into carbon monoxide (CO), iron, and biliverdin (BV), the latter of which is reduced to bilirubin (BR). Redox-active iron is oxidized and stored by ferritin, an iron sequestering protein which exhibits ferroxidase activity. In recent years, CO, BV, and BR have been shown to control cellular processes such as inflammation, apoptosis, and antioxidant defense. This review covers our current knowledge about how heme induced endoplasmic reticulum stress (HIERS) participates in the pathogenesis of vascular disorders and highlights recent discoveries in the molecular mechanisms of HO-mediated cytoprotection in heme stress and ER stress, as well as crosstalk between ER stress and HO-1. Furthermore, we focus on the translational potential of HIERS and heme oxygenase-1 (HO-1) in atherosclerosis, diabetes mellitus, and brain hemorrhage.
Collapse
|