1
|
Liu X, Liang X, Han J, Cui Y, Lei M, Wang B, Jia D, Peng W, He X. Genome-wide identification and transcriptome analysis of the cytochrome P450 genes revealed its potential role in the growth of Flammulina filiformis. BMC Genomics 2025; 26:346. [PMID: 40197176 PMCID: PMC11974101 DOI: 10.1186/s12864-025-11555-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND The CYP450 family members have been extensively studied in plants, where they play essential roles in metabolism, responses to biotic and abiotic stresses, and the regulation of growth and development. However, their functions in edible fungi remain largely unexplored. Flammulina filiformis, an economically important mushroom, lacks a comprehensive analysis of its CYP450 genes. Therefore, this study aims to identify and characterize the CYP450 gene family in F. filiformis at the genome-wide level, investigate their expression patterns, and explore their potential biological functions, providing valuable insights into their roles in fungal growth and adaptation. RESULTS In this study, 59 CYP450 genes, categorizing into 6 distinct clades, were identified within the genome of F. filiformis. Subcellular localization predictions suggested that the majority of these CYP450 genes are located in the endomembrane system. These 59 genes were distributed randomly across 12 chromosomes. Gene duplication analysis revealed the presence of 3 pairs of tandem repeats and 3 pairs of segmental repeat genes. Transcriptomic analysis revealed 861 differentially expressed genes (DEGs) in ML compared with M, and 3208 DEGs in P compared with ML. The 'oxidoreductase activity' category was significantly enriched in the ML vs. M and P vs. ML comparisons, with CYP450 genes being predominantly represented among the DEGs. Transcriptional expression analysis demonstrated that 4 genes exhibited the highest expression levels in the M sample, 6 genes in the ML sample, and 10 genes in the primordium. Furthermore, quantitative real-time PCR (qRT-PCR) analysis revealed that 11 genes, including HNY6_9861, HNY6_4590, HNY6_1561, HNY6_281, HNY6_12367, HNY6_8704, HNY6_9581, HNY6_8517, HNY6_11881, HNY6_9098 and HNY6_5841, exhibited an increasing trend in expression levels across the lower, middle and upper parts of the stipe in both white and yellow strains. This suggests that CYP450 genes may involved in the elongation of the stipe of F. filiformis. CONCLUSIONS These results provide a foundation for further exploration of the molecular evolution mechanism and potential functions of the CYP450 genes of F. filiformis in the regulation of growth and development.
Collapse
Affiliation(s)
- Xun Liu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Xinmin Liang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Jing Han
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Yuqin Cui
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Mengting Lei
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bo Wang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Dinghong Jia
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Xiaolan He
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China.
| |
Collapse
|
2
|
Han J, Kawauchi M, Terauchi Y, Tsuji K, Yoshimi A, Tanaka C, Nakazawa T, Honda Y. Physiological function of hydrophobin Hydph16 in cell wall formation in agaricomycete Pleurotus ostreatus. Fungal Genet Biol 2025; 176:103943. [PMID: 39612978 DOI: 10.1016/j.fgb.2024.103943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Hydrophobins are small-secreted proteins with both hydrophobic and hydrophilic regions, enabling the mycelium to break through the air-medium interface by reducing the medium surface tension. Over 20 putative hydrophobin-encoding genes have been predicted in the agaricomycete Pleurotus ostreatus. Three hydrophobin-encoding genes, vmh2, vmh3, and hydph16, were predominantly expressed in the vegetative mycelium. Despite these common properties, we have previously demonstrated the distinct functions of Vmh2 and Vmh3 in environmental stress resistance. In this study, we focused on hydph16 and found that Δhydph16 strains had sparser aerial mycelium than control strains. The cell wall thickness of Δhydph16 strains reduced by 40 % compared to that of control strains, but no significant differences were found in the relative chitin and glucan percentages or relative putative cell wall synthesis-related gene expression levels. Furthermore, unlike vmh2 and vmh3, hydph16 deletion did not change the hydrophobicity of the aerial mycelium. This study is the first to report that the lack of hydrophobin can lead to a significant change in aerial hyphae cell wall formation without altering the major cell wall polysaccharide composition. Additionally, this study revealed multiple roles for Hydph16, distinct from those of other highly expressed hydrophobins, Vmh2 and Vmh3. These results suggested that agaricomycetes, including P. ostreatus, have evolved to possess multiple hydrophobins with different functions.
Collapse
Affiliation(s)
- Junxian Han
- Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Yuki Terauchi
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8315, Japan
| | - Kenya Tsuji
- Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Akira Yoshimi
- Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan; Graduate School of Global Environmental Studies, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Chihiro Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan; Graduate School of Global Environmental Studies, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Zhang B, Wei X, Xi L, Qiao Y, Chang M, Deng B, Liu J. Genome-wide identification of the MYB gene family and FfMYB13 regulation analysis in cell wall synthesis underlying tissue toughening process of yellow Flammulina filiformis stipes. Int J Biol Macromol 2025; 288:138660. [PMID: 39672422 DOI: 10.1016/j.ijbiomac.2024.138660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
MYB transcription factors (TFs) play important roles in fungal growth, development, stress response, and secondary metabolism. Cell wall glycan remodeling induced by oxidative damage levels is vital for stipe quality during mature stage of yellow Flammulina filiformis fruiting bodies. In this study, we identified 15 F. filiformis MYB (FfMYB) that are ranging from 28.43 kDa-172.3 kDa, with an average of 73.51 kDa. These FfMYB genes were unevenly distributed among six chromosomes. Phylogenetic analysis indicated that 15 FfMYBs were closely related to existing model fungi, while they were more distant from Arabidopsis thaliana. Based on expression analysis, a MYB TF termed FfMYB13 were isolated and identified as a potential regulator binding the promoter of Ff-FeSOD1, which was negatively correlated with tissue toughening of yellow F. filiformis stipes. The data of DAP-seq analysis suggested that the downstream target genes of FfMYB13 were significantly enriched in cell wall metabolism. The result of EMSA and dual luciferase report experiments demonstrated that FfMYB13 served as an upstream transcriptional regulatory factor that activates four cell wall synthesis metabolism related genes, FfKRE6, Ffgas1, FfHYD-1, and FfGFA1. Moreover, FfMYB13 might negatively influence tissue toughening in the inhibition of oxidative damage by activating Ff-FeSOD1.
Collapse
Affiliation(s)
- Benfeng Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Key Laboratory of Shanxi Province for Loess Plateau Edible Fungi, Taigu 030801, Shanxi, China
| | - Xuyang Wei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Linhao Xi
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yingli Qiao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Shanxi Engineering Research Center of Edible Fungi, Taigu 030801, Shanxi, China
| | - Bing Deng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Key Laboratory of Shanxi Province for Loess Plateau Edible Fungi, Taigu 030801, Shanxi, China.
| | - Jingyu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Key Laboratory of Shanxi Province for Loess Plateau Edible Fungi, Taigu 030801, Shanxi, China.
| |
Collapse
|
4
|
Chen Y, Ju H, Li H, Xu C, Jia H, Xian L, Yuan C, Guo Z, Zhang X, Yu Y, Tao Y. Light and phytochrome PHY control the production of edible fungus Flammulina filiformis by regulating the morphogenesis of fruiting bodies and l-lysine accumulation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 261:113051. [PMID: 39509944 DOI: 10.1016/j.jphotobiol.2024.113051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Flammulina filiformis, a representative umbelliferous fungus, has a long stipe and high l-lysine content, thus is widely cultivated and consumed. Currently, there is a lack of theoretical guidance on how to better use light to cultivate edible fungi without photosynthesis such as F. filiformis in industrialized cultivation. Previous studies have found that blue light can affect the yield and l-lysine content of F. filiformis. The primary focus of this work was the phytochrome PHY in the light signaling pathway and its role in F. filiformis production. Unlike plants in which the expression of PHY was activated by only red light, it was found that different visible lights (including red, blue, green, and white light) can stimulate the up-regulation of FfPhy transcript levels. Throughout the developmental stages of F. filiformis, the transcript level of FfPhy was significantly up-regulated during the formation of fruiting body and in the stipe in the elongation stage. Further, FfPhy knockdown strain showed the markedly shorter stipe length than WT, resulting in a significantly reduced yield. RNA-Seq analysis showed that the most genes in MAPK signaling pathway and its downstream regulatory processes, mainly focusing on cell division and cell wall remodeling, were down-regulated after FfPhy knockdown. It suggested that FfPhy regulates the fruiting body elongation through acting on cell division and cell wall remodeling, thereby affecting the morphological development of the stipe rather than the pileus. Interestingly, FfPhy knockdown also inhibits the accumulation of l-lysine content by promoting l-lysine degradation instead of inhibiting l-lysine biosynthesis, indicating that its influence extends to metabolic processes related to l-lysine metabolism. These findings provide new insights into photobiological effect of FfPhy in macrofungus F. filiformis, and have potential guiding significance for cultivation and breeding to increase mushroom yield and l-lysine content.
Collapse
Affiliation(s)
- Yizhao Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huimin Ju
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Chang Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Jia
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lijun Xian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengjin Yuan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zexuan Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xijin Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yilin Yu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Hu Y, Wu Y, Song J, Ma M, Xiao Y, Zeng B. Advancing Cordyceps militaris Industry: Gene Manipulation and Sustainable Biotechnological Strategies. Bioengineering (Basel) 2024; 11:783. [PMID: 39199741 PMCID: PMC11351413 DOI: 10.3390/bioengineering11080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Cordyceps militaris is considered to be of great medicinal potential due to its remarkable pharmacological effects, safety, and edible characteristics. With the completion of the genome sequence and the advancement of efficient gene-editing technologies, coupled with the identification of gene functions in Cordyceps militaris, this fungus is poised to emerge as an outstanding strain for medicinal engineering applications. This review focuses on the development and application of genomic editing techniques, including Agrobacterium tumefaciens-mediated transformation (ATMT), PEG-mediated protoplast transformation (PMT), and CRISPR/Cas9. Through the application of these techniques, researchers can engineer the biosynthetic pathways of valuable secondary metabolites to boost yields; such metabolites include cordycepin, polysaccharides, and ergothioneine. Furthermore, by identifying and modifying genes that influence the growth, disease resistance, and tolerance to environmental stress in Cordyceps militaris, it is possible to stimulate growth, enhance desirable traits, and increase resilience to unfavorable conditions. Finally, the green sustainable industrial development of C. militaris using agricultural waste to produce high-value-added products and the future research directions of C. militaris were discussed. This review will provide future directions for the large-scale production of bioactive ingredients, molecular breeding, and sustainable development of C. militaris.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.H.); (Y.W.); (J.S.); (M.M.); (Y.X.)
| |
Collapse
|
6
|
Li W, Zou G, Bao D, Wu Y. Current Advances in the Functional Genes of Edible and Medicinal Fungi: Research Techniques, Functional Analysis, and Prospects. J Fungi (Basel) 2024; 10:311. [PMID: 38786666 PMCID: PMC11121823 DOI: 10.3390/jof10050311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Functional genes encode various biological functions required for the life activities of organisms. By analyzing the functional genes of edible and medicinal fungi, varieties of edible and medicinal fungi can be improved to enhance their agronomic traits, growth rates, and ability to withstand adversity, thereby increasing yield and quality and promoting industrial development. With the rapid development of functional gene research technology and the publication of many whole-genome sequences of edible and medicinal fungi, genes related to important biological traits have been mined, located, and functionally analyzed. This paper summarizes the advantages and disadvantages of different functional gene research techniques and application examples for edible and medicinal fungi; systematically reviews the research progress of functional genes of edible and medicinal fungi in biological processes such as mating type, mycelium and fruit growth and development, substrate utilization and nutrient transport, environmental response, and the synthesis and regulation of important active substances; and proposes future research directions for functional gene research for edible and medicinal fungi. The overall aim of this study was to provide a valuable reference for further promoting the molecular breeding of edible and medicinal fungi with high yield and quality and to promote the wide application of edible and medicinal fungi products in food, medicine, and industry.
Collapse
Affiliation(s)
- Wenyun Li
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Gen Zou
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
| | - Dapeng Bao
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingying Wu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
7
|
Shen N, Xie H, Liu K, Li X, Wang L, Deng Y, Chen L, Bian Y, Xiao Y. Near-gapless genome and transcriptome analyses provide insights into fruiting body development in Lentinula edodes. Int J Biol Macromol 2024; 263:130610. [PMID: 38447851 DOI: 10.1016/j.ijbiomac.2024.130610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Fruiting body development in macrofungi is an intensive research subject. In this study, high-quality genomes were assembled for two sexually compatible monokaryons from a heterokaryotic Lentinula edodes strain WX1, and variations in L. edodes genomes were analyzed. Specifically, differential gene expression and allele-specific expression (ASE) were analyzed using the two monokaryotic genomes and transcriptome data from four different stages of fruiting body development in WX1. Results revealed that after aeration, mycelia sensed cell wall stress, pheromones, and a decrease in CO2 concentration, leading to up-regulated expression in genes related to cell adhesion, cell wall remodeling, proteolysis, and lipid metabolism, which may promote primordium differentiation. Aquaporin genes and those related to proteolysis, mitosis, lipid, and carbohydrate metabolism may play important roles in primordium development, while genes related to tissue differentiation and sexual reproduction were active in fruiting body. Several essential genes for fruiting body development were allele-specifically expressed and the two nuclear types could synergistically regulate fruiting body development by dominantly expressing genes with different functions. ASE was probably induced by long terminal repeat-retrotransposons. Findings here contribute to the further understanding of the mechanism of fruiting body development in macrofungi.
Collapse
Affiliation(s)
- Nan Shen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Haoyu Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kefang Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinru Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lu Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Youjin Deng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lianfu Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yinbing Bian
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Xiao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
8
|
Nakazawa T, Kawauchi M, Otsuka Y, Han J, Koshi D, Schiphof K, Ramírez L, Pisabarro AG, Honda Y. Pleurotus ostreatus as a model mushroom in genetics, cell biology, and material sciences. Appl Microbiol Biotechnol 2024; 108:217. [PMID: 38372792 PMCID: PMC10876731 DOI: 10.1007/s00253-024-13034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
Pleurotus ostreatus, also known as the oyster mushroom, is a popular edible mushroom cultivated worldwide. This review aims to survey recent progress in the molecular genetics of this fungus and demonstrate its potential as a model mushroom for future research. The development of modern molecular genetic techniques and genome sequencing technologies has resulted in breakthroughs in mushroom science. With efficient transformation protocols and multiple selection markers, a powerful toolbox, including techniques such as gene knockout and genome editing, has been developed, and numerous new findings are accumulating in P. ostreatus. These include molecular mechanisms of wood component degradation, sexual development, protein secretion systems, and cell wall structure. Furthermore, these techniques enable the identification of new horizons in enzymology, biochemistry, cell biology, and material science through protein engineering, fluorescence microscopy, and molecular breeding. KEY POINTS: • Various genetic techniques are available in Pleurotus ostreatus. • P. ostreatus can be used as an alternative model mushroom in genetic analyses. • New frontiers in mushroom science are being developed using the fungus.
Collapse
Affiliation(s)
- Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Yuitsu Otsuka
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Junxian Han
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Daishiro Koshi
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Kim Schiphof
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Lucía Ramírez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Antonio G Pisabarro
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
9
|
Song B, Wang W, Jia C, Han Z, Yang J, Yang J, Wu Z, Xu H, Qiao M. Identification and Characterization of a Predominant Hydrophobin in the Edible Mushroom Grifola frondosa. J Fungi (Basel) 2023; 10:25. [PMID: 38248935 PMCID: PMC10820438 DOI: 10.3390/jof10010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Hydrophobins (HFBs) are a group of small, secreted amphipathic proteins of fungi with multiple physiological functions and potential commercial applications. In this study, HFB genes of the edible mushroom, Grifola frondosa, were systematically identified and characterized, and their transcriptional profiles during fungal development were determined. In total, 19 typical class I HFB genes were discovered and bioinformatically analyzed. Gene expression profile examination showed that Gf.hyd9954 was particularly highly upregulated during primordia formation, suggesting its major role as the predominant HFB in the lifecycle of G. frondosa. The wettability alteration profile and the surface modification ability of recombinant rGf.hyd9954 were greater than for the Grifola HFB HGFII-his. rGf.hyd9954 was also demonstrated to form the typical class I HFB characteristic-rodlet bundles. In addition, rGf.hyd9954 was shown to possess nanoparticle characteristics and emulsification activities. This research sheds light on the regulation of fungal development and its association with the expression of HFB genes.
Collapse
Affiliation(s)
- Bo Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Wenjun Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Chunhui Jia
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Zhiqiang Han
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Jiyuan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Jiuxia Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Zhenzhou Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
- School of Life Science, Shanxi University, Taiyuan 030000, China
| |
Collapse
|
10
|
Wu J, Nong Y, Chen B, Jiang Y, Chen Y, Wei C, Tao Y, Xie B. Flammutoxin, a Degradation Product of Transepithelial Electrical Resistance-Decreasing Protein, Induces Reactive Oxygen Species and Apoptosis in HepG2 Cells. Foods 2023; 13:66. [PMID: 38201094 PMCID: PMC10778570 DOI: 10.3390/foods13010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Proteins from Flammulina filiformis were prepared by sodium chloride extraction and fractionated by ammonium sulfate precipitation with increasing saturation degrees to obtain the protein fractions Ffsp-30, Ffsp-50, Ffsp-70, Ffsp-90, and Ffp-90. Among these protein fractions, Ffsp-50 possessed the most significant cytotoxic effect against three human gastrointestinal cancer cell lines, viz. HT-29, SGC-7901, and HepG2. SDS-PAGE and MALDI-TOF/TOF MS/MS analyses revealed that flammutoxin (FTX) was present as a dominating protein in Ffsp-50, which was further evidenced by HPLC-MS/MS determination. Furthermore, native FTX was purified from Ffsp-50 with a molecular weight of 26.78 kDa, exhibiting notable cytotoxicity against gastrointestinal cancer cell lines. Both Ffsp-50 and FTX exposure could enhance intercellular reactive oxygen species (ROS) generation and induce significant apoptosis in HepG2 cells. FTX was identified to be relatively conserved in basidiomycetes according to phylogenetic analysis, and its expression was highly upregulated in the primordium as well as the pileus of the fruiting body from the elongation and maturation stages, as compared with that in mycelium. Taken together, FTX could remarkably inhibit cell growth and induce ROS and apoptosis in HepG2 cells, potentially participating in the growth and development of the fruiting body. These findings from our investigation provided insight into the antigastrointestinal cancer activity of FTX, which could serve as a biological source of health-promoting and biomedical applications.
Collapse
Affiliation(s)
- Jianguo Wu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Y.N.); (Y.C.); (C.W.); (Y.T.)
| | - Yu Nong
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Y.N.); (Y.C.); (C.W.); (Y.T.)
| | - Bingzhi Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (Y.J.)
| | - Yuji Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (Y.J.)
| | - Yuanhao Chen
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Y.N.); (Y.C.); (C.W.); (Y.T.)
| | - Chuanzheng Wei
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Y.N.); (Y.C.); (C.W.); (Y.T.)
| | - Yongxin Tao
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Y.N.); (Y.C.); (C.W.); (Y.T.)
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Y.N.); (Y.C.); (C.W.); (Y.T.)
| |
Collapse
|
11
|
Li H, Yao S, Xia W, Ma X, Shi L, Ju H, Li Z, Zhong Y, Xie B, Tao Y. Targeted metabolome and transcriptome analyses reveal changes in gibberellin and related cell wall-acting enzyme-encoding genes during stipe elongation in Flammulina filiformis. Front Microbiol 2023; 14:1195709. [PMID: 37799602 PMCID: PMC10548271 DOI: 10.3389/fmicb.2023.1195709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/08/2023] [Indexed: 10/07/2023] Open
Abstract
Flammulina filiformis, a typical agaric fungus, is a widely cultivated and consumed edible mushroom. Elongation of its stipe (as the main edible part) is closely related to its yield and commercial traits; however, the endogenous hormones during stipe elongation and their regulatory mechanisms are not well understood. Gibberellin (GA) plays an important role in the regulation of plant growth, but little has been reported in macro fungi. In this study, we first treated F. filiformis stipes in the young stage with PBZ (an inhibitor of GA) and found that PBZ significantly inhibited elongation of the stipe. Then, we performed GA-targeted metabolome and transcriptome analyses of the stipe at both the young and elongation stages. A total of 13 types of GAs were detected in F. filiformis; the contents of ten of them, namely, GA3, GA4, GA8, GA14, GA19, GA20, GA24, GA34, GA44, and GA53, were significantly decreased, and the contents of three (GA5, GA9, and GA29) were significantly increased during stipe elongation. Transcriptome analysis showed that the genes in the terpenoid backbone biosynthesis pathway showed varying expression patterns: HMGS, HMGR, GPS, and FPPS were significantly upregulated, while CPS/KS had no significant difference in transcript level during stipe elongation. In total, 37 P450 genes were annotated to be involved in GA biosynthesis; eight of them were upregulated, twelve were downregulated, and the rest were not differentially expressed. In addition, four types of differentially expressed genes involved in stipe elongation were identified, including six signal transduction genes, five cell cycle-controlling genes, twelve cell wall-related enzymes and six transcription factors. The results identified the types and content of GAs and the expression patterns of their synthesis pathways during elongation in F. filiformis and revealed the molecular mechanisms by which GAs may affect the synthesis of cell wall components and the cell cycle of the stipe through the downstream action of cell wall-related enzymes, transcription factors, signal transduction and cell cycle control, thus regulating stipe elongation. This study is helpful for understanding the roles of GAs in stipe development in mushrooms and lays the foundation for the rational regulation of stipe length in agaric mushrooms during production.
Collapse
Affiliation(s)
- Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Sen Yao
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Weiwei Xia
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xinbin Ma
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Lei Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huimin Ju
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ziyan Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yingli Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
12
|
Li Z, Wen J, Jing Z, Li H, Huang J, Yuan C, Xian L, Gao L, Zhu J, Xie B, Tao Y. Low temperature, mechanical wound, and exogenous salicylic acid (SA) can stimulate the SA signaling molecule as well as its downstream pathway and the formation of fruiting bodies in Flammulina filiformis. Front Microbiol 2023; 14:1197498. [PMID: 37675426 PMCID: PMC10477995 DOI: 10.3389/fmicb.2023.1197498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/28/2023] [Indexed: 09/08/2023] Open
Abstract
Low temperature (LT) and mechanical wound (MW), as two common physics methods, have been empirically used in production to stimulate the primordia formation of Flammulina filiformis, which is typically produced using the industrial production mode. However, the detailed effect on the fruiting body formation and important endogenous hormones and signaling pathways in this process is poorly understood. In this study, LT, MW, their combination, i.e., MW + LT, and low concentration of SA (0.1 mM SA) treatments were applied to the physiologically mature mycelia of F. filiformis. The results showed that the primordia under the four treatments began to appear on the 5th-6th days compared with the 12th day in the control (no treatment). The MW + LT treatment produced the largest number of primordia (1,859 per bottle), followed by MW (757), SA (141), and LT (22), compared with 47 per bottle in the control. The HPLC results showed that the average contents of endogenous SA were significantly increased by 1.3 to 2.6 times under four treatments. A total of 11 SA signaling genes were identified in the F. filiformis genome, including 4 NPR genes (FfNpr1-4), 5 TGA genes (FfTga1-5), and 2 PR genes (FfPr1-2). FfNpr3 with complete conserved domains (ANK and BTB/POZ) showed significantly upregulated expression under all four above treatments, while FfNpr1/2/4 with one domain showed significantly upregulated response expression under the partial treatment of all four treatments. FfTga1-5 and FfPr1-2 showed 1.6-fold to 8.5-fold significant upregulation with varying degrees in response to four treatments. The results suggested that there was a correlation between "low temperature/mechanical wound-SA signal-fruiting body formation", and it will help researchers to understand the role of SA hormone and SA signaling pathway genes in the formation of fruiting bodies in fungi.
Collapse
Affiliation(s)
- Ziyan Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jin Wen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhuohan Jing
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Jiahua Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengjin Yuan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lijun Xian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lingling Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jian Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Baogui Xie
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
13
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
14
|
Yang Y, Shi L, Xu X, Wen J, Xie T, Li H, Li X, Chen M, Dou X, Yuan C, Song H, Xie B, Tao Y. Spermidine Synthase and Saccharopine Reductase Have Co-Expression Patterns Both in Basidiomycetes with Fusion Form and Ascomycetes with Separate Form. J Fungi (Basel) 2023; 9:jof9030352. [PMID: 36983520 PMCID: PMC10051792 DOI: 10.3390/jof9030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Gene fusion is a process through which two or more distinct genes are fused into a single chimeric gene. Unlike most harmful fusion genes in cancer cells, in this study, we first found that spermidine synthetase- (SPDS, catalyst of spermidine biosynthesis) and saccharopine reductase- (SR, catalyst of the penultimate step of lysine biosynthesis) encoding genes form a natural chimeric gene, FfSpdsSr, in Flammulina filiformis. Through the cloning of full-length ORFs in different strains and the analysis of alternative splicing in developmental stages, FfSpdsSr has only one copy and unique transcript encoding chimeric SPDS-SR in F. filiformis. By an orthologous gene search of SpdsSr in more than 80 fungi, we found that the chimeric SpdsSr exists in basidiomycetes, while the two separate Spds and Sr independently exist in ascomycetes, chytridiomycetes, and oomycetes. Further, the transcript level of FfSpdsSr was investigated in different developmental stages and under some common environmental factors and stresses by RT-qPCR. The results showed that FfSpdsSr mainly up-regulated in the elongation stage and pileus development of F. filiformis, as well as under blue light, high temperature, H2O2, and MeJA treatments. Moreover, a total of 15 sets of RNA-Seq data, including 218 samples of Neurospora crassa, were downloaded from the GEO database and used to analyze the expression correlation of NcSpds and NcSr. The results showed that the separate NcSpds and NcSr shared highly similar co-expression patterns in the samples with different strains and different nutritional and environmental condition treatments. The chimeric SpdsSr in basidiomycetes and the co-expression pattern of the Spds and Sr in N. crassa indicate the special link of spermidine and lysine in fungi, which may play an important role in the growth and development of fruiting body and in response to the multiple environmental factors and abiotic stresses.
Collapse
Affiliation(s)
- Yayong Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jin Wen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianyue Xie
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Xiaoyu Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyu Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyi Dou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengjin Yuan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanbing Song
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baogui Xie
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: ; Tel.: +86-0591-83789281
| |
Collapse
|
15
|
Li X, Liu M, Dong C. Hydrophobin Gene Cmhyd4 Negatively Regulates Fruiting Body Development in Edible Fungi Cordyceps militaris. Int J Mol Sci 2023; 24:ijms24054586. [PMID: 36902017 PMCID: PMC10003708 DOI: 10.3390/ijms24054586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
A deep understanding of the mechanism of fruiting body development is important for mushroom breeding and cultivation. Hydrophobins, small proteins exclusively secreted by fungi, have been proven to regulate the fruiting body development in many macro fungi. In this study, the hydrophobin gene Cmhyd4 was revealed to negatively regulate the fruiting body development in Cordyceps militaris, a famous edible and medicinal mushroom. Neither the overexpression nor the deletion of Cmhyd4 affected the mycelial growth rate, the hydrophobicity of the mycelia and conidia, or the conidial virulence on silkworm pupae. There was also no difference between the micromorphology of the hyphae and conidia in WT and ΔCmhyd4 strains observed by SEM. However, the ΔCmhyd4 strain showed thicker aerial mycelia in darkness and quicker growth rates under abiotic stress than the WT strain. The deletion of Cmhyd4 could promote conidia production and increase the contents of carotenoid and adenosine. The biological efficiency of the fruiting body was remarkably increased in the ΔCmhyd4 strain compared with the WT strain by improving the fruiting body density, not the height. It was indicated that Cmhyd4 played a negative role in fruiting body development. These results revealed that the diverse negative roles and regulatory effects of Cmhyd4 were totally different from those of Cmhyd1 in C. militaris and provided insights into the developmental regulatory mechanism of C. militaris and candidate genes for C. militaris strain breeding.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Mengqian Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence:
| |
Collapse
|
16
|
Lyu X, Wang Q, Liu A, Liu F, Meng L, Wang P, Zhang Y, Wang L, Li Z, Wang W. The transcription factor Ste12-like increases the mycelial abiotic stress tolerance and regulates the fruiting body development of Flammulina filiformis. Front Microbiol 2023; 14:1139679. [PMID: 37213522 PMCID: PMC10192742 DOI: 10.3389/fmicb.2023.1139679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/14/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Flammulina filiformis is one of the most commercially important edible fungi worldwide, with its nutritional value and medicinal properties. It becomes a good model species to study the tolerance of abiotic stress during mycelia growth in edible mushroom cultivation. Transcription factor Ste12 has been reported to be involved in the regulation of stress tolerance and sexual reproduction in fungi. Methods In this study, identification and phylogenetic analysis of ste12-like was performed by bioinformatics methods. Four ste12-like overexpression transformants of F. filiformis were constructed by Agrobacterium tumefaciens-mediated transformation. Results and Discussion Phylogenetic analysis showed that Ste12-like contained conserved amino acid sequences. All the overexpression transformants were more tolerant to salt stress, cold stress and oxidative stress than wild-type strains. In the fruiting experiment, the number of fruiting bodies of overexpression transformants increased compared with wild-type strains, but the growth rate of stipes slowed down. It suggested that gene ste12-like was involved in the regulation of abiotic stress tolerance and fruiting body development in F. filiformis.
Collapse
Affiliation(s)
- Xiaomeng Lyu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingji Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Ao Liu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Fang Liu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Meng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Panmeng Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yan Zhang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Li Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- *Correspondence: Li Wang,
| | - Zhuang Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Zhuang Li,
| | - Wei Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Wei Wang,
| |
Collapse
|
17
|
Ma Z, Song B, Yu L, Yang J, Han Z, Yang J, Wang B, Song D, Xu H, Qiao M. Efficient expression of hydrophobin HGFII-his via POT1-mediated δ integration strategy and its potential in curcumin nanoformulation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Yang Y, Xu X, Jing Z, Ye J, Li H, Li X, Shi L, Chen M, Wang T, Xie B, Tao Y. Genome-Wide Screening and Stability Verification of the Robust Internal Control Genes for RT-qPCR in Filamentous Fungi. J Fungi (Basel) 2022; 8:jof8090952. [PMID: 36135677 PMCID: PMC9504127 DOI: 10.3390/jof8090952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
In real-time quantitative PCR (RT-qPCR), internal control genes (ICGs) are crucial for normalization. This study screened 6 novel ICGs: Pre-mRNA-splicing factor cwc15 (Cwf15); ER associated DnaJ chaperone (DnaJ); E3 ubiquitin-protein ligase NEDD4 (HUL4); ATP-binding cassette, subfamily B (MDR/TAP), member 1 (VAMP); Exosome complex exonuclease DIS3/RRP44 (RNB); V-type H+-transporting ATPase sub-unit A (V-ATP) from the 22-transcriptome data of 8 filamentous fungi. The six novel ICGs are all involved in the basic biological process of cells and share the different transcription levels from high to low. In order to further verify the stability of ICGs candidates, the six novel ICGs as well as three traditional housekeeping genes: β-actin (ACTB); β-tubulin (β-TUB); glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH) and the previously screened reference genes: SPRY-domain-containing protein (SPRYp); Ras-2 protein (Ras); Vacuolar protein sorting protein 26 (Vps26) were evaluated by geNorm and NormFinder statistical algorithms. RT-qPCR of 12 ICGs were performed at different developmental stages in Flammulina filiformis and under different treatment conditions in Neurospora crassa. The consistent results of the two algorithms suggested that the novel genes, RNB, V-ATP, and VAMP, showed the highest stability in F. filiformis and N. crassa. RNB, V-ATP, and VAMP have high expression stability and universal applicability and therefore have great potential as ICGs for standardized calculation in filamentous fungi. The results also provide a novel guidance for the screening stable reference genes in RT-qPCR and a wide application in gene expression analysis of filamentous fungi.
Collapse
Affiliation(s)
- Yayong Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuohan Jing
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Xiaoyu Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyu Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tengyun Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: ; Tel.: +86-0591-83789281
| |
Collapse
|
19
|
Yang Y, Xie B, Jing Z, Lu Y, Ye J, Chen Y, Liu F, Li S, Xie B, Tao Y. Flammulina filiformis Pkac Gene Complementing in Neurospora crassa Mutant Reveals Its Function in Mycelial Growth and Abiotic Stress Response. Life (Basel) 2022; 12:life12091336. [PMID: 36143373 PMCID: PMC9502917 DOI: 10.3390/life12091336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/01/2022] Open
Abstract
Flammulina filiformis is a popular edible mushroom that easily suffers from heat and oxidative stresses. The cyclic adenylate-dependent protein kinase A (cAMP/PKA) pathway is the main signaling pathway in response to environmental stress, and the PKAC is the terminal catalytic subunit of this pathway. In this study, the Pkac gene was identified in F. filiformis, which was highly conserved in basidiomycetes and ascomycetes. The transcription analysis showed that the Pkac gene was involved in the mycelial growth and the fruiting body development of fungi. In Neurospora crassa, the Pkac gene deletion (ΔPkac) resulted in the slower growth of the mycelia. We complemented the F. filiformis FfPkac to N. crassa ΔPkac mutant to obtain the CPkac strain. The mycelial growth in the CPkac strain was restored to the same level as the WT strain. In addition, the FfPkac gene showed significantly up-regulated expression under heat and oxidative stresses. By analyzing the differentially expressed genes of ΔPkac and Cpkac with WT, respectively, seven downstream genes regulated by Pkac were identified and may be related to mycelial growth. They were mainly focused on microbial metabolism in diverse environments, mitochondrial biogenesis, protein translation and nucleocytoplasmic transport. RT-qPCR results confirmed that the expression patterns of these seven genes were consistent with FfPkac under heat and oxidative stresses. The results revealed the conserved functions of PKAC in filamentous fungi and its regulatory mechanism in response to heat and oxidative stresses.
Collapse
Affiliation(s)
- Yayong Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuohan Jing
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanping Lu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yizhao Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fang Liu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaojie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (B.X.); (Y.T.); Tel.: +86-0591-83789281 (Y.T.)
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (B.X.); (Y.T.); Tel.: +86-0591-83789281 (Y.T.)
| |
Collapse
|
20
|
Comparative transcriptome analysis revealed candidate genes involved in fruiting body development and sporulation in Ganoderma lucidum. Arch Microbiol 2022; 204:514. [PMID: 35867171 DOI: 10.1007/s00203-022-03088-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/20/2022] [Indexed: 11/02/2022]
Abstract
Ganoderma lucidum is an edible mushroom highly regarded in the traditional Chinese medicine. To better understand the molecular mechanisms underlying fruiting body development in G. lucidum, transcriptome analysis based on RNA sequencing was carried out on different developmental stages: mycelium (G1); primordium (G2); young fruiting body (G3); mature fruiting body (G4); fruiting body in post-sporulation stage (G5). In total, 26,137 unigenes with an average length of 1078 bp were de novo assembled. Functional annotation of transcriptomes matched 72.49% of the unigenes to known proteins available in at least one database. Differentially expressed genes (DEGs) were identified between the evaluated stages: 3135 DEGs in G1 versus G2; 120 in G2 versus G3; 3919 in G3 versus G4; and 1012 in G4 versus G5. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs identified in G1 versus G2 revealed that, in addition to global and overview maps, enriched pathways were related to amino acid metabolism and carbohydrate metabolism. In contrast, DEGs identified in G2 versus G3 were mainly assigned to the category of metabolism of amino acids and their derivatives, comprising mostly upregulated unigenes. In addition, highly expressed unigenes associated with the transition between different developmental stages were identified, including those encoding hydrophobins, cytochrome P450s, extracellular proteases, and several transcription factors. Meanwhile, highly expressed unigenes related to meiosis such as DMC1, MSH4, HOP1, and Mek1 were also analyzed. Our study provides important insights into the molecular mechanisms underlying fruiting body development and sporulation in G. lucidum.
Collapse
|
21
|
Li H, Shi L, Tang W, Xia W, Zhong Y, Xu X, Xie B, Tao Y. Comprehensive Genetic Analysis of Monokaryon and Dikaryon Populations Provides Insight Into Cross-Breeding of Flammulina filiformis. Front Microbiol 2022; 13:887259. [PMID: 35865932 PMCID: PMC9294462 DOI: 10.3389/fmicb.2022.887259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022] Open
Abstract
Flammulina filiformis, as one of the most popular edible fungi in East Asia, is produced in an industrialized and standardized way. However, its monotonous variety and product convergence have seriously restricted the development of the industry. In this study, 11 cultivated strains and 13 wild strains of F. filiformis were collected from multiple regions of China and Japan and were performed genome sequencing. Together with genome data of six strains previously released, in total 23 dikaryons (formed by two monokaryons mating, can making fruiting body), 35 monokaryons (formed by protoplast-regenerating of dikaryon and isolating) were used for genetic diversity and population structure analysis based on the high-throughput genotyping. Firstly, a set of SNP markers with intrapopulation polymorphism including 849,987 bi-allelic SNPs were developed and basically covered all of 11 chromosomes with a high distribution density of 24.16 SNP markers per kb. The cultivated dikaryotic strains were divided into three subgroups, and their breeding history was made inferences, which is consistent with the available pedigree records. The wild dikaryotic strains were divided into two subgroups and showed varied contributions of genetic components with high genetic diversity. All the investigated dikaryons have a symmetric distribution pattern with their two constituent monokaryons in principal component analysis. Finally, we summarized the pedigree relationship diagram of F. filiformis main strains including six modules, and the genotypes of hybrids can be directly phased by the known parental allele according to it. This study provides a method to distinguish two sets of monokaryon haplotypes, and several valuable genetic resources of wild F. filiformis, and an effective strategy for guiding F. filiformis breeding based on the population structure and pedigree relationship in future.
Collapse
Affiliation(s)
- Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Lei Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiqi Tang
- Marine and Agricultural Biotechnology Laboratory, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
- Weiqi Tang,
| | - Weiwei Xia
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yingli Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyu Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baogui Xie
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Yongxin Tao,
| |
Collapse
|
22
|
Isolation and Characterization of a Novel Hydrophobin, Sa-HFB1, with Antifungal Activity from an Alkaliphilic Fungus, Sodiomyces alkalinus. J Fungi (Basel) 2022; 8:jof8070659. [PMID: 35887416 PMCID: PMC9322931 DOI: 10.3390/jof8070659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
The adaptations that alkaliphilic microorganisms have developed due to their extreme habitats promote the production of active natural compounds with the potential to control microorganisms, causing infections associated with healthcare. The primary purpose of this study was to isolate and identify a hydrophobin, Sa-HFB1, from an alkaliphilic fungus, Sodiomyces alkalinus. A potential antifungal effect against pathogenic and opportunistic fungi strains was determined. The MICs of Sa-HFB1 against opportunistic and clinical fungi ranged from 1 to 8 µg/mL and confirmed its higher activity against both non- and clinical isolates. The highest level of antifungal activity (MIC 1 µg/mL) was demonstrated for the clinical isolate Cryptococcus neoformans 297 m. The hydrophobin Sa-HFB1 may be partly responsible for the reported antifungal activity of S. alkalinus, and may serve as a potential source of lead compounds, meaning that it can be developed as an antifungal drug candidate.
Collapse
|
23
|
Li J, Shao Y, Yang Y, Xu C, Jing Z, Li H, Xie B, Tao Y. The Chromatin Modifier Protein FfJMHY Plays an Important Role in Regulating the Rate of Mycelial Growth and Stipe Elongation in Flammulina filiformis. J Fungi (Basel) 2022; 8:jof8050477. [PMID: 35628733 PMCID: PMC9147824 DOI: 10.3390/jof8050477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/17/2022] Open
Abstract
Stipe elongation is an important process in the development of the fruiting body and is associated with the commodity quality of agaric fungi. In this study, F. filiformis was used as a model agaric fungus to reveal the function of the chromatin modifier gene containing the JmjC domain in stipe elongation. First, we identified a JmjC domain family gene (FfJmhy) with a 3684 bp length open reading frame (ORF) in F. filiformis. FfJmhy was predicted to have a histone H3K9 demethylation function, and was specifically upregulated during stipe rapid elongation. Further investigation revealed that the silencing of FfJmhy inhibited the mycelial growth, while overexpression of this gene had no effect on the mycelial growth. Comparative analysis revealed that the stipe elongation rate in FfJmhy overexpression strains was significantly increased, while it was largely reduced when FfJmhy was silenced. Taken together, these results suggest that FfJmhy positively regulates the mycelial growth and controls the elongation speed and the length of the stipe. Moreover, cell wall-related enzymes genes, including three exo-β-1,3-glucanases, one β-1,6-glucan synthase, four chitinases, and two expansin proteins, were found to be regulated by FfJmhy. Based on the putative functions of FfJmhy, we propose that this gene enhances the transcription of cell wall-related enzymes genes by demethylating histone H3K9 sites to regulate remodeling of the cell wall in rapid stipe elongation. This study provides new insight into the mechanism of rapid stipe elongation, and it is important to regulate the commodity quality of agaric fungi.
Collapse
Affiliation(s)
- Jian Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yanping Shao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yayong Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Chang Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhuohan Jing
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China;
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Correspondence: ; Tel.: +86-0591-83789281
| |
Collapse
|
24
|
FFGA1 Protein Is Essential for Regulating Vegetative Growth, Cell Wall Integrity, and Protection against Stress in Flammunina filiformis. J Fungi (Basel) 2022; 8:jof8040401. [PMID: 35448632 PMCID: PMC9030616 DOI: 10.3390/jof8040401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 01/25/2023] Open
Abstract
Flammulina filiformis is a popular mushroom which has been regarded as a potential model fungus for mycelium growth, fruiting body development, and stress response studies. Based on a genome-wide search, four genes encoding heterotrimeric G protein α subunits were identified in F. filiformis. The data of conserved domain analysis showed that these genes contain only one subgroup I of Gα subunit (Gαi), similar to many other fungi. To explore the function of Gαi, FfGa1 over-expression (OE) and RNA interference (RNAi) strains were generated using the Agrobacterium tumefaciens-mediated transformation (ATMT) approach. RNAi strains showed remarkably reduced growth on PDA medium and sensitivity to cell wall-perturbing agents, with maximum growth inhibition, but showed better growth in response to hypertonic stress-causing agents, while OE strains exhibited more resistance to thermal stress and mycoparasite Trichoderma as compared to the wild-type and RNAi strains. Taken together, our results indicated that FfGa1 positively regulates hyphal extension, and is crucial for the maintenance of cell wall integrity and protection against biotic and abiotic (hypertonic and thermal) stress.
Collapse
|
25
|
Zhang MX, Li J, Zhang XN, Li HH, Xu XF. Comparative transcriptome profiling of Termitomyces sp. between monocultures in vitro and link-stipe of fungus-combs in situ. Lett Appl Microbiol 2021; 74:429-443. [PMID: 34890484 DOI: 10.1111/lam.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
The edible mushroom Termitomyces is an agaric-type basidiomycete fungus that has a symbiotic relationship with fungus-growing termites. An understanding of the detailed development mechanisms underlying the adaptive responses of Termitomyces sp. to their growing environment is lacking. Here, we compared the transcriptome sequences of different Termitomyces sp. samples and link-stipe grown on fungus combs in situ and monocultured in vitro. The assembled reads generated 8052 unigenes. The expression profiles were highly different for 2556 differentially expressed genes (DEGs) of the treated samples, where the expression of 1312 and 1244 DEGs was upregulated in the Mycelium and link-stipe groups respectively. Functional classification of the DEGs based on both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed an expected shift in fungal gene expression, where stress response genes whose expression was upregulated in link-stipe may adaptively be involved in cell wall hydrolysis and fusion, pathogenesis, oxidation-reduction, transporter efflux, transposon efflux and self/non-self-recognition. Urease has implications in the expression of genes involved in the nitrogen metabolism pathway, and its expression could be controlled by low-level nitrogen fixation of fungus combs. In addition, the expression patterns of eleven select genes on the basis of qRT-PCR were consistent with their changes in transcript abundance, as revealed by RNA sequencing. Taken together, these findings may be useful for enriching the knowledge concerning the Termitomyces adaptive response to in situ fungus combs compared with the response of monocultures in vitro.
Collapse
Affiliation(s)
- M-X Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - J Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - X-N Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - H-H Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - X-F Xu
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
26
|
Lyu X, Jiang S, Wang L, Chou T, Wang Q, Meng L, Mukhtar I, Xie B, Wang W. The Fvclp1 gene regulates mycelial growth and fruiting body development in edible mushroom Flammulina velutipes. Arch Microbiol 2021; 203:5373-5380. [PMID: 34387705 DOI: 10.1007/s00203-021-02514-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/15/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022]
Abstract
Fruiting body development in Agaricomycetes represents the most complex and unclear process in the fungi. Mating type pathways (A and B) and transcription factors are important regulators in the sexual development of mushrooms. It is known that clampless1 (clp1) is an additional gene that participate under the homeodomain (HD) genes in the matA pathway and clp1 inactivation blocks clamps formation in Coprinopsis cinerea. In this study we identified and analyzed a homologous Fvclp1 gene in the edible mushroom Flammulina velutipes. The coding sequence of the Fvclp1 was 1011 bp without intron interruption, encoding a protein of 336 amino acids. To exhibit the role of Fvclp1 in clamp development and fruiting body formation, knockdown and overexpression mutants were prepared. No significant difference was observed in the monokaryotic hyphal morphology of overexpression and knockdown transformants. In the dikaryotic hyphae from the compatible crossings between the wild-type L22 strain and Fvclp1 knockdown or overexpression mutants, clamp connections developed. However, knockdown mutants could generate fewer fruiting bodies than the wild-type strain. On the contrary, reduced mycelial growth rate but improved fruiting ability was observed in the dikaryotic Fvclp1 overexpression mutants as compared to the wild-type strain. These results indicate that Fvclp1 is necessary and actively involved in fruiting body development in F. velutipes. Overall, these findings suggest that further studies on the function of Fvclp1 would advance our understanding of sexual reproduction and fruiting body development in edible mushrooms.
Collapse
Affiliation(s)
- Xiaomeng Lyu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Siyuan Jiang
- Mycological Research Center, College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, 350002, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Li Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Tiansheng Chou
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Qingji Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Li Meng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Irum Mukhtar
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Wei Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
27
|
Li X, Wang F, Liu M, Dong C. Hydrophobin CmHYD1 Is Involved in Conidiation, Infection and Primordium Formation, and Regulated by GATA Transcription Factor CmAreA in Edible Fungus, Cordyceps militaris. J Fungi (Basel) 2021; 7:jof7080674. [PMID: 34436213 PMCID: PMC8400498 DOI: 10.3390/jof7080674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022] Open
Abstract
Hydrophobins are a family of small proteins exclusively secreted by fungi, and play a variety of roles in the life cycle. Cmhyd1, one of the hydrophobin class II members in Cordyceps militaris, has been shown to have a high transcript level during fruiting body development. Here, deletion of Cmhyd1 results in reduction in aerial mycelia, conidiation, hydrophobicity and infection ability, and complete inhibition of pigmentation and primordium differentiation. Cmhyd1 plays roles in conidiation and cuticle-bypassing infection by regulating the transcripts of frequency clock protein, Cmfrq, and velvet protein, Cmvosa, as well as primordium formation via the mitogen-activated protein kinase signaling pathway. Cmhyd1 also participates in stress response, including tolerance of mycelia to osmotic and oxidative stresses, and conidia to high or low temperatures. CmAreA, a transcription factor of nitrogen regulatory, is recruited to the promoter of Cmhyd1 and activates the transcription of Cmhyd1 with coactivator CmOTam using electrophoretic mobility shift assays and transient luciferase expression in tobacco. Furthermore, CmHYD1 is proved to regulate the transcription of Cmarea at different developmental stages via a positive feedback loop. These results reveal the diverse roles and regulation of Cmhyd1 in C. militaris, and provide insights into the developmental regulatory mechanism of mushrooms.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (F.W.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (F.W.); (M.L.)
| | - Mengqian Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (F.W.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (F.W.); (M.L.)
- Guizhou Key Laboratory of Edible Fungi Breeding, Guizhou Academy of Agricultural Sciences, Guiyang 550000, China
- Correspondence:
| |
Collapse
|
28
|
Wang L, Lu C, Fan M, Liao B. Coriolopsis trogii hydrophobin genes favor a clustering distribution and are widely involved in mycelial growth and primordia formation. Gene 2021; 802:145863. [PMID: 34358628 DOI: 10.1016/j.gene.2021.145863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/30/2021] [Indexed: 12/01/2022]
Abstract
Hydrophobins are small, secreted proteins with important physiological functions in mycelial growth and fungal development. Here, 1 nucleus-specific and 35 allelic hydrophobin genes were identified in the genome of a white rot fungus, Coriolopsis trogii. Among these, 22 were eight-cysteine class I hydrophobin genes and the other 14 were uncommon six-cysteine hydrophobin genes. The six-cysteine hydrophobins were speculated to have originated from a common ancestor. The hydrophobin genes favored a clustering distribution and two recent duplication pairs were identified. The genes had conserved gene structures with three exons and two introns. Cthyd18, Cthyd19, and Cthyd32 were constitutively highly expressed in all developmental stages. Cthyd20, Cthyd21, Cthyd22, Cthyd28, Cthyd30, Cthyd31, and Cthyd33 were highly expressed in mycelia, and Cthyd12 and Cthyd35 in the reproductive stages. Sixteen hydrophobin genes were regulated differently in the transition from mycelia to primordia; Cthyd35 showed maximal upregulation of 1922-fold, and Cthyd23 showed maximal downregulation of 552-fold. Most (32) hydrophobin genes showed significant differential expression between mycelia cultured in different media (potato dextrose agar or broth). Weighted gene co-expression network analysis and promoter analysis revealed that C2H2 zinc finger proteins may regulate hydrophobin genes. These results may support further research into the function and evolution of hydrophobins.
Collapse
Affiliation(s)
- Lining Wang
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, People's Republic of China
| | - Chuanli Lu
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, People's Republic of China
| | - Min Fan
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, People's Republic of China
| | - Baosheng Liao
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
29
|
Meng L, Lyu X, Shi L, Wang Q, Wang L, Zhu M, Mukhtar I, Xie B, Wang W. The transcription factor FvHmg1 negatively regulates fruiting body development in Winter Mushroom Flammulina velutipes. Gene 2021; 785:145618. [PMID: 33775849 DOI: 10.1016/j.gene.2021.145618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Fruiting body formation in Agaricomycetes represents the most complex and unclear process in the fungi. Mating type pathways (matA and matB) and transcription factors are important regulators in the process. Here, we report a new High-mobility-group (HMG) box domain protein FvHmg1 that acts as a negative transcription regulator in fruiting body development in Winter Mushroom Flammulina velutipes. However, the expression of Fvhmg1 in dikaryon and primordial stages was significantly lower than that of monokaryon. The Fvhmg1-RNAi mutants had a better ability of fruiting than wild type strain. Overall expression of Fvhmg1 was controlled under compatible matA and matB genes where compatible matA genes could increase its expression level, while compatible matB genes had the opposite effect. It means when two monokaryons with compatible matA and matB genes were crossed, the negatively transcription factor FvHmg1 was inhibited, and normal fully fruiting body could formation and develop. The relationship between FvHmg1 and mating type pathway would advance to understand of sexual reproduction and fruiting body development in edible mushrooms.
Collapse
Affiliation(s)
- Li Meng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaomeng Lyu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Lele Shi
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Edible Fungi Technology Promotion General Station, Fuzhou 350001, China
| | - Qingji Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Li Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Mengjuan Zhu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Irum Mukhtar
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
30
|
Molecular Mechanism by Which the GATA Transcription Factor CcNsdD2 Regulates the Developmental Fate of Coprinopsis cinerea under Dark or Light Conditions. mBio 2021; 13:e0362621. [PMID: 35100879 PMCID: PMC8805025 DOI: 10.1128/mbio.03626-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coprinopsis cinerea has seven homologs of the Aspergillus nidulans transcription factor NsdD. Of these, CcNsdD1 and CcNsdD2 from C. cinerea show the best identities of 62 and 50% to A. nidulans NsdD, respectively. After 4 days of constant darkness cultivation, CcnsdD2, but not CcnsdD1, was upregulated on the first day of light/dark cultivation to induce fruiting bodies, and overexpression of CcnsdD2, but not CcnsdD1, produced more fruiting bodies under a light/dark rhythm. Although single knockdown of CcnsdD2 did not affect fruiting body production due to upregulation of its homolog CcnsdD1, the double-knockdown CcNsdD1/NsdD2-RNAi transformant showed defects in fruiting body formation under a light/dark rhythm. Knockdown of CcnsdD1/nsdD2 led to the differentiation of primary hyphal knots into sclerotia rather than secondary hyphal knots under a light/dark rhythm, similar to the differentiation of primary hyphal knots into sclerotia of the wild-type strain under darkness. The CcNsdD2-overexpressing transformant produced more primary hyphal knots, secondary hyphal knots, and fruiting bodies under a light/dark rhythm but only more primary hyphal knots and sclerotia under darkness. RNA-seq revealed that some genes reported previously to be involved in formation of hyphal knots and primordia, cyclopropane-fatty-acyl-phospholipid synthases cfs1-3, galectins cgl1-3, and hydrophobins hyd1-3 were downregulated in the CcNsdD1/NsdD2-RNAi transformant compared to the mock transformant. ChIP-seq and electrophoretic mobility shift assay demonstrated that CcNsdD2 bound to promoter regulatory sequences containing a GATC motif in cfs1, cfs2, cgl1, and hyd1. A molecular mechanism by which CcNsdD2 regulates the developmental fate of C. cinerea under dark or light conditions is proposed. IMPORTANCE The model mushroom Coprinopsis cinerea exhibits remarkable photomorphogenesis during fruiting body development. This study reports that the C. cinerea transcription factor CcNsdD2 promotes primary hyphal knot formation by upregulating cfs1, cfs2, cgl1, and hyd1. Although the induction of CcnsdD2 is not under direct control of light and photoreceptors, the CcNsdD2-mediated developmental fates of the primary hyphal knots depend on the following light/dark rhythm cultivation or dark cultivation after full growth of mycelia in the constant dark cultivation. This study provides new insight into the molecular mechanism by which CcNsdD2 regulates the developmental fate of C. cinerea under dark or light conditions. In addition, the result that overexpression of CcnsdD2 induced more secondary hyphal knots, primordia, and fruiting bodies under light/dark rhythm cultivation conditions has potential applied value in the edible mushroom industry.
Collapse
|
31
|
Xu D, Wang Y, Keerio AA, Ma A. Identification of hydrophobin genes and their physiological functions related to growth and development in Pleurotus ostreatus. Microbiol Res 2021; 247:126723. [PMID: 33636611 DOI: 10.1016/j.micres.2021.126723] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/28/2020] [Accepted: 02/08/2021] [Indexed: 01/18/2023]
Abstract
Hydrophobins are small secreted proteins with important physiological functions and potential applications. Here, Pleurotus ostreatus hydrophobin genes were systematically analyzed: they were characterized, classified, and their expression profiles and gene functions were explored. In total, 40 P. ostreatus hydrophobin genes were found and showed genetic diversity, of which 15 were newly identified. The hydrophobin protein sequences were diverse but all contained eight cysteine residues with a conserved spacing pattern, and 33 of them were class I hydrophobins. The expression profile analyses showed that Vmh3 and Hydph20 were abundant in monokaryotic and dikaryotic mycelia, whereas Hydph17, Po.hyd16, Hydph8 were specifically expressed in monokaryotic mycelia and Po.hyd10 were specific in dikaryotic mycelia. Furthermore, Vmh3, Hydph20, Po.hyd7, and Po.hyd10 were abundant when dikaryotic mycelia cultivated on PDA, which are different from on substrate (Vmh2, Vmh3, Hydph7, Po.hyd3, Po.hyd7, Po.hyd9); Hydph12, POH1, and Po.hyd4 can be induced by natural light and cold stimulation during development from mycelia to primordia; Vmh3, FBH1, Hydph12, Po.hyd1-Po.hyd5, and Po.hyd8 were highly expressed in primordia and young fruiting bodies; Hydph12, Po.hyd1, Po.hyd4, and Po.hyd5 were specifically expressed in pilei. In addition, RNAi transformants of FBH1 exhibited slower growth rates and had fewer primordia and fruiting bodies, which suggests FBH1 affects the growth rate and primordia formation of P. ostreatus. Therefore, P. ostreatus hydrophobin genes belong to a large family and are temporally and spatially expressed to meet the developmental needs of mushroom.
Collapse
Affiliation(s)
- Danyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuanyuan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aafaque Ahmed Keerio
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
32
|
Li X, Wang F, Xu Y, Liu G, Dong C. Cysteine-Rich Hydrophobin Gene Family: Genome Wide Analysis, Phylogeny and Transcript Profiling in Cordyceps militaris. Int J Mol Sci 2021; 22:ijms22020643. [PMID: 33440688 PMCID: PMC7827705 DOI: 10.3390/ijms22020643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/03/2020] [Accepted: 01/07/2021] [Indexed: 01/01/2023] Open
Abstract
Hydrophobins are a family of small secreted proteins found exclusively in fungi, and they play various roles in the life cycle. In the present study, genome wide analysis and transcript profiling of the hydrophobin family in Cordyceps militaris, a well-known edible and medicinal mushroom, were studied. The distribution of hydrophobins in ascomycetes with different lifestyles showed that pathogenic fungi had significantly more hydrophobins than saprotrophic fungi, and class II members accounted for the majority. Phylogenetic analysis of hydrophobin proteins from the species of Cordyceps s.l. indicated that there was more variability among the class II members than class I. Only a few hydrophobin-encoding genes evolved by duplication in Cordyceps s.l., which was inconsistent with the important role of gene duplication in basidiomycetes. Different transcript patterns of four hydrophobin-encoding genes during the life cycle indicated the possible different functions for each. The transcripts of Cmhyd2, 3 and 4 can respond to light and were related with the photoreceptors. CmQHYD, with four hydrophobin II domains, was first found in C. militaris, and multi-domain hydrophobins were only distributed in the species of Cordycipitaceae and Clavicipitaceae. These results could be helpful for further function research of hydrophobins and could provide valuable information for the evolution of hydrophobins.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (F.W.); (Y.X.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (F.W.); (Y.X.)
| | - Yanyan Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (F.W.); (Y.X.)
| | - Guijun Liu
- Beijing Radiation Center, Beijing 100101, China;
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (F.W.); (Y.X.)
- Guizhou Key Laboratory of Edible Fungi Breeding, Guizhou Academy of Agricultural Sciences, Guiyang 550000, China
- Correspondence:
| |
Collapse
|
33
|
A putative transcription factor LFC1 negatively regulates development and yield of winter mushroom. Appl Microbiol Biotechnol 2020; 104:5827-5844. [PMID: 32356196 DOI: 10.1007/s00253-020-10642-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
Basidioma is the fruiting body of mushroom species. The deep understanding on the mechanism of basidioma development is valuable for mushroom breeding and cultivation. From winter mushroom (Flammulina velutipes), one of the top five industrially cultivated mushrooms, a novel putative Zn(II)2Cys6 transcription factor LFC1 with negative regulatory function in basidioma development was identified. The transcript level of lfc1 was dramatically decreased during basidioma development. Neither overexpression nor knockdown of lfc1 affected hyphal vegetative growth. However, knockdown of lfc1 could promote basidioma development and shorten cultivation time by 2 days, while overexpression of lfc1 delayed the optimal harvest time by 3 days. In the lfc1 knockdown strain, in which the lfc1 expression was reduced by 72%, mushroom yield and biological efficiency could be increased at least by 24%. Knockdown of lfc1 did not affect the shape of caps but significantly increased basidioma length and number, while its overexpression did not affect basidioma length but dramatically reduced basidioma number. In addition, rather than producing basidiomata with round caps as in wild type, the caps of basidiomata in the lfc1 overexpression mutants were significantly larger and the cap edge was wrinkled. RNA-seq analysis revealed that 455 genes had opposite transcriptional responses to lfc1 overexpression and knockdown. Some of them were previously reported as genes involved in basidioma development, including 3 hydrophobin encoding genes, 2 lectin encoding genes, FVFD16, an Eln2 ortholog encoding gene, and 3 genes encoding membrane components. As LFC1 homologs are widely present in mushroom species, lfc1 can be useful in mushroom breeding.Key Points• A novel transcription factor LFC1 negatively regulates fruiting in winter mushroom• LFC1 regulated transcription of more than 400 genes.• Reduction of LFC1 expression could shorten cultivation time and increase yield.• lfc1 could be a potentially useful reference gene for mushroom breeding.
Collapse
|
34
|
Integration of ATAC-Seq and RNA-Seq Identifies Key Genes in Light-Induced Primordia Formation of Sparassis latifolia. Int J Mol Sci 2019; 21:ijms21010185. [PMID: 31888059 PMCID: PMC6981827 DOI: 10.3390/ijms21010185] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 01/01/2023] Open
Abstract
Light is an essential environmental factor for Sparassis latifolia primordia formation, but the molecular mechanism is still unclear. In this study, differential expression profiling of light-induced primordia formation (LIPF) was established by integrating the assay for transposase accessible chromatin by sequencing (ATAC-seq) and RNA-seq technology. The integrated results from the ATAC-seq and RNA-seq showed 13 down-regulated genes and 17 up-regulated genes in both the L vs. D and P vs. D groups, for both methods. According to the gene ontology (GO) annotation of these differentially expressed genes (DEGs), the top three biological process categories were cysteine biosynthetic process via cystathionine, vitamin B6 catabolic, and glycine metabolic; the top three molecular function categories were 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase activity, glycine binding, and pyridoxal phosphate binding; cellular component categories were significantly enriched in the glycine cleavage complex. The KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis revealed that these genes were associated with vitamin B6 metabolism; selenocompound metabolism; cysteine and methionine metabolism; glycine, serine, and threonine metabolism; and glyoxylate and dicarboxylate metabolism pathways. The expression of most of the DEGs was validated by qRT-PCR. To the best of our knowledge, this study is the first integrative analysis of ATAC-seq and RNA-seq for macro-fungi. These results provided a new perspective on the understanding of key pathways and hub genes in LIPF in S. latifolia. It will be helpful in understanding the primary environmental response, and provides new information to the existing models of primordia formation in edible and medicinal fungi.
Collapse
|
35
|
Yan JJ, Tong ZJ, Liu YY, Li YN, Zhao C, Mukhtar I, Tao YX, Chen BZ, Deng YJ, Xie BG. Comparative Transcriptomics of Flammulina filiformis Suggests a High CO 2 Concentration Inhibits Early Pileus Expansion by Decreasing Cell Division Control Pathways. Int J Mol Sci 2019; 20:ijms20235923. [PMID: 31775357 PMCID: PMC6929049 DOI: 10.3390/ijms20235923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 01/05/2023] Open
Abstract
Carbon dioxide is commonly used as one of the significant environmental factors to control pileus expansion during mushroom cultivation. However, the pileus expansion mechanism related to CO2 is still unknown. In this study, the young fruiting bodies of a popular commercial mushroom Flammulina filiformis were cultivated under different CO2 concentrations. In comparison to the low CO2 concentration (0.05%), the pileus expansion rates were significantly lower under a high CO2 concentration (5%). Transcriptome data showed that the up-regulated genes enriched in high CO2 concentration treatments mainly associated with metabolism processes indicated that the cell metabolism processes were active under high CO2 conditions. However, the gene ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with cell division processes contained down-regulated genes at both 12 h and 36 h under a high concentration of CO2. Transcriptome and qRT-PCR analyses demonstrated that a high CO2 concentration had an adverse effect on gene expression of the ubiquitin–proteasome system and cell cycle–yeast pathway, which may decrease the cell division ability and exhibit an inhibitory effect on early pileus expansion. Our research reveals the molecular mechanism of inhibition effects on early pileus expansion by elevated CO2, which could provide a theoretical basis for a CO2 management strategy in mushroom cultivation.
Collapse
Affiliation(s)
- Jun-Jie Yan
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
| | - Zong-Jun Tong
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yuan-Yuan Liu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
| | - Yi-Ning Li
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
| | - Chen Zhao
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
| | - Irum Mukhtar
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Yong-Xin Tao
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Bing-Zhi Chen
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - You-Jin Deng
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- Correspondence: (Y.-J.D.); (B.-G.X.); Tel.: +86-591-8378-9277 (B.-G.X.)
| | - Bao-Gui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- Correspondence: (Y.-J.D.); (B.-G.X.); Tel.: +86-591-8378-9277 (B.-G.X.)
| |
Collapse
|