1
|
Mallick S, Shormi AS, Jahan H, Alam MS, Begum RA, Sarker RH, Muid KA. Yeast cells experience chronological life span extension under prolonged glucose starvation. Heliyon 2025; 11:e42898. [PMID: 40070955 PMCID: PMC11894305 DOI: 10.1016/j.heliyon.2025.e42898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Budding yeast, Saccharomyces cerevisiae, is an ideal model organism for genetic research due to its similarity in life cycle and cellular structure to higher eukaryotes as well as its ease of cultivation and manipulation in the laboratory. Yeast cells benefit from being cultured in calorie-restricted media, which can be achieved by reducing glucose concentration from 2 % to 0.5 %. Cell metabolism depends on glucose and therefore, affects the physiology of the cell. This study aimed to investigate the effects of long-term glucose starvation on the lifespan of yeast cells by culturing in both standard and glucose-starved conditions. In this investigation yeast cells (BY4743 strain) were cultured in glucose-restricted YPD media (0.5 percent dextrose) to assess lifespan, growth-proliferation, autophagy, apoptosis, mtDNA abundance. The findings revealed that prolonged glucose restriction significantly extended chronological lifespan in yeast (p < 0.05). In order to decipher how starved yeast live chronologically longer, we tested mitochondrial association and found that calorie deprivation lowered the rate of mtDNA spontaneous mutation and increased mtDNA abundance which is a suggestive sign of mitobiogenesis. Furthermore, cells cultured on glucose-restricted media led to more autophagosome formation but less cell death. These results suggested that glucose restriction can enhance lifespan by improving overall cellular conditions. These findings may serve as a foundation for future research in aging, cancer and diabetes.
Collapse
Affiliation(s)
- Setu Mallick
- Genetics and Molecular Biology branch, Department of Zoology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Atia Shanjida Shormi
- Genetics and Molecular Biology branch, Department of Zoology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Hawa Jahan
- Genetics and Molecular Biology branch, Department of Zoology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Shamimul Alam
- Genetics and Molecular Biology branch, Department of Zoology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Rowshan Ara Begum
- Genetics and Molecular Biology branch, Department of Zoology, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | - Khandaker Ashfaqul Muid
- Genetics and Molecular Biology branch, Department of Zoology, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
2
|
Fan Y, Shi C, Huang N, Fang F, Tian L, Wang J. Recurrent Implantation Failure: Bioinformatic Discovery of Biomarkers and Identification of Metabolic Subtypes. Int J Mol Sci 2023; 24:13488. [PMID: 37686293 PMCID: PMC10487894 DOI: 10.3390/ijms241713488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Recurrent implantation failure (RIF) is a challenging scenario from different standpoints. This study aimed to investigate its correlation with the endometrial metabolic characteristics. Transcriptomics data of 70 RIF and 99 normal endometrium tissues were retrieved from the Gene Expression Omnibus database. Common differentially expressed metabolism-related genes were extracted and various enrichment analyses were applied. Then, RIF was classified using a consensus clustering approach. Three machine learning methods were employed for screening key genes, and they were validated through the RT-qPCR experiment in the endometrium of 10 RIF and 10 healthy individuals. Receiver operator characteristic (ROC) curves were generated and validated by 20 RIF and 20 healthy individuals from Peking University People's Hospital. We uncovered 109 RIF-related metabolic genes and proposed a novel two-subtype RIF classification according to their metabolic features. Eight characteristic genes (SRD5A1, POLR3E, PPA2, PAPSS1, PRUNE, CA12, PDE6D, and RBKS) were identified, and the area under curve (AUC) was 0.902 and the external validated AUC was 0.867. Higher immune cell infiltration levels were found in RIF patients and a metabolism-related regulatory network was constructed. Our work has explored the metabolic and immune characteristics of RIF, which paves a new road to future investigation of the related pathogenic mechanisms.
Collapse
Affiliation(s)
- Yuan Fan
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing 100044, China; (Y.F.); (C.S.); (N.H.); (F.F.)
- Reproductive Medical Center, Peking University People’s Hospital, Beijing 100044, China
| | - Cheng Shi
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing 100044, China; (Y.F.); (C.S.); (N.H.); (F.F.)
- Reproductive Medical Center, Peking University People’s Hospital, Beijing 100044, China
| | - Nannan Huang
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing 100044, China; (Y.F.); (C.S.); (N.H.); (F.F.)
- Reproductive Medical Center, Peking University People’s Hospital, Beijing 100044, China
| | - Fang Fang
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing 100044, China; (Y.F.); (C.S.); (N.H.); (F.F.)
- Reproductive Medical Center, Peking University People’s Hospital, Beijing 100044, China
| | - Li Tian
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing 100044, China; (Y.F.); (C.S.); (N.H.); (F.F.)
- Reproductive Medical Center, Peking University People’s Hospital, Beijing 100044, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing 100044, China; (Y.F.); (C.S.); (N.H.); (F.F.)
| |
Collapse
|
3
|
Zhao W, Kong L, Guan W, Liu J, Cui H, Cai M, Fang B, Liu X. Yeast UPS1 deficiency leads to UVC radiation sensitivity and shortened lifespan. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01847-8. [PMID: 37222845 DOI: 10.1007/s10482-023-01847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
UPS1/YLR193C of Saccharomyces cerevisiae (S. cerevisiae) encodes a mitochondrial intermembrane space protein. A previous study found that Ups1p is needed for normal mitochondrial morphology and that UPS1 deficiency disrupts the intramitochondrial transport of phosphatidic acid in yeast cells and leads to an altered unfolded protein response and mTORC1 signaling activation. In this paper, we first provide evidence showing that the UPS1 gene is involved in the UVC-induced DNA damage response and aging. We show that UPS1 deficiency leads to sensitivity to ultraviolet C (UVC) radiation and that this effect is accompanied by elevated DNA damage, increased intracellular ROS levels, abnormal mitochondrial respiratory function, an increased early apoptosis rate, and shortened replicative lifespan and chronological lifespan. Moreover, we show that overexpression of the DNA damage-induced checkpoint gene RAD9 effectively eliminates the senescence-related defects observed in the UPS1-deficient strain. Collectively, these results suggest a novel role for UPS1 in the UVC-induced DNA damage response and aging.
Collapse
Affiliation(s)
- Wei Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Lingyue Kong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wenbin Guan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiaxin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hongjing Cui
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Mianshan Cai
- Precision Medicine Centre, Department of Pediatrics, Puning People's Hospital, Puning, 515300, Guangdong, China
| | - Bingxiong Fang
- Precision Medicine Centre, Department of Pediatrics, Puning People's Hospital, Puning, 515300, Guangdong, China.
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China.
- School of Medical Technology, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
4
|
He Y, Huang Y, Wang S, Zhang L, Gao H, Zhao Y, E G. Hereditary Basis of Coat Color and Excellent Feed Conversion Rate of Red Angus Cattle by Next-Generation Sequencing Data. Animals (Basel) 2022; 12:1509. [PMID: 35739846 PMCID: PMC9219544 DOI: 10.3390/ani12121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
Angus cattle have made remarkable contributions to the livestock industry worldwide as a commercial meat-type breed. Some evidence supported that Angus cattle with different coat colors have different feed-to-meat ratios, and the genetic basis of their coat color is inconclusive. Here, genome-wide association study was performed to investigate the genetic divergence of black and red Angus cattle with 63 public genome sequencing data. General linear model analysis was used to identify genomic regions with potential candidate variant/genes that contribute to coat color and feed conversion rate. Results showed that six single nucleotide polymorphisms (SNPs) and two insertion−deletions, which were annotated in five genes (ZCCHC14, ANKRD11, FANCA, MC1R, and LOC532875 [AFG3-like protein 1]), considerably diverged between black and red Angus cattle. The strongest associated loci, namely, missense mutation CHIR18_14705671 (c.296T > C) and frameshift mutation CHIR18_12999497 (c.310G>-), were located in MC1R. Three consecutive strongly associated SNPs were also identified and located in FANCA, which is widely involved in the Fanconi anemia pathway. Several SNPs of highly associated SNPs was notably enriched in ZCCHC14 and ANKRD11, which are related to myofiber growth and muscle development. This study provides a basis for the use of potential genetic markers to be used in future breeding programs to improve cattle selection in terms of coat color and meat phenotype. This study is also helpful to understand the hereditary basis of different coat colors and meat phenotypes. However, the putative candidate genes or markers identified in this study require further investigation to confirm their phenotypic causality and potential effective genetic relationships.
Collapse
Affiliation(s)
- Yongmeng He
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (Y.H.); (Y.H.); (S.W.); (Y.Z.)
| | - Yongfu Huang
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (Y.H.); (Y.H.); (S.W.); (Y.Z.)
| | - Shizhi Wang
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (Y.H.); (Y.H.); (S.W.); (Y.Z.)
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (L.Z.); (H.G.)
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (L.Z.); (H.G.)
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (Y.H.); (Y.H.); (S.W.); (Y.Z.)
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (Y.H.); (Y.H.); (S.W.); (Y.Z.)
| |
Collapse
|
5
|
How RNases Shape Mitochondrial Transcriptomes. Int J Mol Sci 2022; 23:ijms23116141. [PMID: 35682820 PMCID: PMC9181182 DOI: 10.3390/ijms23116141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are the power houses of eukaryote cells. These endosymbiotic organelles of prokaryote origin are considered as semi-autonomous since they have retained a genome and fully functional gene expression mechanisms. These pathways are particularly interesting because they combine features inherited from the bacterial ancestor of mitochondria with characteristics that appeared during eukaryote evolution. RNA biology is thus particularly diverse in mitochondria. It involves an unexpectedly vast array of factors, some of which being universal to all mitochondria and others being specific from specific eukaryote clades. Among them, ribonucleases are particularly prominent. They play pivotal functions such as the maturation of transcript ends, RNA degradation and surveillance functions that are required to attain the pool of mature RNAs required to synthesize essential mitochondrial proteins such as respiratory chain proteins. Beyond these functions, mitochondrial ribonucleases are also involved in the maintenance and replication of mitochondrial DNA, and even possibly in the biogenesis of mitochondrial ribosomes. The diversity of mitochondrial RNases is reviewed here, showing for instance how in some cases a bacterial-type enzyme was kept in some eukaryotes, while in other clades, eukaryote specific enzymes were recruited for the same function.
Collapse
|
6
|
Su J, Zhang J, Bao R, Xia C, Zhang Y, Zhu Z, Lv Q, Qi Y, Xue J. Mitochondrial dysfunction and apoptosis are attenuated through activation of AMPK/GSK-3β/PP2A pathway in Parkinson's disease. Eur J Pharmacol 2021; 907:174202. [PMID: 34048739 DOI: 10.1016/j.ejphar.2021.174202] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a common neurological disorder worldwide, characterized by loss of dopaminergic neurons and decrease of dopamine content. Mitochondria plays an important role in the development of PD. Adenosine 5'-monophosphate-activated protein kinase (AMPK), glycogen synthase kinase 3 (GSK-3β) and protein phosphatase 2A (PP2A) are all key proteins that regulate mitochondrial metabolism and apoptosis, and they are involved in a variety of neurodegenerative diseases. Here, we aimed to explore the involvement of mitochondrial dysfunction and apoptosis in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine hydrochloride (MPTP)-induced PD mice and MPP+ iodide-induced PC12 cells. MPTP-induced mice were subjected to behavioral testing to assess PD-like behaviors. Various molecular biological techniques including ELISA, Western blot, TUNEL assay, flow cytometry, and the important instruments Seahorse XF24 Extracellular and high performance liquid chromatography (HPLC), were used to identify the underlying molecular events of mitochondria. Treatment with the AMPK activator GSK621 dramatically ameliorated PD by increasing the levels of dopamine and rescuing the loss of dopaminergic neurons, which is dependent on the mitochondrial pathway. Moreover, regulation of AMPK/GSK-3β/PP2A pathway-related proteins by GSK621 was partially inhibited the development of PD, suggesting a negative feedback loop exists between AMPK action and mitochondrial dysfunction-mediated apoptosis. Our data preliminarily indicated that mitochondrial dysfunction and apoptosis in the pathogenesis of PD might be mediated by AMPK/GSK-3β/PP2A pathway action, which might be a promising new option for future therapy of PD.
Collapse
Affiliation(s)
- Jianhua Su
- Neurology Department, Jintan Hospital Affiliated to Jiangsu University, Changzhou, 213200, Jiangsu, China
| | - Junhua Zhang
- Neurology Department, Jintan Hospital Affiliated to Jiangsu University, Changzhou, 213200, Jiangsu, China
| | - Rui Bao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Changbo Xia
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yu Zhang
- Department of Rehabilitation Medicine, Jintan Hospital Affiliated to Jiangsu University, No. 16, Nanmen Street, Jintan District, Changzhou, 213200, Jiangsu, China
| | - Zhujun Zhu
- Department of Rehabilitation Medicine, Jintan Hospital Affiliated to Jiangsu University, No. 16, Nanmen Street, Jintan District, Changzhou, 213200, Jiangsu, China
| | - Qi Lv
- Department of Rehabilitation Medicine, Jintan Hospital Affiliated to Jiangsu University, No. 16, Nanmen Street, Jintan District, Changzhou, 213200, Jiangsu, China
| | - Yingjie Qi
- Neurology Department, Jintan Hospital Affiliated to Jiangsu University, Changzhou, 213200, Jiangsu, China
| | - Jianqin Xue
- Department of Rehabilitation Medicine, Jintan Hospital Affiliated to Jiangsu University, No. 16, Nanmen Street, Jintan District, Changzhou, 213200, Jiangsu, China.
| |
Collapse
|
7
|
Šoštarić N, Arslan A, Carvalho B, Plech M, Voordeckers K, Verstrepen KJ, van Noort V. Integrated Multi-Omics Analysis of Mechanisms Underlying Yeast Ethanol Tolerance. J Proteome Res 2021; 20:3840-3852. [PMID: 34236875 PMCID: PMC8353626 DOI: 10.1021/acs.jproteome.1c00139] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
For yeast cells,
tolerance to high levels of ethanol is vital both
in their natural environment and in industrially relevant conditions.
We recently genotyped experimentally evolved yeast strains adapted
to high levels of ethanol and identified mutations linked to ethanol
tolerance. In this study, by integrating genomic sequencing data with
quantitative proteomics profiles from six evolved strains (data set
identifier PXD006631) and construction of protein interaction networks,
we elucidate exactly how the genotype and phenotype are related at
the molecular level. Our multi-omics approach points to the rewiring
of numerous metabolic pathways affected by genomic and proteomic level
changes, from energy-producing and lipid pathways to differential
regulation of transposons and proteins involved in cell cycle progression.
One of the key differences is found in the energy-producing metabolism,
where the ancestral yeast strain responds to ethanol by switching
to respiration and employing the mitochondrial electron transport
chain. In contrast, the ethanol-adapted strains appear to have returned
back to energy production mainly via glycolysis and ethanol fermentation,
as supported by genomic and proteomic level changes. This work is
relevant for synthetic biology where systems need to function under
stressful conditions, as well as for industry and in cancer biology,
where it is important to understand how the genotype relates to the
phenotype.
Collapse
Affiliation(s)
- Nikolina Šoštarić
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Ahmed Arslan
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Bernardo Carvalho
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Marcin Plech
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Bioincubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Karin Voordeckers
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Bioincubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Kevin J Verstrepen
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Bioincubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.,Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
8
|
Pras A, Nollen EAA. Regulation of Age-Related Protein Toxicity. Front Cell Dev Biol 2021; 9:637084. [PMID: 33748125 PMCID: PMC7973223 DOI: 10.3389/fcell.2021.637084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/10/2021] [Indexed: 12/23/2022] Open
Abstract
Proteome damage plays a major role in aging and age-related neurodegenerative diseases. Under healthy conditions, molecular quality control mechanisms prevent toxic protein misfolding and aggregation. These mechanisms include molecular chaperones for protein folding, spatial compartmentalization for sequestration, and degradation pathways for the removal of harmful proteins. These mechanisms decline with age, resulting in the accumulation of aggregation-prone proteins that are harmful to cells. In the past decades, a variety of fast- and slow-aging model organisms have been used to investigate the biological mechanisms that accelerate or prevent such protein toxicity. In this review, we describe the most important mechanisms that are required for maintaining a healthy proteome. We describe how these mechanisms decline during aging and lead to toxic protein misassembly, aggregation, and amyloid formation. In addition, we discuss how optimized protein homeostasis mechanisms in long-living animals contribute to prolonging their lifespan. This knowledge might help us to develop interventions in the protein homeostasis network that delay aging and age-related pathologies.
Collapse
Affiliation(s)
| | - Ellen A. A. Nollen
- Laboratory of Molecular Neurobiology of Ageing, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
9
|
Phoon CKL, Halvorsen M, Goldstein DB, Rabin R, Cecchin F, Crandall L, Devinsky O. Sudden unexpected death in asymptomatic infants due to PPA2 variants. Mol Genet Genomic Med 2019; 8:e1008. [PMID: 31705601 PMCID: PMC6978244 DOI: 10.1002/mgg3.1008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 01/31/2023] Open
Abstract
Background Sudden death in children is a tragic event that often remains unexplained after comprehensive investigation. We report two asymptomatic siblings who died unexpectedly at approximately 1 year of age found to have biallelic (compound heterozygous) variants in PPA2. Methods The index case, parents, and sister were enrolled in the Sudden Unexplained Death in Childhood Registry and Research Collaborative, which included next‐generation genetic screening. Prior published cases of PPA2 variants, along with the known biology of PPA2, were also summarized. Results Whole exome sequencing in both siblings revealed biallelic rare missense variants in PPA2: c.182C > T (p.Ser61Phe) and c.380G > T (p.Arg127Leu). PPA2 encodes a mitochondrially located inorganic pyrophosphatase implicated in progressive and lethal cardiomyopathies. As a regulator and supplier of inorganic phosphate, PPA2 is central to phosphate metabolism. Biological roles include the following: mtDNA maintenance; oxidative phosphorylation and generation of ATP; reactive oxygen species homeostasis; mitochondrial membrane potential regulation; and possibly, retrograde signaling between mitochondria and nucleus. Conclusions Two healthy and asymptomatic sisters died unexpectedly at ages 12 and 10 months, and were diagnosed by molecular autopsy to carry biallelic variants in PPA2. Our cases add additional details to those reported thus far, and broaden the spectrum of clinical and molecular features of PPA2 variants.
Collapse
Affiliation(s)
- Colin K L Phoon
- Division of Pediatric Cardiology, New York University School of Medicine, Hassenfeld Children's Hospital at NYU Langone, New York, NY, USA.,Department of Pediatrics, New York University School of Medicine, Hassenfeld Children's Hospital at NYU Langone, New York, NY, USA
| | - Matthew Halvorsen
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Rachel Rabin
- Department of Pediatrics, New York University School of Medicine, Hassenfeld Children's Hospital at NYU Langone, New York, NY, USA
| | - Frank Cecchin
- Division of Pediatric Cardiology, New York University School of Medicine, Hassenfeld Children's Hospital at NYU Langone, New York, NY, USA.,Department of Pediatrics, New York University School of Medicine, Hassenfeld Children's Hospital at NYU Langone, New York, NY, USA
| | - Laura Crandall
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Orrin Devinsky
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|