1
|
Deng C, Zhu J, Duan F, Zhang W, Zhou H, Li S, Zhang J, Cheng J, Fu W, He J, Niu H, Hua RX. Association between NAT10 gene rs8187 G > A polymorphism and Wilms tumor susceptibility in Chinese Han children: a five-center case-control study. BMC Cancer 2025; 25:494. [PMID: 40098076 PMCID: PMC11917036 DOI: 10.1186/s12885-025-13922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/12/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Wilms tumor, a prevalent pediatric kidney cancer, has been extensively studied to elucidate its genetic mechanisms. NAT10 (N-acetyltransferase 10) is a gene encoding acetyltransferase, which is involved in various cellular processes, including RNA modification, DNA repair, and protein acetylation. The oncogenic role of NAT10 in cancer has garnered significant attention. However, research on NAT10 genetic variants and their associations with cancer is nascent. METHODS This study investigated the link between NAT10 genetic variants and Wilms tumor risk via a case‒control design with genomic DNA from 414 patients and 1199 controls. Genotyping was performed via the TaqMan method, and logistic regression statistical analysis was conducted to identify significant associations, followed by extra analysis to minimize false positive significant results. RESULTS Our findings revealed that the rs8187 G > A polymorphism in the NAT10 gene is significantly correlated with a decreased risk of developing Wilms tumor (GA vs. GG, adjusted odds ratio (AOR) = 0.60, 95% confidence interval (CI) = 0.46-0.77, P < 0.0001; GA/AA vs. GG, AOR = 0.74, 95% CI = 0.59-0.93, P = 0.011). Stratified analyses further revealed a significant association in children aged 18 months or under and in subgroups with stage II, stage IV, or combined stage I + II tumors. CONCLUSION These results highlight the potential of NAT10 rs8187 G > A polymorphism as genetic markers for Wilms tumor susceptibility. This study clarifies the genetic basis of Wilms tumor susceptibility and highlights the role of NAT10 rs8187 G > A polymorphism in early detection and risk assessment.
Collapse
Affiliation(s)
- Changmi Deng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, 150040, Heilongjiang, China
| | - Fei Duan
- Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, No. 133 of Jianhua South Street, Yuhua District, Shijiazhuang, 050031, Hebei, China
| | - Wenli Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Haixia Zhou
- Department of Hematology, The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, 030013, Shannxi, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huizhong Niu
- Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, No. 133 of Jianhua South Street, Yuhua District, Shijiazhuang, 050031, Hebei, China.
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
2
|
Wan Z, Ye L, Chen G, Xiong C, OuYang Z, Wu L, He J, Duan P, Jie Y, Zhang Q, Hua W. WTAP gene variants and susceptibility to ovarian endometriosis in a Chinese population. Front Genet 2023; 14:1276099. [PMID: 37900186 PMCID: PMC10603221 DOI: 10.3389/fgene.2023.1276099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Background: Endometriosis is a common chronic gynecologic disorder with a significant negative impact on women's health. Wilms tumor 1-associated protein (WTAP) is a vital component of the RNA methyltransferase complex for N6-methyladenosine modification and plays a critical role in various human diseases. However, whether single nucleotide polymorphisms (SNPs) of the WTAP gene predispose to endometriosis risk remains to be investigated. Methods: We genotyped three WTAP polymorphisms in 473 ovarian endometriosis patients and 459 control participants using the Agena Bioscience MassArray iPLEX platform. The logistic regression models were utilized to assess the associations between WTAP SNPs and the risk of ovarian endometriosis. Results: In the single-locus analyses, we found that the rs1853259 G variant genotypes significantly increased, while the rs7766006 T variant genotypes significantly decreased the association with ovarian endometriosis risk. Combined analysis indicated that individuals with two unfavorable genotypes showed significantly higher ovarian endometriosis risk (adjusted OR = 1.71 [1.23-2.37], p = 0.001) than those with zero risk genotypes. In the stratified analysis, the risk effect of the rs1853259 AG/GG and rs7766006 GG genotypes was evident in subgroups of age ≤30, gravidity≤1, parity≤1, rASRM stage I, and the rs7766006 GG genotype was associated with worse risk (adjusted OR = 1.64 [1.08-2.48], p = 0.021) in the patients with rASRM stage II + III + IV. The haplotype analysis indicated that individuals with GGG haplotypes had a higher risk of ovarian endometriosis than wild-type AGG haplotype carriers. Moreover, false positive report probability and Bayesian false discovery probability analysis validated the reliability of the significant results. The quantitative expression trait loci analysis revealed that rs1853259 and rs7766006 were correlated with the expression levels of WTAP. Conclusion: Our findings demonstrated that WTAP polymorphisms were associated with susceptibility to ovarian endometriosis among Chinese women.
Collapse
Affiliation(s)
- Zixian Wan
- Research Institute for Maternal and Child Health, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
- Department of Gynecology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Lu Ye
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Guange Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chaoyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Zhenbo OuYang
- Department of Gynecology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Liangzhi Wu
- Department of Gynecology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Youkun Jie
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Qiushi Zhang
- Research Institute for Maternal and Child Health, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
- Department of Gynecology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Wenfeng Hua
- Research Institute for Maternal and Child Health, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
- Department of Gynecology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Chang X, Zhu J, Hua RX, Deng C, Zhang J, Cheng J, Li S, Zhou H, He J, Wang H. TRMT6 gene rs236110 C > A polymorphism increases the risk of Wilms tumor. Gene 2023; 882:147646. [PMID: 37473973 DOI: 10.1016/j.gene.2023.147646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
tRNA methyltransferase 6 (TRMT6)is an enzyme catalyzing N1-methyladenosine, a reversible modification in RNA, including tRNA, mRNA, rRNA, and lncRNA. Increasing evidence has shown the implications of this post-transcriptional modification and its regulators in carcinogenesis. However, its roles in Wilms tumor haven't been reported. In this study, four TRMT6 gene polymorphisms (rs236170 A > G, rs451571 T > C, rs236188 G > A, and rs236110 C > A) were tested for association with susceptibility to Wilms tumor, the most frequently diagnosed pediatric renal tumor. TaqMan method was adopted to analyze the genotypes of these polymorphisms in 414 cases and 1199 controls. Among the four TRMT6 gene polymorphisms, only the rs236110 C > A displayed a significant association with the risk of Wilms tumor [AA vs. CC, adjusted odds ratio (OR) = 1.93, 95 % confidence interval (CI) = 1.14-3.27, P = 0.015]. This association was confirmed under the recessive models (AA vs. CC/CA, OR = 1.92, 95 % CI = 1.14-3.23, P = 0.015). Furthermore, after stratifying by age, gender, and clinical stage, we mainly detected significant associations for the rs236110 C > A in children older than 18 months, boys, and those with stage IV or III + IV diseases. The rs236110 A allele was significantly associated with decreased expression of MCM8. In conclusion, we identified the rs236110 C > A in the TRMT6 gene as a Wilms tumor susceptibility locus, and this polymorphism warrants more validation studies to be translated into individualized risk prediction strategies for children.
Collapse
Affiliation(s)
- Xiaofeng Chang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| | - Changmi Deng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shannxi, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China.
| | - Huanmin Wang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| |
Collapse
|
4
|
Chen Y, Miao L, Lin H, Zhuo Z, He J. The role of m6A modification in pediatric cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188691. [PMID: 35122883 DOI: 10.1016/j.bbcan.2022.188691] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
With the development of RNA modification research, the importance of N6-methyladenosine (m6A) in tumors cannot be ignored. m6A promotes the self-renewal of tumor stem cells and the proliferation of tumor cells. It affects post-transcriptional gene expression through epigenetic mechanisms, combining various factors to determine proteins' fate and altering the biological function. This modification process runs through the entire tumors, and genes affected by m6A modification may be the critical targets for cancers breakthroughs. Though generally less dangerous than adult cancer, pediatric cancer accounts for a significant proportion of child deaths. What is more alarming is that the occurrences of adult tumors are highly associated with the poor prognoses of pediatric tumors. Therefore, it is necessary to pay attention to the importance of pediatric cancer and discover new therapeutic targets, which will help improve the therapeutic effect and prognoses of the diseases. We collected and investigated m6A modification in pediatric cancers based on mRNA and non-coding RNA, finding that m6A factors were involved in glioma, hepatoblastoma, nephroblastoma, neuroblastoma, osteosarcoma, medulloblastoma, retinoblastoma, and acute lymphoblastic leukemia. Consequently, we summarized the relationships between the m6A factors and these pediatric cancers.
Collapse
Affiliation(s)
- Yongping Chen
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huiran Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
5
|
Zhuo Z, Hua RX, Zhang H, Lin H, Fu W, Zhu J, Cheng J, Zhang J, Li S, Zhou H, Xia H, Liu G, Jia W, He J. METTL14 gene polymorphisms decrease Wilms tumor susceptibility in Chinese children. BMC Cancer 2021; 21:1294. [PMID: 34863142 PMCID: PMC8643011 DOI: 10.1186/s12885-021-09019-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Wilms tumor is a highly heritable malignancy. Aberrant METTL14, a critical component of N6-methyladenosine (m6A) methyltransferase, is involved in carcinogenesis. The association between genetic variants in the METTL14 gene and Wilms tumor susceptibility remains to be fully elucidated. We aimed to assess whether variants within this gene are implicated in Wilms tumor susceptibility. METHODS A total of 403 patients and 1198 controls were analyzed. METTL14 genotypes were assessed by TaqMan genotyping assay. RESULT Among the five SNPs analyzed, rs1064034 T > A and rs298982 G > A exhibited a significant association with decreased susceptibility to Wilms tumor. Moreover, the joint analysis revealed that the combination of five protective genotypes exerted significantly more protective effects against Wilms tumor than 0-4 protective genotypes with an OR of 0.69. The stratified analysis further identified the protective effect of rs1064034 T > A, rs298982 G > A, and combined five protective genotypes in specific subgroups. The above significant associations were further validated by haplotype analysis and false-positive report probability analysis. Preliminary mechanism exploration indicated that rs1064034 T > A and rs298982 G > A are correlated with the expression and splicing event of their surrounding genes. CONCLUSIONS Collectively, our results suggest that METTL14 gene SNPs may be genetic modifiers for the development of Wilms tumor.
Collapse
Affiliation(s)
- Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huizhu Zhang
- Department of Gynaecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Huiran Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, 150040, Heilongjiang, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Shannxi, Taiyuan, 030013, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Guochang Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Wei Jia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
6
|
Xuan Z, Zhang Y, Jiang J, Zheng X, Hu X, Yang X, Shao Y, Zhang G, Huang P. Integrative genomic analysis of N6-methyladenosine-single nucleotide polymorphisms (m 6A-SNPs) associated with breast cancer. Bioengineered 2021; 12:2389-2397. [PMID: 34151731 PMCID: PMC8806828 DOI: 10.1080/21655979.2021.1935406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Due to the important role of N6-methyladenosine (m6A) in breast cancer, single nucleotide polymorphisms (SNPs) in genes with m6A modification may also be involved in breast cancer pathogenesis. In this study, we used a public genome-wide association study dataset to identify m6A-SNPs associated with breast cancer and to further explore their potential functions. We found 113 m6A-SNPs associated with breast cancer that reached the genome-wide suggestive threshold (5.0E-05), and 86 m6A-SNPs had eQTL signals. Only six genes were differentially expressed between controls and breast cancer cases in GEO datasets (GSE15852, GSE115144, and GSE109169), and the SNPs rs4829 and rs9610915 were located next to the m6A modification sites in the 3ʹUTRs of TOM1L1 and MAFF, respectively. In addition, we found that polyadenylate-binding protein cytoplasmic 1 might have a potential interaction with rs4829 (TOM1L1) and rs9610915 (MAFF). In summary, these findings indicated that the SNPs rs4829 and rs9610915 are potentially associated with breast cancer because they had eQTL signals, altered gene expression, and were located next to the m6A modification sites in the 3ʹUTRs of their coding genes. However, further studies are still needed to clarify how genetic variation affects the epigenetic modification, m6A, and its subsequent functions in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Zixue Xuan
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yiwen Zhang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jinying Jiang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaowei Zheng
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaoping Hu
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiuli Yang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yanfei Shao
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Guobing Zhang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ping Huang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
7
|
Lin A, Hua RX, Zhou M, Fu W, Zhang J, Zhou H, Li S, Cheng J, Zhu J, Xia H, Liu G, He J. YTHDC1 gene polymorphisms and Wilms tumor susceptibility in Chinese children: A five-center case-control study. Gene 2021; 783:145571. [PMID: 33737126 DOI: 10.1016/j.gene.2021.145571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Wilms tumor is a common pediatric tumor with abundant genetic drivers. YTHDC1 is an important reader of the N6-methyladenosine modification that widely regulates eukaryotic transcripts. YTHDC1 has been associated with the occurrence and development of some tumors. However, this is the first study on YTHDC1 gene polymorphisms and Wilms tumor susceptibility. In brief, we conducted a five-center case-control study to explore the associations between YTHDC1 polymorphisms (rs2293596 T > C, rs2293595 T > C, and rs3813832 T > C) and Wilms tumor susceptibility in Chinese children. A total of 404 cases and 1198 controls were successfully genotyped using TaqMan real-time PCR. Odds ratios (ORs) and 95% confidence intervals (CIs) were used as the evaluation indicators. We found that children with the 2-3 risk genotypes were more likely to develop Wilms tumor than those with the 0-1 risk genotypes (adjusted OR = 1.28, 95% CI = 1.01-1.62, P = 0.042). However, no other statistically significant results were found in this research study. The combined effect of YTHDC1 polymorphisms significantly increases Wilms tumor susceptibility. Our results need to be verified in different populations after increasing the sample size and controlling for confounding factors.
Collapse
Affiliation(s)
- Ao Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Mingming Zhou
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shannxi, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Guochang Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
8
|
Tang J, Lu H, Yang Z, Li L, Li L, Zhang J, Cheng J, Li Y, Li S, Zhou H, He J, Liu W. Associations between WTAP gene polymorphisms and neuroblastoma susceptibility in Chinese children. Transl Pediatr 2021; 10:146-152. [PMID: 33633946 PMCID: PMC7882302 DOI: 10.21037/tp-20-168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Previous studies have revealed that WTAP is related to multiple types of cancer. Recently, WTAP has been reported as an independent prognostic factor in patients with neuroblastoma. METHODS To explore the association between three WTAP polymorphisms (rs9457712 G>A, rs1853259 A>G and rs7766006 G>T) and neuroblastoma susceptibility in Chinese populations, we performed this case-control study including 898 neuroblastoma cases and 1,734 controls. We genotyped these potentially functional single nucleotide polymorphisms (SNPs) by TaqMan assays. The odds ratios (ORs) and 95% confidence intervals (CIs) by logistic regression models were used to assess the relationship between WTAP SNPs and the risk of neuroblastoma. RESULTS No significant associations were observed in the overall analysis between any of the three WTAP polymorphisms and the risk of neuroblastoma. However, in the age ≤18 months subgroup, we found that the rs1853259 AG/GG genotype exerted protective effects against neuroblastoma (adjusted OR =0.77, 95% CI: 0.59-0.998, P=0.048), whereas the presence of 1-2 combined risk genotypes significantly increased the risk of neuroblastoma (adjusted OR =1.32, 95% CI: 1.02-1.71, P=0.036). CONCLUSIONS WTAP gene polymorphisms only have a weak impact on the risk of neuroblastoma in the Chinese children. Further case-control studies, preferable on larger sample sizes, are needed to validate our results.
Collapse
Affiliation(s)
- Jue Tang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongting Lu
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Le Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children’s Hospital, Kunming, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children’s Hospital, Changsha, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Wang Z, Zhuo Z, Li L, Hua RX, Li L, Zhang J, Cheng J, Zhou H, Li S, He J, Yan S. The contribution of YTHDF2 gene rs3738067 A>G to the Wilms tumor susceptibility. J Cancer 2021; 12:6165-6169. [PMID: 34539889 PMCID: PMC8425210 DOI: 10.7150/jca.62154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
YTHDF2 is responsible for maintaining the dynamic N6-methyladenosine (m6A) modification balance and influences a variety of cancers. We tested whether YTHDF2 gene rs3738067 A>G polymorphism is related to Wilms tumor by genotyping samples of Chinese children (450 cases and 1317 controls). However, the rs3738067 A>G polymorphism showed no statistical significance with Wilms tumor susceptibility. Stratification analysis also revealed that there was no remarkable association of rs3738067 variant AG/GG genotype with Wilms tumor risk in every subgroup (age, gender, and clinical stages). In all, the results indicated YTHDF2 gene rs3738067 A>G polymorphism could not alter Wilms tumor risk significantly.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming 650031, Yunnan, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Linyan Li
- Department of Clinical Laboratory, Yunnan Key Laboratory of Laboratory Medicine, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shannxi, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- ✉ Corresponding authors: Shan Yan, Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, No. 1168 Chunrongxi Road, Kunming 650500, Yunnan, China, E-mail: ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, E-mail:
| | - Shan Yan
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, Yunnan, China
- ✉ Corresponding authors: Shan Yan, Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, No. 1168 Chunrongxi Road, Kunming 650500, Yunnan, China, E-mail: ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, E-mail:
| |
Collapse
|
10
|
Lin A, Zhou M, Hua RX, Zhang J, Zhou H, Li S, Cheng J, Xia H, Fu W, He J. METTL3 polymorphisms and Wilms tumor susceptibility in Chinese children: A five-center case-control study. J Gene Med 2020; 22:e3255. [PMID: 32716082 DOI: 10.1002/jgm.3255] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Wilms tumor is a common pediatric tumor worldwide. Methyltransferase like 3 (METTL3) is a core gene of the N6 -methyladenosine (m6 A) modification that widely affects the transcription of tumor-related genes in eukaryotes. METTL3 has been extensively investigated in various tumors but not Wilms tumor. METHODS We describe a five-center case-control study with 414 patients and 1199 controls aiming to explore the associations between METTL3 polymorphisms (rs1061026 T>G, rs1061027 C>A, rs1139130 A>G and rs1263801 G>C) and Wilms tumor susceptibility. A TaqMan real-time polymerase chain reaction was performed for genotyping. Odds ratios (ORs) and 95% confidence intervals (CIs) were reported as evaluation indicators to determine any associations. RESULTS Referring to the preliminary analysis results, protective genotypes were identified as rs1061026 TG/GG, rs1061027 CA/AA, rs1139130 GG and rs1263801 GC/CC. The children with three protective genotypes were less likely to develop Wilms tumor than children without protective genotypes (adjusted OR = 0.68, 95% CI = 0.46-0.999, p = 0.0496). Similarly, stratified analysis of the subgroup aged > 18 months, carrying 3 or 4 protective genotypes, was a protective factor for Wilms tumor compared to carrying 0-2 protective genotypes (adjusted OR = 0.59 95% CI = 0.39-0.91, p = 0.016). However, we did not observe any other significant results. CONCLUSIONS The combined effect of METTL3 polymorphisms reduce Wilms tumor susceptibility in Chinese children. This conclusion requires further verification.
Collapse
Affiliation(s)
- Ao Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingming Zhou
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, Shannxi, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|