1
|
Zhang R, Wu Y, Qu X, Yang W, Wu Q, Huang L, Jiang Q, Ma J, Zhang Y, Qi P, Chen G, Jiang Y, Zheng Y, Wang X, Wei Y, Xu Q. The RING-finger ubiquitin E3 ligase TaPIR1 targets TaHRP1 for degradation to suppress chloroplast function. Nat Commun 2024; 15:6905. [PMID: 39134523 PMCID: PMC11319775 DOI: 10.1038/s41467-024-51249-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Chloroplasts are key players in photosynthesis and immunity against microbial pathogens. However, the precise and timely regulatory mechanisms governing the control of photosynthesis-associated nuclear genes (PhANGs) expression in plant immunity remain largely unknown. Here we report that TaPIR1, a Pst-induced RING-finger E3 ubiquitin ligase, negatively regulates Pst resistance by specifically interacting with TaHRP1, an atypical transcription factor histidine-rich protein. TaPIR1 ubiquitinates the lysine residues K131 and K136 in TaHRP1 to regulate its stability. TaHRP1 directly binds to the TaHRP1-binding site elements within the PhANGs promoter to activate their transcription via the histidine-rich domain of TaHRP1. PhANGs expression induces the production of chloroplast-derived ROS. Although knocking out TaHRP1 reduces Pst resistance, TaHRP1 overexpression contributes to photosynthesis, and chloroplast-derived ROS production, and improves disease resistance. TaPIR1 expression inhibits the downstream activation of TaHRP1 and TaHRP1-induced ROS accumulation in chloroplasts. Overall, we show that the TaPIR1-mediated ubiquitination and degradation of TaHRP1 alters PhANGs expression to disrupt chloroplast function, thereby increasing plant susceptibility to Pst.
Collapse
Affiliation(s)
- Rongrong Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yu Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangru Qu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wenjuan Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qin Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojie Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China.
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
2
|
Lv X, Deng J, Zhou C, Abdullah A, Yang Z, Wang Z, Yang L, Zhao B, Li Y, Ma Z. Comparative transcriptomic insights into molecular mechanisms of the susceptibility wheat variety MX169 response to Puccinia striiformis f. sp. tritici ( Pst) infection. Microbiol Spectr 2024; 12:e0377423. [PMID: 38916358 PMCID: PMC11302261 DOI: 10.1128/spectrum.03774-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/02/2024] [Indexed: 06/26/2024] Open
Abstract
Stripe rust of wheat is caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst). Breeding durably resistant wheat varieties by disrupting the susceptibility (S) gene has an important impact on the control of wheat stripe rust. Mingxian169 (MX169) showed strong stripe rust susceptibility to all the races of Pst. However, molecular mechanisms and responsive genes underlying susceptibility of the wheat variety MX169 to Pst have not been elucidated. Here, we utilized next-generation sequencing technology to analyze transcriptomics data of "MX169" and high-resistance wheat "Zhong4" at 24, 48, and 120 h post-inoculation (hpi) with Pst. Comparative transcriptome analysis revealed 3,494, 2,831, and 2,700 differentially expressed genes (DEGs) at different time points. We observed an upregulation of DEGs involved in photosynthesis, flavonoid biosynthesis, pyruvate metabolism, thiamine metabolism, and other biological processes, suggesting their involvement in MX169's response to Pst. DEGs encoding transcription factors were also identified. Our study suggested the potential susceptibility gene resources in MX169 related to stripe rust response could be valuable for understanding the mechanisms involved in stripe rust susceptibility and for improving wheat resistance to Pst. IMPORTANCE Our study suggests the potential susceptibility gene resources in MX169 related to stripe rust response could be valuable for understanding the mechanisms involved in stripe rust susceptibility and for improving wheat resistance to Pst.
Collapse
Affiliation(s)
- Xuan Lv
- Department of Plant Pathology, Ministry of Agriculture and Rural Affairs (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Deng
- Department of Plant Pathology, Ministry of Agriculture and Rural Affairs (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Congying Zhou
- Department of Plant Pathology, Ministry of Agriculture and Rural Affairs (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ahsan Abdullah
- Department of Plant Pathology, Ministry of Agriculture and Rural Affairs (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ziqian Yang
- Department of Plant Pathology, Ministry of Agriculture and Rural Affairs (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhifang Wang
- Department of Plant Pathology, Ministry of Agriculture and Rural Affairs (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lujia Yang
- Department of Plant Pathology, Ministry of Agriculture and Rural Affairs (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Baoqiang Zhao
- Department of Plant Pathology, Ministry of Agriculture and Rural Affairs (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuchen Li
- Department of Plant Pathology, Ministry of Agriculture and Rural Affairs (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhanhong Ma
- Department of Plant Pathology, Ministry of Agriculture and Rural Affairs (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Davoudnia B, Dadkhodaie A, Moghadam A, Heidari B, Yassaie M. Transcriptome analysis in Aegilops tauschii unravels further insights into genetic control of stripe rust resistance. PLANTA 2024; 259:70. [PMID: 38345645 DOI: 10.1007/s00425-024-04347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/14/2024] [Indexed: 02/15/2024]
Abstract
MAIN CONCLUSION The Aegilops tauschii resistant accession prevented the pathogen colonization by controlling the sugar flow and triggering the hypersensitive reaction. This study suggested that NBS-LRRs probably induce resistance through bHLH by controlling JA- and SA-dependent pathways. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst) is one of wheat's most destructive fungal diseases that causes a severe yield reduction worldwide. The most effective and economically-friendly strategy to manage this disease is genetic resistance which can be achieved through deploying new and effective resistance genes. Aegilops tauschii, due to its small genome and co-evolution with Pst, can provide detailed information about underlying resistance mechanisms. Hence, we used RNA-sequencing approach to identify the transcriptome variations of two contrasting resistant and susceptible Ae. tauschii accessions in interaction with Pst and differentially expressed genes (DEGs) for resistance to stripe rust. Gene ontology, pathway analysis, and search for functional domains, transcription regulators, resistance genes, and protein-protein interactions were used to interpret the results. The genes encoding NBS-LRR, CC-NBS-kinase, and phenylalanine ammonia-lyase, basic helix-loop-helix (bHLH)-, basic-leucine zipper (bZIP)-, APETALA2 (AP2)-, auxin response factor (ARF)-, GATA-, and LSD-like transcription factors were up-regulated exclusively in the resistant accession. The key genes involved in response to salicylic acid, amino sugar and nucleotide sugar metabolism, and hypersensitive response contributed to plant defense against stripe rust. The activation of jasmonic acid biosynthesis and starch and sucrose metabolism pathways under Pst infection in the susceptible accession explained the colonization of the host. Overall, this study can fill the gaps in the literature on host-pathogen interaction and enrich the Ae. tauschii transcriptome sequence information. It also suggests candidate genes that could guide future breeding programs attempting to develop rust-resistant cultivars.
Collapse
Affiliation(s)
- Behnam Davoudnia
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Ali Dadkhodaie
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran.
| | - Ali Moghadam
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Mohsen Yassaie
- Seed and Plant Improvement Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran
| |
Collapse
|
4
|
Ren J, Chen L, Liu J, Zhou B, Sha Y, Hu G, Peng J. Transcriptomic insights into the molecular mechanism for response of wild emmer wheat to stripe rust fungus. FRONTIERS IN PLANT SCIENCE 2024; 14:1320976. [PMID: 38235210 PMCID: PMC10791934 DOI: 10.3389/fpls.2023.1320976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
Introduction Continuous identification and application of novel resistance genes against stripe rust are of great importance for wheat breeding. Wild emmer wheat, Triticum dicoccoides, has adapted to a broad range of environments and is a valuable genetic resource that harbors important beneficial traits, including resistance to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). However, there has been a lack of systematic exploration of genes against Pst races in wild emmer wheat. Methods Genome-wide transcriptome profiles were conducted on two wild emmer wheat genotypes with different levels of resistance to (Pst (DR3 exhibiting moderate (Pst resistance, and D7 displaying high (Pst resistance). qRT-PCR was performed to verify findings by RNA-seq. Results A higher number of DEGs were identified in the moderately (Pst-resistant genotype, while the highly (Pst-resistant genotype exhibited a greater enrichment of pathways. Nonetheless, there were consistent patterns in the enrichment of pathways between the two genotypes at the same time of inoculation. At 24 hpi, a majority of pathways such as the biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, phenylalanine metabolism, and alpha-Linolenic acid metabolism exhibited significant enrichment in both genotypes. At 72 hpi, the biosynthesis of secondary metabolites and circadian rhythm-plant pathways were notably and consistently enriched in both genotypes. The majority of (WRKY, MADs , and AP2-ERF families were found to be involved in the initial stage of response to Pst invasion (24 hpi), while the MYB, NAC, TCP, and b-ZIP families played a role in defense during the later stage of Pst infection (72 hpi). Discussion In this present study, we identified numerous crucial genes, transcription factors, and pathways associated with the response and regulation of wild emmer wheat to Pst infection. Our findings offer valuable information for understanding the function of crucial Pst-responsive genes, and will deepen the understanding of the complex resistance mechanisms against Pst in wheat.
Collapse
Affiliation(s)
- Jing Ren
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jian Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Bailing Zhou
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Yujie Sha
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Junhua Peng
- Spring Valley Agriscience Co., Ltd, Jinan, China
| |
Collapse
|
5
|
Das P, Grover M, Mishra DC, Guha Majumdar S, Shree B, Kumar S, Mir ZA, Chaturvedi KK, Bhardwaj SC, Singh AK, Rai A. Genome-wide identification and characterization of Puccinia striiformis-responsive lncRNAs in Triticum aestivum. FRONTIERS IN PLANT SCIENCE 2023; 14:1120898. [PMID: 37650000 PMCID: PMC10465180 DOI: 10.3389/fpls.2023.1120898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/10/2023] [Indexed: 09/01/2023]
Abstract
Wheat stripe rust (yellow rust) caused by Puccinia striiformis f. sp. tritici (Pst) is a serious biotic stress factor limiting wheat production worldwide. Emerging evidence demonstrates that long non-coding RNAs (lncRNAs) participate in various developmental processes in plants via post-transcription regulation. In this study, RNA sequencing (RNA-seq) was performed on a pair of near-isogenic lines-rust resistance line FLW29 and rust susceptible line PBW343-which differed only in the rust susceptibility trait. A total of 6,807 lncRNA transcripts were identified using bioinformatics analyses, among which 10 lncRNAs were found to be differentially expressed between resistance and susceptible lines. In order to find the target genes of the identified lncRNAs, their interactions with wheat microRNA (miRNAs) were predicted. A total of 199 lncRNAs showed interactions with 65 miRNAs, which further target 757 distinct mRNA transcripts. Moreover, detailed functional annotations of the target genes were used to identify the candidate genes, pathways, domains, families, and transcription factors that may be related to stripe rust resistance response in wheat plants. The NAC domain protein, disease resistance proteins RPP13 and RPM1, At1g58400, monodehydroascorbate reductase, NBS-LRR-like protein, rust resistance kinase Lr10-like, LRR receptor, serine/threonine-protein kinase, and cysteine proteinase are among the identified targets that are crucial for wheat stripe rust resistance. Semiquantitative PCR analysis of some of the differentially expressed lncRNAs revealed variations in expression profiles of two lncRNAs between the Pst-resistant and Pst-susceptible genotypes at least under one condition. Additionally, simple sequence repeats (SSRs) were also identified from wheat lncRNA sequences, which may be very useful for conducting targeted gene mapping studies of stripe rust resistance in wheat. These findings improved our understanding of the molecular mechanism responsible for the stripe rust disease that can be further utilized to develop wheat varieties with durable resistance to this disease.
Collapse
Affiliation(s)
- Parinita Das
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Monendra Grover
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | | | - Bharti Shree
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Zahoor Ahmad Mir
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
6
|
Kamel AM, Metwally K, Sabry M, Albalawi DA, Abbas ZK, Darwish DBE, Al-Qahtani SM, Al-Harbi NA, Alzuaibr FM, Khalil HB. The Expression of Triticum aestivum Cysteine-Rich Receptor-like Protein Kinase Genes during Leaf Rust Fungal Infection. PLANTS (BASEL, SWITZERLAND) 2023; 12:2932. [PMID: 37631144 PMCID: PMC10457733 DOI: 10.3390/plants12162932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Understanding the role of cysteine-rich receptor-like kinases (CRKs) in plant defense mechanisms is crucial for enhancing wheat resistance to leaf rust fungus infection. Here, we identified and verified 164 members of the CRK gene family using the Triticum aestivum reference version 2 collected from the international wheat genome sequencing consortium (IWGSC). The proteins exhibited characteristic features of CRKs, including the presence of signal peptides, cysteine-rich/stress antifungal/DUF26 domains, transmembrane domains, and Pkinase domains. Phylogenetic analysis revealed extensive diversification within the wheat CRK gene family, indicating the development of distinct specific functional roles to wheat plants. When studying the expression of the CRK gene family in near-isogenic lines (NILs) carrying Lr57- and Lr14a-resistant genes, Puccinia triticina, the causal agent of leaf rust fungus, triggered temporal gene expression dynamics. The upregulation of specific CRK genes in the resistant interaction indicated their potential role in enhancing wheat resistance to leaf rust, while contrasting gene expression patterns in the susceptible interaction highlighted potential susceptibility associated CRK genes. The study uncovered certain CRK genes that exhibited expression upregulation upon leaf rust infection and the Lr14a-resistant gene. The findings suggest that targeting CRKs may present a promising strategy for improving wheat resistance to rust diseases.
Collapse
Affiliation(s)
- Ahmed M. Kamel
- Department of Genetics, Faculty of Agriculture, Ain Shams University, 68 Hadayek Shoubra, Cairo 11241, Egypt
| | - Khaled Metwally
- Department of Genetics, Faculty of Agriculture, Ain Shams University, 68 Hadayek Shoubra, Cairo 11241, Egypt
| | - Mostafa Sabry
- Department of Genetics, Faculty of Agriculture, Ain Shams University, 68 Hadayek Shoubra, Cairo 11241, Egypt
| | - Doha A. Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia (D.B.E.D.)
| | - Zahid K. Abbas
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia (D.B.E.D.)
| | - Doaa B. E. Darwish
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia (D.B.E.D.)
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt
| | - Salem M. Al-Qahtani
- Biology Department, University College of Tayma, University of Tabuk, P.O. Box 741, Tabuk 47512, Saudi Arabia
| | - Nadi A. Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, P.O. Box 741, Tabuk 47512, Saudi Arabia
| | - Fahad M. Alzuaibr
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia (D.B.E.D.)
| | - Hala B. Khalil
- Department of Genetics, Faculty of Agriculture, Ain Shams University, 68 Hadayek Shoubra, Cairo 11241, Egypt
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
7
|
Wang F, Zhang M, Hu Y, Gan M, Jiang B, Hao M, Ning S, Yuan Z, Chen X, Chen X, Zhang L, Wu B, Liu D, Huang L. Pyramiding of Adult-Plant Resistance Genes Enhances All-Stage Resistance to Wheat Stripe Rust. PLANT DISEASE 2023; 107:879-885. [PMID: 36044366 DOI: 10.1094/pdis-07-22-1716-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases in wheat production. Pyramiding of adult-plant resistance (APR) genes is a promising strategy to increase durability of resistance. The stripe rust resistance (R) genes Yr18, Yr28, and Yr36 encode different protein families which confer partial resistance to a broad array of P. striiformis f. sp. tritici races. Here, we developed BC3F5 wheat lines representing all possible combinations of Yr18, Yr28, and Yr36 in a genetic background of the highly P. striiformis f. sp. tritici-susceptible wheat line SY95-71 that is widely used in stripe rust analysis. These lines enabled us to accurately evaluate these genes singly and in combination in a common genetic background. The adult plant resistance experiments were analyzed in the field, where stripe rust epidemics occurred frequently. The field results indicated that these partial R genes act additively in enhancing the levels of resistance, and a minimum of two-gene combinations can generate adequate stripe rust resistance. The Yr28 + Yr36 and Yr18 + Yr28 + Yr36 combinations also showed adequate resistance at the seedling stage, implying that APR gene pyramiding can achieve all-stage resistance. Meanwhile, the three genes were simultaneously introduced into elite wheat lines through gene-based marker selection. Elite lines exhibited strong all-stage resistance to stripe rust. This work provides valuable insights and resources for developing durable P. striiformis f. sp. tritici-resistant varieties and for elucidating the regulation mechanism of partial R gene pyramiding.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Minghu Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yanling Hu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Meijuan Gan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Bihua Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
8
|
Chen C, Hao W, Wu J, Si H, Xia X, Ma C. Fine Mapping of Stripe-Rust-Resistance Gene YrJ22 in Common Wheat by BSR-Seq and MutMap-Based Sequencing. PLANTS (BASEL, SWITZERLAND) 2022; 11:3244. [PMID: 36501284 PMCID: PMC9740260 DOI: 10.3390/plants11233244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Identification and accurate mapping of new resistance genes are essential for gene pyramiding in wheat breeding. The YrJ22 gene is a dominant stripe-rust-resistance gene located at the distal end of chromosome 2AL, which was identified in a leading Chinese-wheat variety, Jimai 22, showing high resistance to CYR32, a prevalent race of Puccinia striiformis tritici (Pst) in China. In the current study, 15 F1 and 2273 F2 plants derived from the cross of Jimai 22/Avocet S were used for the fine-mapping of YrJ22. The RNA-Seq of resistant and susceptible bulks of F2 plants (designated BSR-Seq) identified 10 single-nucleotide polymorphisms (SNP) in a 12.09 Mb physical interval on chromosome 2AL. A total of 1022 EMS-induced M3 lines of Jimai 22 were screened, to identify susceptible mutants for MutMap analysis. Four CAPS markers were developed from SNPs identified using BSR-Seq and MutMap. A linkage map for YrJ22 was constructed with 11 CAPS/STS and three SSR markers. YrJ22 was located at a 0.9 cM genetic interval flanked by markers H736 and H400, corresponding to a 340.46 kb physical region (768.7-769.0 Mb), including 13 high-confidence genes based on the Chinese Spring reference genome. TraesCS2A01G573200 is a potential candidate-gene, according to linkage and quantitative real-time PCR (qPCR) analyses. The CAPS marker H732 designed from an SNP in TraesCS2A01G573200 co-segregated with YrJ22. These results provide a useful stripe-rust-resistance gene and molecular markers for marker-assisted selection in wheat breeding and for further cloning of the gene.
Collapse
Affiliation(s)
- Can Chen
- Laboratory of Wheat Breeding, College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei 230036, China
| | - Weihao Hao
- Laboratory of Wheat Breeding, College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei 230036, China
| | - Jingchun Wu
- Laboratory of Wheat Breeding, College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- National United Engineering Laboratory for Crop Stress Resistance Breeding, Hefei 230036, China
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
| | - Hongqi Si
- Laboratory of Wheat Breeding, College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei 230036, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
| | - Chuanxi Ma
- Laboratory of Wheat Breeding, College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei 230036, China
- National United Engineering Laboratory for Crop Stress Resistance Breeding, Hefei 230036, China
- Anhui Key Laboratory of Crop Biology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
9
|
Wu N, Ozketen AC, Cheng Y, Jiang W, Zhou X, Zhao X, Guan Y, Xiang Z, Akkaya MS. Puccinia striiformis f. sp. tritici effectors in wheat immune responses. FRONTIERS IN PLANT SCIENCE 2022; 13:1012216. [PMID: 36420019 PMCID: PMC9677129 DOI: 10.3389/fpls.2022.1012216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The obligate biotrophic fungus Puccinia striiformis f. sp. tritici, which causes yellow (stripe) rust disease, is among the leading biological agents resulting in tremendous yield losses on global wheat productions per annum. The combatting strategies include, but are not limited to, fungicide applications and the development of resistant cultivars. However, evolutionary pressure drives rapid changes, especially in its "effectorome" repertoire, thus allowing pathogens to evade and breach resistance. The extracellular and intracellular effectors, predominantly secreted proteins, are tactical arsenals aiming for many defense processes of plants. Hence, the identity of the effectors and the molecular mechanisms of the interactions between the effectors and the plant immune system have long been targeted in research. The obligate biotrophic nature of P. striiformis f. sp. tritici and the challenging nature of its host, the wheat, impede research on this topic. Next-generation sequencing and novel prediction algorithms in bioinformatics, which are accompanied by in vitro and in vivo validation approaches, offer a speedy pace for the discovery of new effectors and investigations of their biological functions. Here, we briefly review recent findings exploring the roles of P. striiformis f. sp. tritici effectors together with their cellular/subcellular localizations, host responses, and interactors. The current status and the challenges will be discussed. We hope that the overall work will provide a broader view of where we stand and a reference point to compare and evaluate new findings.
Collapse
Affiliation(s)
- Nan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | | | - Yu Cheng
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wanqing Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xuan Zhou
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xinran Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yaorong Guan
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Zhaoxia Xiang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Mahinur S. Akkaya
- School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
10
|
Liu L, Zhang L, Zhao L, Chen Q, Zhang Q, Cao D, Liu Z. Differential Gene Expression and Metabolic Pathway Analysis of Cladophora rupestris under Pb Stress Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13910. [PMID: 36360789 PMCID: PMC9656615 DOI: 10.3390/ijerph192113910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to analyze the transcriptome of C. rupestris under Pb2+ stress by using high-throughput sequencing technology, observe the changes of gene expression and metabolic pathway after three and five days under 1.0 and 5.0 mg/L of Pb2+ treatment, and analyze the differentially expressed genes (DEGs) and related functional genes after Pb2+ treatment. Metabolic pathways were revealed through Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Results show that DEGs increased significantly with the increase of Pb2+ concentration and stress time. A total of 32 genes were closely related to Pb2+ stress response. GO analysis identified two major transporter proteins, namely, ATP-binding transport protein-related (ABC transporters) and zinc finger CCHC domain containing protein (Zfp) in C. rupestris. Pthr19248, pthr19211, Zfp pthr23002, Zfp p48znf pthr12681, Zfp 294 pthr12389, and Zfp pthr23067 played important roles against Pb2+ toxicity and its absorption in C. rupestris. KEGG pathway analysis suggested that ABCA1, ATM, and ABCD3 were closely related to Pb2+ absorption. Pb2+ stress was mainly involved in metallothionein (MT), plant hormone signal transduction, ABC transporters, and glutathione (GSH) metabolism.
Collapse
Affiliation(s)
- Lei Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Lusheng Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Lingyun Zhao
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Qiuyu Chen
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Qian Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Deju Cao
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Zhaowen Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, China
| |
Collapse
|
11
|
Mapuranga J, Zhang N, Zhang L, Liu W, Chang J, Yang W. Harnessing genetic resistance to rusts in wheat and integrated rust management methods to develop more durable resistant cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:951095. [PMID: 36311120 PMCID: PMC9614308 DOI: 10.3389/fpls.2022.951095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Wheat is one of the most important staple foods on earth. Leaf rust, stem rust and stripe rust, caused by Puccini triticina, Puccinia f. sp. graminis and Puccinia f. sp. striiformis, respectively, continue to threaten wheat production worldwide. Utilization of resistant cultivars is the most effective and chemical-free strategy to control rust diseases. Convectional and molecular biology techniques identified more than 200 resistance genes and their associated markers from common wheat and wheat wild relatives, which can be used by breeders in resistance breeding programmes. However, there is continuous emergence of new races of rust pathogens with novel degrees of virulence, thus rendering wheat resistance genes ineffective. An integration of genomic selection, genome editing, molecular breeding and marker-assisted selection, and phenotypic evaluations is required in developing high quality wheat varieties with resistance to multiple pathogens. Although host genotype resistance and application of fungicides are the most generally utilized approaches for controlling wheat rusts, effective agronomic methods are required to reduce disease management costs and increase wheat production sustainability. This review gives a critical overview of the current knowledge of rust resistance, particularly race-specific and non-race specific resistance, the role of pathogenesis-related proteins, non-coding RNAs, and transcription factors in rust resistance, and the molecular basis of interactions between wheat and rust pathogens. It will also discuss the new advances on how integrated rust management methods can assist in developing more durable resistant cultivars in these pathosystems.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenxiang Yang
- College of Plant Protection, Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| |
Collapse
|
12
|
Karhoff S, Vargas-Garcia C, Lee S, Mian MAR, Graham MA, Dorrance AE, McHale LK. Identification of Candidate Genes for a Major Quantitative Disease Resistance Locus From Soybean PI 427105B for Resistance to Phytophthora sojae. FRONTIERS IN PLANT SCIENCE 2022; 13:893652. [PMID: 35774827 PMCID: PMC9237613 DOI: 10.3389/fpls.2022.893652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Phytophthora root and stem rot is a yield-limiting soybean disease caused by the soil-borne oomycete Phytophthora sojae. Although multiple quantitative disease resistance loci (QDRL) have been identified, most explain <10% of the phenotypic variation (PV). The major QDRL explaining up to 45% of the PV were previously identified on chromosome 18 and represent a valuable source of resistance for soybean breeding programs. Resistance alleles from plant introductions 427105B and 427106 significantly increase yield in disease-prone fields and result in no significant yield difference in fields with less to no disease pressure. In this study, high-resolution mapping reduced the QDRL interval to 3.1 cm, and RNA-seq analysis of near-isogenic lines (NILs) varying at QDRL-18 pinpointed a single gene of interest which was downregulated in inoculated NILs carrying the resistant allele compared to inoculated NILs with the susceptible allele. This gene of interest putatively encodes a serine-threonine kinase (STK) related to the AtCR4 family and may be acting as a susceptibility factor, based on the specific increase of jasmonic acid concentration in inoculated NILs. This work facilitates further functional analyses and marker-assisted breeding efforts by prioritizing candidate genes and narrowing the targeted region for introgression.
Collapse
Affiliation(s)
- Stephanie Karhoff
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for Soybean Research, The Ohio State University, Columbus, OH, United States
| | - Christian Vargas-Garcia
- Center for Soybean Research, The Ohio State University, Columbus, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - Sungwoo Lee
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - M. A. Rouf Mian
- United States Department of Agriculture-Agricultural Research Service, Soybean Research Unit, Raleigh, NC, United States
| | - Michelle A. Graham
- Department of Agronomy, Iowa State University, Ames, IA, United States
- United States Department of Agriculture-Agricultural Research Service, Corn Insects and Crop Genetics Resources Unit, Ames, IA, United States
| | - Anne E. Dorrance
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for Soybean Research, The Ohio State University, Columbus, OH, United States
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
| | - Leah K. McHale
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for Soybean Research, The Ohio State University, Columbus, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
13
|
Wang Y, Hu Y, Gong F, Jin Y, Xia Y, He Y, Jiang Y, Zhou Q, He J, Feng L, Chen G, Zheng Y, Liu D, Huang L, Wu B. Identification and Mapping of QTL for Stripe Rust Resistance in the Chinese Wheat Cultivar Shumai126. PLANT DISEASE 2022; 106:1278-1285. [PMID: 34818916 DOI: 10.1094/pdis-09-21-1946-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a damaging disease of wheat globally, and breeding resistant cultivars is the best control strategy. The Chinese winter wheat cultivar Shumai126 (SM126) exhibited strong resistance to P. striiformis f. sp. tritici in the field for more than 10 years. The objective of this study was to identify and map quantitative trait loci (QTL) for resistance to stripe rust in a population of 154 recombinant inbred lines (RILs) derived from a cross between cultivars Taichang29 (TC29) and SM126. The RILs were tested in six field environments with a mixture of the Chinese prevalent races (CYR32, CYR33, CYR34, Zhong4, and HY46) of P. striiformis f. sp. tritici and in growth chamber with race CYR34 and genotyped using the Wheat55K single nucleotide polymorphism (SNP) array. Six QTL were mapped on chromosomes 1BL, 2AS, 2AL, 6AS, 6BS, and 7BL, respectively. All QTL were contributed by SM126 except QYr.sicau-2AL. The QYr.sicau-1BL and QYr.sicau-2AS had major effects, explaining 27.00 to 39.91% and 11.89 to 17.11% of phenotypic variances, which may correspond to known resistance genes Yr29 and Yr69, respectively. The QYr.sicau-2AL, QYr.sicau-6AS, and QYr.sicau-6BS with minor effects are likely novel. QYr.sicau-7BL was only detected based on growth chamber seedling data. Additive effects were detected for the combination of QYr.sicau-1BL, QYr.sicau-2AS, and QYr.sicau-2AL. SNP markers linked to QYr.sicau-1BL (AX-111056129 and AX-108839316) and QYr.sicau-2AS (AX-111557864 and AX-110433540) were converted to breeder-friendly Kompetitive allele-specific PCR (KASP) markers that would facilitate the deployment of stripe rust resistance genes in wheat breeding.
Collapse
Affiliation(s)
- Yufan Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yanling Hu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Fangyi Gong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yarong Jin
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yingjie Xia
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yu He
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yun Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Jingshu He
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lihua Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bihua Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
14
|
Gong F, Qi T, Zhang T, Lu Y, Liu J, Zhong X, He J, Li Y, Zheng Y, Liu D, Huang L, Wu B. Comparison of the Agronomic, Cytological, Grain Protein Characteristics, as Well as Transcriptomic Profile of Two Wheat Lines Derived From Wild Emmer. Front Genet 2022; 12:804481. [PMID: 35154252 PMCID: PMC8831750 DOI: 10.3389/fgene.2021.804481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Two advanced wheat lines BAd7-209 and BAd23-1 without the functional gene GPC-B1 were obtained from a cross between common wheat cultivar Chuannong 16 (CN16) and wild emmer wheat accession D97 (D97). BAd7-209 showed superior quality parameters than those of BAd23-1 and CN16. We found that the components of glutenins and gliadins in BAd7-209 and BAd23-1 were similar, whereas BAd7-209 had higher amount of glutenins and gliadins than those of BAd23-1. RNA sequencing analysis on developing grains of BAd7-209 and BAd23-1 as well as their parents revealed 382 differentially expressed genes (DEGs) between the high–grain protein content (GPC) (D97 + BAd7-209) and the low-GPC (CN16 + BAd23-1) groups. DEGs were mainly associated with transcriptional regulation of the storage protein genes, protein processing in endoplasmic reticulum, and protein export pathways. The upregulated gluten genes and transcription factors (e.g., NAC, MYB, and bZIP) may contribute to the high GPC in BAd7-209. Our results provide insights into the potential regulation pathways underlying wheat grain protein accumulation and contribute to make use of wild emmer for wheat quality improvement.
Collapse
Affiliation(s)
- Fangyi Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tiangang Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tian Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yusen Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jia Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaoying Zhong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jingshu He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfang Li
- Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Lin Huang, ; Bihua Wu,
| | - Bihua Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Lin Huang, ; Bihua Wu,
| |
Collapse
|
15
|
Genome-Wide Association Mapping of Crown and Brown Rust Resistance in Perennial Ryegrass. Genes (Basel) 2021; 13:genes13010020. [PMID: 35052360 PMCID: PMC8774571 DOI: 10.3390/genes13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/19/2022] Open
Abstract
A population of 239 perennial ryegrass (Lolium perenne L.) genotypes was analyzed to identify marker-trait associations for crown rust (Puccinia coronata f. sp. lolii) and brown rust (Puccinia graminis f. sp. loliina) resistance. Phenotypic data from field trials showed a low correlation (r = 0.17) between the two traits. Genotypes were resequenced, and a total of 14,538,978 SNPs were used to analyze population structure, linkage disequilibrium (LD), and for genome-wide association study. The SNP heritability (h2SNP) was 0.4 and 0.8 for crown and brown rust resistance, respectively. The high-density SNP dataset allowed us to estimate LD decay with the highest possible precision to date for perennial ryegrass. Results showed a low LD extension with a rapid decay of r2 value below 0.2 after 520 bp on average. Additionally, QTL regions for both traits were detected, as well as candidate genes by applying Genome Complex Trait Analysis and Multi-marker Analysis of GenoMic Annotation. Moreover, two significant genes, LpPc6 and LpPl6, were identified for crown and brown rust resistance, respectively, when SNPs were aggregated to the gene level. The two candidate genes encode proteins with phosphatase activity, which putatively can be induced by the host to perceive, amplify and transfer signals to downstream components, thus activating a plant defense response.
Collapse
|
16
|
Physiological and Dual Transcriptional Analysis of Microalga Graesiella emersonii-Amoeboaphelidium protococcarum Pathosystem Uncovers Conserved Defense Response and Robust Pathogenicity. Int J Mol Sci 2021; 22:ijms222312847. [PMID: 34884652 PMCID: PMC8657485 DOI: 10.3390/ijms222312847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022] Open
Abstract
The underlying mechanisms of microalgal host–pathogen interactions remain largely unknown. In this study, we applied physiological and simultaneous dual transcriptomic analysis to characterize the microalga Graesiella emersonii–Amoeboaphelidium protococcarum interaction. Three infection stages were determined according to infection rate and physiological features. Dual RNA-seq results showed that the genes expression of G. emersonii and A. protococcarum were strongly dynamically regulated during the infection. For microalgal hosts, similar to plant defense response, the expression of defense genes involved in the pattern recognition receptors, large heat shock proteins, and reactive oxygen scavenging enzymes (glutathione, ferritin, and catalase) were significantly upregulated during infection. However, some genes encoding resistance proteins (R proteins) with a leucine-rich repeat domain exhibited no significant changes during infection. For endoparasite A. protococcarum, genes for carbohydrate-active enzymes, pathogen–host interactions, and putative effectors were significantly upregulated during infection. Furthermore, the genes in cluster II were significantly enriched in pathways associated with the modulation of vacuole transport, including endocytosis, phagosome, ubiquitin-mediated proteolysis, and SNARE interactions in vesicular transport pathways. These results suggest that G. emersonii has a conserved defense system against pathogen and that endoparasite A. protococcarum possesses a robust pathogenicity to infect the host. Our study characterizes the first transcriptomic profile of microalgae–endoparasite interaction, providing a new promising basis for complete understanding of the algal host defense strategies and parasite pathogenicity.
Collapse
|
17
|
Jan I, Saripalli G, Kumar K, Kumar A, Singh R, Batra R, Sharma PK, Balyan HS, Gupta PK. Meta-QTLs and candidate genes for stripe rust resistance in wheat. Sci Rep 2021; 11:22923. [PMID: 34824302 PMCID: PMC8617266 DOI: 10.1038/s41598-021-02049-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/02/2021] [Indexed: 11/15/2022] Open
Abstract
In bread wheat, meta-QTL analysis was conducted using 353 QTLs that were available from earlier studies. When projected onto a dense consensus map comprising 76,753 markers, only 184 QTLs with the required information, could be utilized leading to identification of 61 MQTLs spread over 18 of the 21 chromosomes (barring 5D, 6D and 7D). The range for mean R2 (PVE %) was 1.9% to 48.1%, and that of CI was 0.02 to 11.47 cM; these CIs also carried 37 Yr genes. Using these MQTLs, 385 candidate genes (CGs) were also identified. Out of these CGs, 241 encoded known R proteins and 120 showed differential expression due to stripe rust infection at the seedling stage; the remaining 24 CGs were common in the sense that they encoded R proteins as well as showed differential expression. The proteins encoded by CGs carried the following widely known domains: NBS-LRR domain, WRKY domains, ankyrin repeat domains, sugar transport domains, etc. Thirteen breeders' MQTLs (PVE > 20%) including four pairs of closely linked MQTLs are recommended for use in wheat molecular breeding, for future studies to understand the molecular mechanism of stripe rust resistance and for gene cloning.
Collapse
Grants
- BT/PR21024/AGIII/103/925/2016 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR21024/AGIII/103/925/2016 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR21024/AGIII/103/925/2016 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR21024/AGIII/103/925/2016 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR21024/AGIII/103/925/2016 Department of Biotechnology, Ministry of Science and Technology, India
- Indian National Science Academy
Collapse
Affiliation(s)
- Irfat Jan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Kuldeep Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Anuj Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Rakhi Singh
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Ritu Batra
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Pradeep Kumar Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
18
|
Changes in Photosynthesis Could Provide Important Insight into the Interaction between Wheat and Fungal Pathogens. Int J Mol Sci 2021; 22:ijms22168865. [PMID: 34445571 PMCID: PMC8396289 DOI: 10.3390/ijms22168865] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022] Open
Abstract
Photosynthesis is a universal process for plant survival, and immune defense is also a key process in adapting to the growth environment. Various studies have indicated that these two processes are interconnected in a complex network. Photosynthesis can influence signaling pathways and provide both materials and energy for immune defense, while the immune defense process can also have feedback effects on photosynthesis. Pathogen infection inevitably leads to changes in photosynthesis parameters, including Pn, Gs, and Ci; biochemical materials such as SOD and CAT; signaling molecules such as H2O2 and hormones; and the expression of genes involved in photosynthesis. Some researchers have found that changes in photosynthesis activity are related to the resistance level of the host, the duration after infection, and the infection position (photosynthetic source or sink). Interactions between wheat and the main fungal pathogens, such as Puccinia striiformis, Blumeria graminis, and Fusarium graminearum, constitute an ideal study system to elucidate the relationship between changes in host photosynthesis and resistance levels, based on the accessibility of methods for artificially controlling infection and detecting changes in photosynthesis, the presence of multiple pathogens infecting different positions, and the abundance of host materials with various resistance levels. This review is written only from the perspective of plant pathologists, and after providing an overview of the available data, we generally found that changes in photosynthesis in the early stage of pathogen infection could be a causal factor influencing acquired resistance, while those in the late stage could be the result of resistance formation.
Collapse
|