1
|
Huang Q, Yan K, Li G. Molecular characterization of virulent genes in Pseudomonas aeruginosa based on componential usage divergence. Sci Rep 2025; 15:11246. [PMID: 40175567 PMCID: PMC11965391 DOI: 10.1038/s41598-025-95579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/21/2025] [Indexed: 04/04/2025] Open
Abstract
Genetic characteristics of virulent genes in Pseudomonas aeruginosa attracted significant attention for they could govern their drug-resistances. Studies on the componential usage divergences in the virulent genes are beneficial for further explicating their molecular characteristics. In present study, one thousand complete genomes of Pseudomonas aeruginosa were considered to study the molecular characteristics of 21 typical virulent genes. The important componential usage patterns (i.e., the base usage pattern, the codon usage pattern and their divergences) of 21 specific virulent genes were counted and calculated. The results show that (1) most virulent genes concerned in the present study are high GC sequences (overall GC ratio > 50%), especially from the codon usage perspective, the virulent genes are obviously GC3-abundant sequences (GC3 ratio > 70%); (2) the relative synonymous codon usage of all concerned virulent genes are uneven, especially in the anvM and the lptA, there is no codon for some certain amino acids, which could reveal their obvious codon usage bias; (3) some genes (i.e., the oprF and the fadD1) with lower divergence have steady effective number of codons. The findings of the present work would improve novel insights on the genetic characteristics of virulent genes in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Qian Huang
- School of Computer Engineering, Shanxi Vocational University of Engineering Science and Technology, Jinzhong, Shanxi, China
| | - Keding Yan
- Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, Shaanxi, China.
| | - Gun Li
- Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, Shaanxi, China.
| |
Collapse
|
2
|
Mou QH, Hu Z, Zhang J, Daroch M, Tang J. Comparative genomics of thermosynechococcaceae and thermostichaceae: insights into codon usage bias. Acta Biochim Pol 2025; 71:13825. [PMID: 39845100 PMCID: PMC11750575 DOI: 10.3389/abp.2024.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
Members of the families Thermosynechococcaceae and Thermostichaceae are well-known unicellular thermophilic cyanobacteria and a non-thermophilic genus Pseudocalidococcus was newly classified into the former. Analysis of the codon usage bias (CUB) of cyanobacterial species inhabiting different thermal and non-thermal niches will benefit the understanding of their genetic and evolutionary characteristics. Herein, the CUB and codon context patterns of protein-coding genes were systematically analyzed and compared between members of the two families. Overall, the nucleotide composition and CUB indices were found to differ between thermophiles and non-thermophiles. The thermophiles showed a higher G/C content in the codon base composition and tended to end with G/C compared to the non-thermophiles. Correlation analysis indicated significant associations between codon base composition and CUB indices. The results of the effective number of codons, parity-rule 2, neutral and correspondence analyses indicated that mutational pressure and natural selection primarily account for CUB in these cyanobacterial species, but the primary driving forces exhibit variation among genera. Moreover, the optimal codons identified based on relative synonymous codon usage values were found to differ among genera and even within genera. In addition, codon context pattern analysis revealed the specificity of the sequence context of start and stop codons among genera. Intriguingly, the clustering of codon context patterns appeared to be more related to thermotolerance than to phylogenomic relationships. In conclusion, this study facilitates the understanding of the characteristics and sources of variation of CUB and the evolution of the surveyed cyanobacterial clades with different thermotolerance and provides insights into their adaptation to different environments.
Collapse
Affiliation(s)
- Qiao-Hui Mou
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Zhe Hu
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Jing Zhang
- Food Safety Detection Key Laboratory of Sichuan, Technical Center of Chengdu Customs, Chengdu, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| |
Collapse
|
3
|
Gao W, Chen X, He J, Sha A, Luo Y, Xiao W, Xiong Z, Li Q. Intraspecific and interspecific variations in the synonymous codon usage in mitochondrial genomes of 8 pleurotus strains. BMC Genomics 2024; 25:456. [PMID: 38730418 PMCID: PMC11084086 DOI: 10.1186/s12864-024-10374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
In this study, we investigated the codon bias of twelve mitochondrial core protein coding genes (PCGs) in eight Pleurotus strains, two of which are from the same species. The results revealed that the codons of all Pleurotus strains had a preference for ending in A/T. Furthermore, the correlation between codon base compositions and codon adaptation index (CAI), codon bias index (CBI) and frequency of optimal codons (FOP) indices was also detected, implying the influence of base composition on codon bias. The two P. ostreatus species were found to have differences in various base bias indicators. The average effective number of codons (ENC) of mitochondrial core PCGs of Pleurotus was found to be less than 35, indicating strong codon preference of mitochondrial core PCGs of Pleurotus. The neutrality plot analysis and PR2-Bias plot analysis further suggested that natural selection plays an important role in Pleurotus codon bias. Additionally, six to ten optimal codons (ΔRSCU > 0.08 and RSCU > 1) were identified in eight Pleurotus strains, with UGU and ACU being the most widely used optimal codons in Pleurotus. Finally, based on the combined mitochondrial sequence and RSCU value, the genetic relationship between different Pleurotus strains was deduced, showing large variations between them. This research has improved our understanding of synonymous codon usage characteristics and evolution of this important fungal group.
Collapse
Affiliation(s)
- Wei Gao
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, China
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jing He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
- School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, Longquanyi District, Chengdu, Sichuan, 610106, China.
| |
Collapse
|
4
|
Li Q, Luo Y, Sha A, Xiao W, Xiong Z, Chen X, He J, Peng L, Zou L. Analysis of synonymous codon usage patterns in mitochondrial genomes of nine Amanita species. Front Microbiol 2023; 14:1134228. [PMID: 36970689 PMCID: PMC10030801 DOI: 10.3389/fmicb.2023.1134228] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
IntroductionCodon basis is a common and complex natural phenomenon observed in many kinds of organisms.MethodsIn the present study, we analyzed the base bias of 12 mitochondrial core protein-coding genes (PCGs) shared by nine Amanita species.ResultsThe results showed that the codons of all Amanita species tended to end in A/T, demonstrating the preference of mitochondrial codons of Amanita species for a preference for this codon. In addition, we detected the correlation between codon base composition and the codon adaptation index (CAI), codon bias index (CBI), and frequency of optimal codons (FOP) indices, indicating the influence of base composition on codon bias. The average effective number of codons (ENC) of mitochondrial core PCGs of Amanita is 30.81, which is <35, demonstrating the strong codon preference of mitochondrial core PCGs of Amanita. The neutrality plot analysis and PR2-Bias plot analysis further demonstrated that natural selection plays an important role in Amanita codon bias. In addition, we obtained 5–10 optimal codons (ΔRSCU > 0.08 and RSCU > 1) in nine Amanita species, and GCA and AUU were the most widely used optimal codons. Based on the combined mitochondrial sequence and RSCU value, we deduced the genetic relationship between different Amanita species and found large variations between them.DiscussionThis study promoted the understanding of synonymous codon usage characteristics and evolution of this important fungal group.
Collapse
|
5
|
Benisty H, Hernandez-Alias X, Weber M, Anglada-Girotto M, Mantica F, Radusky L, Senger G, Calvet F, Weghorn D, Irimia M, Schaefer MH, Serrano L. Genes enriched in A/T-ending codons are co-regulated and conserved across mammals. Cell Syst 2023; 14:312-323.e3. [PMID: 36889307 DOI: 10.1016/j.cels.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/11/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023]
Abstract
Codon usage influences gene expression distinctly depending on the cell context. Yet, the importance of codon bias in the simultaneous turnover of specific groups of protein-coding genes remains to be investigated. Here, we find that genes enriched in A/T-ending codons are expressed more coordinately in general and across tissues and development than those enriched in G/C-ending codons. tRNA abundance measurements indicate that this coordination is linked to the expression changes of tRNA isoacceptors reading A/T-ending codons. Genes with similar codon composition are more likely to be part of the same protein complex, especially for genes with A/T-ending codons. The codon preferences of genes with A/T-ending codons are conserved among mammals and other vertebrates. We suggest that this orchestration contributes to tissue-specific and ontogenetic-specific expression, which can facilitate, for instance, timely protein complex formation.
Collapse
Affiliation(s)
- Hannah Benisty
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.
| | - Xavier Hernandez-Alias
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Marc Weber
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Miquel Anglada-Girotto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Federica Mantica
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Leandro Radusky
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Gökçe Senger
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, Milan 20139, Italy
| | - Ferriol Calvet
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Donate Weghorn
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Martin H Schaefer
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, Milan 20139, Italy
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
6
|
Wang X, Sun J, Zheng Y, Xie F. Dispersion of synonymous codon usage patterns in hepatitis E virus genomes derived from various hosts. J Basic Microbiol 2022; 62:975-983. [PMID: 35778820 DOI: 10.1002/jobm.202200072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/01/2022] [Accepted: 06/11/2022] [Indexed: 11/09/2022]
Abstract
Hepatitis E virus (HEV) is an important zoonotic pathogen infecting a wide range of host species. It has a positive-sense, single-stranded RNA genome encoding three open reading frames (ORFs). Synonymous codon usages of viruses essentially determine their survival and adaptation to susceptible hosts. To better understand the interplay between the ever-expanding host range and synonymous codon usages of HEV, we quantified the dispersion of synonymous codon usages of HEV genomes isolated from different hosts via Vs calculation and information entropy. HEV ORFs show species-specific synonymous codon usage patterns. Ruminant-derived HEV ORFs own the most synonymous codons with stable usage patterns (Vs value <0.1) which leads to the stable overall codon usage patterns (R value being close to zero). Swine-derived HEV ORFs own more concentrated synonymous codons than those from wild boar. Compared with HEV strains isolated from other hosts, the human-derived HEV exhibits a distinct pattern at the overall codon usage (R < 0). Generally, ORF1 contains more synonymous codons with stable usage patterns (Vs < 0.1) than those of ORFs 2 and 3. Moreover, ORF3 contains more synonymous codons with varied patterns (Vs > 1.0) than ORFs 1 and 2. The host factor serving as one of the evolutionary dynamics probably influences synonymous codon usage patterns of the HEV genome. Taken together, synonymous codons with stable usage patterns in ORF1 might help to sustain the infection, while that with varied usage patterns in ORF3 may facilitate cross-species infection and expand the host range.
Collapse
Affiliation(s)
- Xin Wang
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Sun
- Department of Endocrine, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yueyan Zheng
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Fuqiang Xie
- Department of Stomatology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Heng J, Heng HH. Karyotype coding: The creation and maintenance of system information for complexity and biodiversity. Biosystems 2021; 208:104476. [PMID: 34237348 DOI: 10.1016/j.biosystems.2021.104476] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/22/2022]
Abstract
The mechanism of biological information flow is of vital importance. However, traditional research surrounding the genetic code that follows the central dogma to a phenotype faces challengers, including missing heritability and two-phased evolution. Here, we propose the karyotype code, which by organizing genes along chromosomes at once preserves species genome information and provides a platform for other genetic and nongenetic information to develop and accumulate. This specific genome-level code, which exists in all living systems, is compared to the genetic code and other organic codes in the context of information management, leading to the concept of hierarchical biological codes and an 'extended' definition of adaptor where the adaptors of a code can be not only molecular structures but also, more commonly, biological processes. Notably, different levels of a biosystem have their own mechanisms of information management, and gene-coded parts inheritance preserves "parts information" while karyotype-coded system inheritance preserves the "system information" which organizes parts information. The karyotype code prompts many questions regarding the flow of biological information, including the distinction between information creation, maintenance, modification, and usage, along with differences between living and non-living systems. How do biological systems exist, reproduce, and self-evolve for increased complexity and diversity? Inheritance is mediated by organic codes which function as informational tools to organize chemical reactions, create new information, and preserve frozen accidents, transforming historical miracles into biological routines.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 86 Brattle Street Cambridge, MA, 02138, USA
| | - Henry H Heng
- Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|