1
|
Mandal D, Akhtar N, Shafi S, Gupta J. Phytoestrogens and Sirtuin Activation for Renal Protection: A Review of Potential Therapeutic Strategies. PLANTA MEDICA 2025; 91:146-166. [PMID: 39626791 DOI: 10.1055/a-2464-4354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Significant health and socio-economic challenges are posed by renal diseases, leading to millions of deaths annually. The costs associated with treating and caring for patients with renal diseases are considerable. Current therapies rely on synthetic drugs that often come with side effects. However, phytoestrogens, natural compounds, are emerging as promising renal protective agents. They offer a relatively safe, effective, and cost-efficient alternative to existing therapies. Phytoestrogens, being structurally similar to 17-β-estradiol, bind to estrogen receptors and produce both beneficial and, in some cases, harmful health effects. The activation of sirtuins has shown promise in mitigating fibrosis and inflammation in renal tissues. Specifically, SIRT1, which is a crucial regulator of metabolic activities, plays a role in protecting against nephrotoxicity, reducing albuminuria, safeguarding podocytes, and lowering reactive oxygen species in diabetic glomerular injury. Numerous studies have highlighted the ability of phytoestrogens to activate sirtuins, strengthen antioxidant defense, and promote mitochondrial biogenesis, playing a vital role in renal protection during kidney injury. These findings support further investigation into the potential role of phytoestrogens in renal protection. This manuscript reviews the potential of phytoestrogens such as resveratrol, genistein, coumestrol, daidzein, and formononetin in regulating sirtuin activity, particularly SIRT1, and thereby providing renal protection. Understanding these mechanisms is crucial for designing effective treatment strategies using naturally occurring phytochemicals against renal diseases.
Collapse
Affiliation(s)
- Debojyoti Mandal
- School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India
| | - Sana Shafi
- Molecular Medicine & Pathology (MMP) Matauranga Hauora, Faculty of Medical and Health Sciences Waipapa Taumata Rau, University of Auckland, Aotearoa, New Zealand
| | - Jeena Gupta
- School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India
| |
Collapse
|
2
|
Chen C, Xu B, Li W, Chen J, Yang M, Gao L, Zhou J. New perspectives on the treatment of diabetic nephropathy: Challenges and prospects of mesenchymal stem cell therapy. Eur J Pharmacol 2025; 998:177543. [PMID: 40139419 DOI: 10.1016/j.ejphar.2025.177543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes mellitus. Traditional treatment methods have certain limitations and it is difficult to effectively delay the disease progression. Mesenchymal stem cells (MSCs), owing to their potential for self-renewal, multidirectional differentiation, and immunomodulatory abilities, can regulate the renal immune microenvironment and repair damaged tissues, providing a new strategy for the treatment of DN. However, MSCs face problems such as immune rejection, cell inactivation, challenges in directed differentiation, insufficient homing ability, and low cell retention rate after delivery. These issues limit their clinical application in patients with DN. This review aims to propose optimization strategies targeting DN pathological features to improve MSC effectiveness and reduce their side effects. Specifically, it involves optimizing cell culture systems and cryopreservation protocols, along with pre-transplantation pharmacological conditioning to boost the functionality and viability of MSCs. Additionally, the exploration of synergistic drug-MSC combination therapies was carried out, taking advantage of diverse mechanisms of action to improve therapeutic outcomes. The integration of biomaterials and gene editing technologies to significantly enhance cell survival, target specificity, and tissue engraftment was also pursued. Concurrently, the determination of optimal therapeutic dosages and administration routes remained crucial. These multifaceted strategies not only provide a theoretical framework for overcoming existing technical limitations but also lay a robust foundation for accelerating the clinical translation of MSC-based therapies.
Collapse
Affiliation(s)
- Canyu Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Bo Xu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Weiyi Li
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Jixiang Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Mingxia Yang
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Lili Gao
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Jiecan Zhou
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; MOE Key Laboratory of Pediatric Rare Diseases, University of South China, Hengyang, 421001, Hunan, China; Furong Laboratory, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Li K, Xia X, Tong Y. Multiple roles of mitochondrial autophagy receptor FUNDC1 in mitochondrial events and kidney disease. Front Cell Dev Biol 2024; 12:1453365. [PMID: 39445333 PMCID: PMC11496291 DOI: 10.3389/fcell.2024.1453365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
This article reviews the latest research progress on the role of mitochondrial autophagy receptor FUN14 domain containing 1 (FUNDC1) in mitochondrial events and kidney disease. FUNDC1 is a protein located in the outer membrane of mitochondria, which maintains the function and quality of mitochondria by regulating mitochondrial autophagy, that is, the selective degradation process of mitochondria. The structural characteristics of FUNDC1 enable it to respond to intracellular signal changes and regulate the activity of mitochondrial autophagy through phosphorylation and dephosphorylation. During phosphorylation, unc-51-like kinase 1 (ULK1) promotes the activation of mitophagy by phosphorylating Ser17 of FUNDC1. In contrast, Src and CK2 kinases inhibit the interaction between FUNDC1 and LC3 by phosphorylating Tyr18 and Ser13, thereby inhibiting mitophagy. During dephosphorylation, PGAM5 phosphatase enhances the interaction between FUNDC1 and LC3 by dephosphorylating Ser13, thereby activating mitophagy. BCL2L1 inhibits the activity of PGAM5 by interacting with PGAM5, thereby preventing the dephosphorylation of FUNDC1 and inhibiting mitophagy. FUNDC1 plays an important role in mitochondrial events, participating in mitochondrial fission, maintaining the homeostasis of iron and proteins in mitochondrial matrix, and mediating crosstalk between mitochondria, endoplasmic reticulum and lysosomes, which have important effects on cell energy metabolism and programmed death. In the aspect of kidney disease, the abnormal function of FUNDC1 is closely related to the occurrence and development of many diseases. In acute kidney injury (AKI), cardiorenal syndrome (CRS), diabetic nephropathy (DN), chronic kidney disease (CKD) ,renal fibrosis (RF) and renal anemia, FUNDC1-mediated imbalance of mitophagy may be one of the key factors in disease progression. Therefore, in-depth study of the regulatory mechanism and function of FUNDC1 is of great significance for understanding the pathogenesis of renal disease and developing new treatment strategies.
Collapse
Affiliation(s)
- Kaiqing Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xue Xia
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Tong
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Liu X, Gu X, Zhang J, Li X, Wei X, Jiang S, Li W. Resveratrol delays the progression of diabetic nephropathy through multiple pathways: A dose-response meta-analysis based on animal models. J Diabetes 2024; 16:e13608. [PMID: 39264004 PMCID: PMC11391385 DOI: 10.1111/1753-0407.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 09/13/2024] Open
Abstract
OBJECTIVE Accumulating experimental evidence has shown that resveratrol supplementation is effective for treating diabetic nephropathy (DN) in animal models. In this systematic review and meta-analysis, we assessed the effects and multiple mechanisms of resveratrol in animal models of DN. METHODS Before September 2023, preclinical literature was systematically searched and screened across PubMed, Web of Science, EMBASE, and the Cochrane Library. Forty-two studies were included, and the risk of bias tool from SYRCLE was used to assess the methodological quality. Pooled overall effect sizes of the results were generated by STATA 16.0. RESULTS The overall results provide preliminary evidence that the consumption of resveratrol can significantly reduce the mesangial index, glomerular basement membrane thickness, glomerular hypertrophy, serum creatinine, blood urea nitrogen, 24-h urinary protein, blood glucose, kidney index, total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels. In contrast, the levels of albumin and high-density lipoprotein cholesterol are significantly increased. However, resveratrol did not significantly reduce creatinine clearance or glycated hemoglobin levels. Dose-response analysis revealed that resveratrol was most effective at improving kidney function and reducing DN when administered at lower doses of ≤15 mg/kg/day or higher doses of 100-200 mg/kg/day, with significant improvements in biochemical kidney injury markers and a better effect on dysglycemia. CONCLUSIONS The benefits of resveratrol in DN are likely due to its anti-inflammatory, antioxidant, metabolic regulatory, and autophagy-promoting effects. To confirm these findings for clinical use, further large-scale, long-term, high-quality preclinical trials are warranted to accurately assess the anti-DN effects and safety of resveratrol.
Collapse
Affiliation(s)
- Xiaojing Liu
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xia Gu
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Jiao Zhang
- Department of NephrologyChina‐Japan Friendship Hospital (Institute of Clinical Medical Sciences)BeijingChina
| | - Xiangmeng Li
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xiansen Wei
- Beijing University of Chinese MedicineBeijingChina
| | - Shimin Jiang
- Beijing University of Chinese MedicineBeijingChina
| | - Wenge Li
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
5
|
Gong XX, Cao LH, Ni HX, Zang ZY, Chang H. Chinese herbal medicine for the treatment of diabetic nephropathy: From clinical evidence to potential mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118179. [PMID: 38636575 DOI: 10.1016/j.jep.2024.118179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic nephropathy (DN) is a typical chronic microvascular complication of diabetes, characterized by proteinuria and a gradual decline in renal function. At present, there are limited clinical interventions aimed at preventing the progression of DN to end-stage renal disease (ESRD). However, Chinese herbal medicine presents a distinct therapeutic approach that can be effectively combined with conventional Western medicine treatments to safeguard renal function. This combination holds considerable practical implications for the treatment of DN. AIM OF THE STUDY This review covers commonly used Chinese herbal remedies and decoctions applicable to various types of DN, and we summarize the role played by their active ingredients in the treatment of DN and their mechanisms, which includes how they might improve inflammation and metabolic abnormalities to provide new ideas to cope with the development of DN. MATERIALS AND METHODS With the keywords "diabetic nephropathy," "Chinese herbal medicine," "clinical effectiveness," and "bioactive components," we conducted an extensive literature search of several databases, including PubMed, Web of Science, CNKI, and Wanfang database, to discover studies on herbal formulas that were effective in slowing the progression of DN. The names of the plants covered in the review have been checked at MPNS (http://mpns.kew.org). RESULTS This review demonstrates the superior total clinical effective rate of combining Chinese herbal medicines with Western medicines over the use of Western medicines alone, as evidenced by summarizing the results of several clinical trials. Furthermore, the review highlights the nephroprotective effects of seven frequently used herbs exerting beneficial effects such as podocyte repair, anti-fibrosis of renal tissues, and regulation of glucose and lipid metabolism through multiple signaling pathways in the treatment of DN. CONCLUSIONS The potential of herbs in treating DN is evident from their excellent effectiveness and the ability of different herbs to target various symptoms of the condition. However, limitations arise from the deficiencies in interfacing with objective bioindicators, which hinder the integration of herbal therapies into modern medical practice. Further research is warranted to address these limitations and enhance the compatibility of herbal therapies with contemporary medical standards.
Collapse
Affiliation(s)
- Xiao-Xiao Gong
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Lin-Hai Cao
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Hong-Xia Ni
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Zi-Yan Zang
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Hui Chang
- College of Food Science, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
6
|
Zhao P, Lv X, Zhou Z, Yang X, Huang Y, Liu J. Indexes of ferroptosis and iron metabolism were associated with the severity of diabetic nephropathy in patients with type 2 diabetes mellitus: a cross-sectional study. Front Endocrinol (Lausanne) 2023; 14:1297166. [PMID: 38189040 PMCID: PMC10767668 DOI: 10.3389/fendo.2023.1297166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Objective To explore the correlations between diabetic nephropathy (DN) and serum levels of glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long-chain family member 4 (ACSL4), iron, transferrin (Tf), and ferritin in patients with type 2 diabetes mellitus (T2DM). Methods According to the urinary albumin excretion rate(UAER) or estimated glomerular filtration rate (eGFR) levels, a total of 123 patients with T2DM were separately divided into normoalbuminuria (NO), microalbuminuria (MI), macroalbuminuria (MA) groups, and G1 (eGFR ≥ 90 mL/min), G2 (eGFR ≤ 60 mL/min to < 90 mL/min), and G3 groups (eGFR< 60 mL/min), with 33 healthy participants as the control (HC). The differences in serum GPX4, ACSL4, iron, Tf, and ferritin levels between groups were compared, and the relationships between these levels were analysed. The independent correlations between UAER or DN severity and serum GPX4, ACSL4, iron, Tf, and ferritin levels were analysed by multiple linear and multinomial logistic regression, respectively. Results To the patients with T2DM, with the increase in UAER levels, GPX4, iron, and Tf levels gradually decreased, whereas ACSL4 levels increased, meanwhile with the decrease in eGFR levels, GPX4 and Tf levels gradually decreased, whereas ACSL4 levels increased. UAER were independently and positively correlated with ACSL4 [β = 17.53, 95% confidence interval (CI; 11.94, 23.13)] and negatively correlated with GPX4 [β = -1.633, 95% CI (-2.77, -0.496)] and Tf [β = -52.94, 95% CI (-95.78, -10.11)].The NO and MI groups were considered as reference groups, respectively. The severity of DN was negatively correlated with serum GPX4 [odds ratio (OR) = 0.925 and 0.902, p =0.015 and 0.001], and Tf (OR = 0.109 and 0.119, p =0.043 and 0.034), and positively correlated with ACSL4 (OR = 1.952 and 1.865, both p <0.001) in the MA group. Conclusion DN severity was negatively correlated with serum GPX4 and Tf levels and positively correlated with serum ACSL4 levels in patients with T2DM.
Collapse
Affiliation(s)
- Pingping Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoyu Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | | | - Xiaolan Yang
- Clinical Laboratory of The First People’s Hospital of Baiyin, Baiyin, Gansu, China
| | - Ying Huang
- Clinical Laboratory of The First People’s Hospital of Baiyin, Baiyin, Gansu, China
| | - Jingfang Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Darenskaya M, Kolesnikov S, Semenova N, Kolesnikova L. Diabetic Nephropathy: Significance of Determining Oxidative Stress and Opportunities for Antioxidant Therapies. Int J Mol Sci 2023; 24:12378. [PMID: 37569752 PMCID: PMC10419189 DOI: 10.3390/ijms241512378] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Diabetes mellitus (DM) belongs to the category of socially significant diseases with epidemic rates of increases in prevalence. Diabetic nephropathy (DN) is a specific kind of kidney damage that occurs in 40% of patients with DM and is considered a serious complication of DM. Most modern methods for treatments aimed at slowing down the progression of DN have side effects and do not produce unambiguous positive results in the long term. This fact has encouraged researchers to search for additional or alternative treatment methods. Hyperglycemia has a negative effect on renal structures due to a number of factors, including the activation of the polyol and hexosamine glucose metabolism pathways, the activation of the renin-angiotensin-aldosterone and sympathetic nervous systems, the accumulation of advanced glycation end products and increases in the insulin resistance and endothelial dysfunction of tissues. The above mechanisms cause the development of oxidative stress (OS) reactions and mitochondrial dysfunction, which in turn contribute to the development and progression of DN. Modern antioxidant therapies for DN involve various phytochemicals (food antioxidants, resveratrol, curcumin, alpha-lipoic acid preparations, etc.), which are widely used not only for the treatment of diabetes but also other systemic diseases. It has also been suggested that therapeutic approaches that target the source of reactive oxygen species in DN may have certain advantages in terms of nephroprotection from OS. This review describes the significance of studies on OS biomarkers in the pathogenesis of DN and analyzes various approaches to reducing the intensity of OS in the prevention and treatment of DN.
Collapse
Affiliation(s)
- Marina Darenskaya
- Department of Personalized and Preventive Medicine, Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia; (S.K.); (N.S.); (L.K.)
| | | | | | | |
Collapse
|
8
|
Lu M, Ou J, Deng X, Chen Y, Gao Q. Exploring the pharmacological mechanisms of Tripterygium wilfordii against diabetic kidney disease using network pharmacology and molecular docking. Heliyon 2023; 9:e17550. [PMID: 37416640 PMCID: PMC10320109 DOI: 10.1016/j.heliyon.2023.e17550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/29/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Background Tripterygium wilfordii (TW), when formulated in traditional Chinese medicine (TCM), can effectively treat diabetic kidney disease (DKD). However, the pharmacological mechanism associated with its success has not yet been elucidated. The current work adopted network pharmacology and molecular docking for exploring TW-related mechanisms in treating DKD. Methods: In the present work, the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was employed to obtain the effective components and candidate targets of TW. Additionally, this work utilized the UniProt protein database for screening and standardizing human-derived targets for effective components. The Cytoscape software was utilized to construct an effective component-target network for TW. Targets for DKD were acquired in the GEO, DisGeNET, GeneCards, and OMIM databases. Additionally, a Venn diagram was also plotted to select the possible targets of TW for treating DKD. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted to explore the TW-related mechanism underlying DKD treatment. This work also built a protein-protein interaction (PPI) network based on the Cytoscape and String platform. Then, molecular docking was conducted in order to assess the affinity of key proteins for related compounds. Results: In total, 29 active components and 134 targets of TW were acquired, including 63 shared targets, which were identified as candidate therapeutic targets. Some key targets and important pathways were included in the effect of TW in treating DKD. Genes with higher degrees, including TNF and AKT1, were identified as hub genes of TW against DKD. Molecular docking showed that TNF and AKT1 bind well to the main components in TW (kaempferol, beta-sitosterol, triptolide, nobiletin, and stigmasterol). Conclusions TW primarily treats DKD by acting on two targets (AKT1 and TNF) via the five active ingredients kaempferol, beta-sitosterol, triptolide, nobiletin, and stigmasterol.
Collapse
Affiliation(s)
- Meiqi Lu
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Juanjuan Ou
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoqi Deng
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yixuan Chen
- The School of Clinical Medicine, Fujian Medical University Fuzhou, China
| | - Qing Gao
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University Fuzhou, China
| |
Collapse
|
9
|
Wang R, Fan R, Meng T, Wang L. Exploration of the inhibitory mechanisms of trans-polydatin/resveratrol on α-glucosidase by multi-spectroscopic analysis, in silico docking and molecular dynamics simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122866. [PMID: 37201332 DOI: 10.1016/j.saa.2023.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Plant-derived phenolics as natural α-glucosidase (α-GLU) inhibitors have attached great attention in the treatment of type-II diabetes mellitus currently. In this study, trans-polydatin and its aglycone resveratrol were found to show a notable inhibitory activity on α-GLU in a mixed-type manner with IC50 values of 18.07 and 16.73 μg/mL, respectively, which were further stronger than anti-diabetic drug acrabose (IC50 = 179.86 μg/mL). Multi-spectroscopic analysis results indicated that polydatin/resveratrol bound to α-GLU with one affinity binding site which was mainly driven by hydrogen bonds and van der Waals forces, and this binding process resulted in conformational alteration of α-GLU. In silico docking study showed that polydatin/resveratrol can well interact with the surrounding amino acid residues in the active cavity of α-GLU. Molecular dynamics simulation further clarified the structure and characterization of α-GLU-polydatin/resveratrol complexes. This study might supply a theoretical basis for the designing of novel functional foods with polydatin/resveratrol.
Collapse
Affiliation(s)
- Ruimin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Ruyan Fan
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Tingyu Meng
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
10
|
Qiu Y, Song W, Yang Y, Zhou G, Bai Y, Akihisa T, Ye F, Feng F, Zhang W, Zhang J. Isolation, structural and bioactivities of polysaccharides from Anoectochilus roxburghii (Wall.) Lindl.: A review. Int J Biol Macromol 2023; 236:123883. [PMID: 36889614 DOI: 10.1016/j.ijbiomac.2023.123883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023]
Abstract
Anoectochilus roxburghii (Wall.) Lindl. (A. roxburghii), a valuable herbal medicine in China, has great medicinal and edible value. Polysaccharides, as one of the main active components of A. roxburghii, comprise glucose, arabinose, xylose, galactose, rhamnose, and mannose in different molar ratios and glycosidic bond types. By varying the sources and extraction methods of A. roxburghii polysaccharides (ARPS), different structural characteristics and pharmacological activities can be elucidated. ARPS has been reported to exhibit antidiabetic, hepatoprotective, anti-inflammatory, antioxidant, antitumor, and immune regulation activities. This review summarizes the available literature on the extraction and purification methods, structural features, biological activities, and applications of ARPS. The shortcomings of the current research and potential focus in future studies are also highlighted. This review provides systematic and current information on ARPS to promote their further exploitation and application.
Collapse
Affiliation(s)
- Yi Qiu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wenbo Song
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Ying Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Guojie Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yidan Bai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Feng Ye
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wangshu Zhang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China.
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
11
|
Putra IMWA, Fakhrudin N, Nurrochmad A, Wahyuono S. A Review of Medicinal Plants with Renoprotective Activity in Diabetic Nephropathy Animal Models. Life (Basel) 2023; 13:560. [PMID: 36836916 PMCID: PMC9963806 DOI: 10.3390/life13020560] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Diabetic nephropathy (DN), also recognized as diabetic kidney disease, is a kidney malfunction caused by diabetes mellitus. A possible contributing factor to the onset of DN is hyperglycemia. Poorly regulated hyperglycemia can damage blood vessel clusters in the kidneys, leading to kidney damage. Its treatment is difficult and expensive because its causes are extremely complex and poorly understood. Extracts from medicinal plants can be an alternative treatment for DN. The bioactive content in medicinal plants inhibits the progression of DN. This work explores the renoprotective activity and possible mechanisms of various medicinal plant extracts administered to diabetic animal models. Research articles published from 2011 to 2022 were gathered from several databases including PubMed, Scopus, ProQuest, and ScienceDirect to ensure up-to-date findings. Results showed that medicinal plant extracts ameliorated the progression of DN via the reduction in oxidative stress and suppression of inflammation, advanced glycation end-product formation, cell apoptosis, and tissue injury-related protein expression.
Collapse
Affiliation(s)
- I Made Wisnu Adhi Putra
- Department of Biology, University of Dhyana Pura, Badung 80351, Indonesia
- Doctorate Program of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nanang Fakhrudin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Arief Nurrochmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Subagus Wahyuono
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
12
|
Li D, Song C, Zhang J, Zhao X. Targeted delivery and apoptosis induction activity of peptide-transferrin targeted mesoporous silica encapsulated resveratrol in MCF-7 cells. J Pharm Pharmacol 2023; 75:49-56. [PMID: 36173891 DOI: 10.1093/jpp/rgac028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/04/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Resveratrol (Res) was a naturally occurring polyphenol compound. It has various beneficial effects, including anti-inflammatory, anti-oxidant and anti-cancer effects. However, the anti-cancer activity was hindered by its low targeting and drug release performance. Thus, we synthesized transferrin-cathepsin B cleavable peptide modified mesoporous silica nanoparticle encapsulated Res (Tf-Res-MSN). METHODS Res was encapsulated in mesoporous silica nanoparticles (MSN), which was a kind of drug carrier complex. Tf was modified to recognize the cancer cells. Cathepsin B cleavable peptide (Pep) was used to combine Res-MSN complex and Tf to construct the final product. Pep was used as linker and trigger for Res release. KEY FINDINGS The smart nanocarriers were increased the drug release performance of Res in human breast cancer (MCF-7) cells. The physicochemical properties of Tf-Res-MSN were assessed by zeta potential, UV-Prove, diffraction scanning calorimetry (DSC), nitrogen physisorption analysis and transmission electron microscope (TEM). MTT assay, AO and Annexin V-FITC/PI staining were performed to explore the anti-tumour activity of Tf-Res-MSN. The results showed that Tf-Res-MSN significantly decreased cell viability and increased cell apoptosis. The inhibition rate and apoptotic rate of Tf-Res-MSN in MCF-7 cells were 95.75% and 80.8%, respectively. CONCLUSION Our study demonstrated that Tf-Res-MSN was a valuable technique with potential value in breast cancer applications.
Collapse
Affiliation(s)
- Dongning Li
- Institute of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Chengzhu Song
- Institute of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Zhao
- Institute of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Li S, Feng F, Deng Y. Resveratrol Regulates Glucose and Lipid Metabolism in Diabetic Rats by Inhibition of PDK1/AKT Phosphorylation and HIF-1α Expression. Diabetes Metab Syndr Obes 2023; 16:1063-1074. [PMID: 37090841 PMCID: PMC10115207 DOI: 10.2147/dmso.s403893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023] Open
Abstract
Purpose To explore the underlying mechanism of the anti-diabetic effect of resveratrol (RSV) on regulating glycolipid metabolism in diabetic rats induced by streptozotocin (STZ) and a high-fat diet (HFD). Methods Male Wistar rats were randomized into three groups. Two groups were fed a high-fat diet and intraperitoneally injected with STZ (35 mg/kg), with one group also treated with RSV (30 mg/kg/d), and the third, control group was fed a normal diet. After 12 weeks, blood lipid levels and fasting blood glucose (FBG) were assessed. Histopathological changes were evaluated by hematoxylin-eosin (HE) staining and periodic acid-Schiff (PAS) staining. The protein expression of hypoxia-inducible factor 1α (HIF-1α) was assessed by Western blotting and immunofluorescence, and the proteins level of 3-phosphoinositide-dependent protein kinase 1 (PDK1), phosphorylated-PDK1 (p-PDK1), phosphorylated-protein kinase B (p-AKT), glucose transporter 1 (GLUT1) and low-density lipoprotein receptor (LDLR) in the liver were analyzed by Western blotting. The mRNA levels of Hif-1α, Glut1 and Ldlr in the liver were determined by RT-qPCR. Results RSV treatment significantly reduced liver/body weight ratio (L/W, P < 0.05), FBG (P < 0.01) and serum concentrations of total cholesterol (TC, P < 0.05), triglycerides (TG, P < 0.01) and low-density lipoprotein-cholesterol (LDL-C, P < 0.05) in diabetic rats. RSV also improved diabetic symptoms, attenuated liver steatosis and increased liver glycogen accumulation. RSV treatment significantly downregulated the proteins expression of p-PDK1 and p-AKT (P < 0.01) and the levels of HIF-1α (P < 0.05) and GLUT1 (P < 0.01), while significantly upregulating the level of LDLR (P < 0.05). Conclusion RSV was effective in improving glycolipid metabolism in diabetic rats, probably by inhibiting the PDK1/AKT/HIF-1α pathway and regulation of its downstream target levels. These findings may provide new insight into the mechanism of action of RSV in the treatment of diabetes.
Collapse
Affiliation(s)
- Siyun Li
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People’s Republic of China
| | - Fuzhen Feng
- Department of Pharmacy, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, People’s Republic of China
| | - Yanhui Deng
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People’s Republic of China
- Correspondence: Yanhui Deng, Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Road, Tianhe District, Guangzhou, 510630, People’s Republic of China, Tel +86 020 62784810, Email
| |
Collapse
|
14
|
Zhu S, Liu Q, Chang Y, Luo C, Zhang X, Sun S. Integrated Network Pharmacology and Cellular Assay to Explore the Mechanisms of Selenized Tripterine Phytosomes (Se@Tri-PTs) Alleviating Podocyte Injury in Diabetic Nephropathy. Curr Pharm Des 2023; 29:3073-3086. [PMID: 37961864 DOI: 10.2174/0113816128275079231102071508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023]
Abstract
AIM This work aimed to elucidate the mechanisms of Se@Tri-PTs in alleviating podocyte injury via network pharmacology and in vitro cellular assay. BACKGROUND Selenized tripterine phytosomes (Se@Tri-PTs) have been confirmed to undertake synergistic and sensitized effects on inflammation, which may be curatively promising for diabetic nephropathy (DN). However, the mechanisms of Se@Tri-PTs in alleviating podocyte injury, a major contributor to DN, still remain unclear. OBJECTIVE The objective of the study was to find out the underlying mechanisms of Se@Tri-PTs in alleviating podocyte injury in diabetic nephropathy. METHODS The key components and targets of Tripterygium wilfordii (TW) significant for DN as well as the signaling pathways involved have been identified. A high glucose-induced podocyte injury model was established and verified by western blot. The protective concentration of Se@Tri-PTs was screened by CCK-8 assay. Podocytes cultured with high glucose were treated with Se@Tri-PTs under protective levels. The expression of key protective proteins, nephrin and desmin, in podocytes, was assayed by western blot. Further, autophagy- related proteins and factors, like NLRP3, Beclin-1, LC3II/LC3, P62, and SIRT1, were analyzed, which was followed by apoptosis detection. RESULTS Network pharmacology revealed that several monomeric components of TW, especially Tri, act on DN through multiple targets and pathways, including the NLRP3-mediated inflammatory pathway. Se@Tri-PTs improved the viability of podocytes and alleviated their injury induced by high glucose at 5 μg/L or above. High-glucose induction promoted the expression of NLRP3 in podocytes, while a low concentration of Se@Tri-PTs suppressed the expression. A long-term exposure of high glucose significantly inhibited the autophagic activity of podocytes, as manifested by decreased Beclin-1 level, lower ratio of LC3 II/LC3 I, and up- regulation of P62. This abnormality was efficiently reversed by Se@Tri-PTs. Importantly, the expression of SIRT1 was up-regulated and podocyte apoptosis was reduced. CONCLUSION Se@Tri-PTs can alleviate podocyte injury associated with DN by modulating NLRP3 expression through the pathway of SIRT1-mediated autophagy.
Collapse
Affiliation(s)
- Shiping Zhu
- Department of Chinese Traditional Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China
| | - Qiubo Liu
- Department of Chinese Traditional Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China
| | - Yuling Chang
- Department of Chinese Traditional Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China
| | - Chunhua Luo
- Newborn Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China
| | - Xingwang Zhang
- Department of Pharmaceutics, School of Pharmacy, Jinan University, Guangzhou, 511443, People's Republic of China
| | - Shengyun Sun
- Department of Chinese Traditional Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China
| |
Collapse
|
15
|
Ziętara P, Dziewięcka M, Augustyniak M. Why Is Longevity Still a Scientific Mystery? Sirtuins-Past, Present and Future. Int J Mol Sci 2022; 24:728. [PMID: 36614171 PMCID: PMC9821238 DOI: 10.3390/ijms24010728] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The sirtuin system consists of seven highly conserved regulatory enzymes responsible for metabolism, antioxidant protection, and cell cycle regulation. The great interest in sirtuins is associated with the potential impact on life extension. This article summarizes the latest research on the activity of sirtuins and their role in the aging process. The effects of compounds that modulate the activity of sirtuins were discussed, and in numerous studies, their effectiveness was demonstrated. Attention was paid to the role of a caloric restriction and the risks associated with the influence of careless sirtuin modulation on the organism. It has been shown that low modulators' bioavailability/retention time is a crucial problem for optimal regulation of the studied pathways. Therefore, a detailed understanding of the modulator structure and potential reactivity with sirtuins in silico studies should precede in vitro and in vivo experiments. The latest achievements in nanobiotechnology make it possible to create promising molecules, but many of them remain in the sphere of plans and concepts. It seems that solving the mystery of longevity will have to wait for new scientific discoveries.
Collapse
Affiliation(s)
| | | | - Maria Augustyniak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, ul. Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
16
|
Rashid F, Ahmad M, Ashfaq UA, Al-Mutairi AA, Al-Hussain SA. Design, Synthesis and Pharmacological Evaluation of 2-(3-BenzoyI-4-Hydroxy-1,1-Dioxido-2H-Benzo[e][1,2]thiazin-2-yI)-N-(2-Bromophenyl) Acetamide as Antidiabetic Agent. Drug Des Devel Ther 2022; 16:4043-4060. [PMID: 36444273 PMCID: PMC9700480 DOI: 10.2147/dddt.s379205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/02/2022] [Indexed: 03/12/2024] Open
Abstract
PURPOSE The present study is based on screening new and potent synthetic heterocyclic compounds as anti-diabetic drugs using various computational tools, lab experiments, and animal models. METHODS A potent synthetic compound 2-(3-benzoyl-4-hydroxy-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl)-1-(2-bromophenyl) acetamide (FA2) was checked against diabetes and screened via enzyme inhibition assays, enzyme kinetics against alpha-glucosidase and alpha-amylase. Protein-ligand interaction was analyzed via molecular docking and toxicological analysis via ADMET. Experimental animals were used to examine the compound FA2 safety, delivery, and check various biochemical tests related to diabetes like fasting glucose sugar, cholesterol, triglyceride, HbAc1, creatinine, and insulin level. Histography of liver, kidney, and pancreas was also performed. RESULTS Results showed that FA2 had binding energy of -7.02 Kcal/mol and -6.6 kcal/mol against α-glucosidase (PDB ID: 2ZE0) and α-amylase (PDB ID: 1B2Y), respectively. Moreover, in vitro enzyme inhibition assays and enzyme kinetics against α-glucosidase and α-amylase were performed, and FA2 showed IC50 at 5.17 ± 0.28 µM and 18.82 ± 0.89 µM concentrations against α-glucosidase and α-amylase, respectively. Kinetics studies showed that the FA2 compound impeded α-glucosidase and α-amylase as a non-competitive mode of inhibition with Ki' values -0.320 ± 0.001 and 0.141 ± 0.01, respectively. FA2 was further analyzed on alloxan-induced mice for 21 days. Biochemical tests (fasting glucose sugar, cholesterol, triglyceride, HbAc1, creatinine, and insulin levels) and histological examination of liver and kidney showed that the FA2 compound showed better results than acarbose. Histology of pancreas found to show the maintenance of normal pancreatic acini and Langerhans islets in FA2 treated mice compared to acarbose and nontreated diabetic controls. CONCLUSION Investigating anti-diabetic potential of FA2 compound showed that the selected benzothiazine derivative has tremendous importance in reducing dose concentration and side effects.
Collapse
Affiliation(s)
- Fatima Rashid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Aamal A Al-Mutairi
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| |
Collapse
|
17
|
Froldi G, Ragazzi E. Selected Plant-Derived Polyphenols as Potential Therapeutic Agents for Peripheral Artery Disease: Molecular Mechanisms, Efficacy and Safety. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207110. [PMID: 36296702 PMCID: PMC9611444 DOI: 10.3390/molecules27207110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Vascular diseases, such as peripheral artery disease (PAD), are associated with diabetes mellitus and a higher risk of cardiovascular disease and even death. Surgical revascularization and pharmacological treatments (mainly antiplatelet, lipid-lowering drugs, and antidiabetic agents) have some effectiveness, but the response and efficacy of therapy are overly dependent on the patient’s conditions. Thus, the demand for new cures exists. In this regard, new studies on natural polyphenols that act on key points involved in the pathogenesis of vascular diseases and, thus, on PAD are of great urgency. The purpose of this review is to take into account the mechanisms that lead to endothelium dysfunction, such as the glycoxidation process and the production of advanced glycation end-products (AGEs) that result in protein misfolding, and to suggest plant-derived polyphenols that could be useful in PAD. Thus, five polyphenols are considered, baicalein, curcumin, mangiferin, quercetin and resveratrol, reviewing the literature in PubMed. The key molecular mechanisms and preclinical and clinical studies of each selected compound are examined. Furthermore, the safety profiles of the polyphenols are outlined, together with the unwanted effects reported in humans, also by searching the WHO database (VigiBase).
Collapse
|
18
|
Construction of a Prediction Model for the Mortality of Elderly Patients with Diabetic Nephropathy. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5724050. [PMID: 36133909 PMCID: PMC9484980 DOI: 10.1155/2022/5724050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
Abstract
To construct a prediction model for all-cause mortality in elderly diabetic nephropathy (DN) patients, in this cohort study, the data of 511 DN patients aged ≥65 years were collected and the participants were divided into the training set (n = 358) and the testing set (n = 153). The median survival time of all participants was 2 years. The data in the training set were grouped into the survival group (n = 203) or the death group (n = 155). Variables with P ≤ 0.1 between the two groups were selected as preliminary predictors and involved into the multivariable logistic regression model and the covariables were gradually adjusted. The receiver operator characteristic (ROC), Kolmogorov-Smirnov (KS), and calibration curves were plotted for evaluating the predictive performance of the model. Internal validation of the performance of the model was verified in the testing set. The predictive values of the model were also conducted in terms of people with different genders and ages or accompanied with chronic kidney disease (CKD) or cardiovascular diseases (CVD), respectively. In total, 216 (42.27%) elderly DN patients were dead within 2 years. The prediction model for the 2-year mortality of elderly patients with DN was established based on length of stay (LOS), temperature, heart rate, peripheral oxygen saturation (SpO2), serum creatinine (Scr), red cell distribution width (RDW), the simplified acute physiology score-II (SAPS-II), hyperlipidemia, and the Chronic Kidney Disease Epidemiology Collaboration equation for estimated glomerular filtration rate (eGFR-CKD-EPI). The AUC of the model was 0.78 (95% CI: 0.73–0.83) in the training set and 0.72 (95% CI: 0.63–0.80) in the testing set. The AUC of the model was 0.78 (95% CI: 0.65–0.91) in females and 0.78 (95%CI: 0.68–0.88) in patients ≤75 years. The AUC of the model was 0.74 (95% CI: 0.64–0.84) in patients accompanied with CKD. The model had good predictive value for the mortality of elderly patients with DN within 2 years. In addition, the model showed good predictive values for female DN patients, DN patients ≤75 years, and DN patients accompanied with CKD.
Collapse
|
19
|
Tanase DM, Gosav EM, Anton MI, Floria M, Seritean Isac PN, Hurjui LL, Tarniceriu CC, Costea CF, Ciocoiu M, Rezus C. Oxidative Stress and NRF2/KEAP1/ARE Pathway in Diabetic Kidney Disease (DKD): New Perspectives. Biomolecules 2022; 12:biom12091227. [PMID: 36139066 PMCID: PMC9496369 DOI: 10.3390/biom12091227] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most debilitating chronic diseases worldwide, with increased prevalence and incidence. In addition to its macrovascular damage, through its microvascular complications, such as Diabetic Kidney Disease (DKD), DM further compounds the quality of life of these patients. Considering DKD is the main cause of end-stage renal disease (ESRD) in developed countries, extensive research is currently investigating the matrix of DKD pathophysiology. Hyperglycemia, inflammation and oxidative stress (OS) are the main mechanisms behind this disease. By generating pro-inflammatory factors (e.g., IL-1,6,18, TNF-α, TGF-β, NF-κB, MCP-1, VCAM-1, ICAM-1) and the activation of diverse pathways (e.g., PKC, ROCK, AGE/RAGE, JAK-STAT), they promote a pro-oxidant state with impairment of the antioxidant system (NRF2/KEAP1/ARE pathway) and, finally, alterations in the renal filtration unit. Hitherto, a wide spectrum of pre-clinical and clinical studies shows the beneficial use of NRF2-inducing strategies, such as NRF2 activators (e.g., Bardoxolone methyl, Curcumin, Sulforaphane and their analogues), and other natural compounds with antioxidant properties in DKD treatment. However, limitations regarding the lack of larger clinical trials, solubility or delivery hamper their implementation for clinical use. Therefore, in this review, we will discuss DKD mechanisms, especially oxidative stress (OS) and NRF2/KEAP1/ARE involvement, while highlighting the potential of therapeutic approaches that target DKD via OS.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Madalina Ioana Anton
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Petronela Nicoleta Seritean Isac
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|
20
|
Kang L, Zhang H, Jia C, Zhang R, Shen C. Targeting Oxidative Stress and Inflammation in Intervertebral Disc Degeneration: Therapeutic Perspectives of Phytochemicals. Front Pharmacol 2022; 13:956355. [PMID: 35903342 PMCID: PMC9315394 DOI: 10.3389/fphar.2022.956355] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Low back pain is a major cause of disability worldwide that declines the quality of life; it poses a substantial economic burden for the patient and society. Intervertebral disc (IVD) degeneration (IDD) is the main cause of low back pain, and it is also the pathological basis of several spinal degenerative diseases, such as intervertebral disc herniation and spinal stenosis. The current clinical drug treatment of IDD focuses on the symptoms and not their pathogenesis, which results in frequent recurrence and gradual aggravation. Moreover, the side effects associated with the long-term use of these drugs further limit their use. The pathological mechanism of IDD is complex, and oxidative stress and inflammation play an important role in promoting IDD. They induce the destruction of the extracellular matrix in IVD and reduce the number of living cells and functional cells, thereby destroying the function of IVD and promoting the occurrence and development of IDD. Phytochemicals from fruits, vegetables, grains, and other herbs play a protective role in the treatment of IDD as they have anti-inflammatory and antioxidant properties. This article reviews the protective effects of phytochemicals on IDD and their regulatory effects on different molecular pathways related to the pathogenesis of IDD. Moreover, the therapeutic limitations and future prospects of IDD treatment have also been reviewed. Phytochemicals are promising candidates for further development and research on IDD treatment.
Collapse
|
21
|
Abidi A, Dhaouafi J, Brinsi C, Tounsi H, Sebai H. Tunisian Horehound ( Marrubium vulgare) Aqueous Extract Improves Treatment of Bleomycin-Induced Lung Fibrosis in Rat. Dose Response 2022; 20:15593258221119300. [PMID: 36003317 PMCID: PMC9393689 DOI: 10.1177/15593258221119300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022] Open
Abstract
Pulmonary fibrosis (PF) remains one of the most serious pneumopathies whose diagnosis and physiopathogenesis are still poorly understood and no treatment has been shown to be effective. Recently, many studies have shown a renewed interest in plants thanks to their pharmacological potentials, like horehound, known, for its anti-inflammatory and antioxidant activities. The present study investigated the effects of the aqueous extract of horehound (Mae) on bleomycin (BLM)-induced PF in rats. Thirty rats were divided into three groups. The control group received no treatment, the BLM group received only intratracheally BLM (2 mg/kg), and the Mae group underwent administration of BLM+ Mae (2 mL/kg) daily for 20 days. Obtained results showed that Mae, rich in polyphenols, could significantly improve the damage caused by BLM by reducing the inflammatory index and the fibrosis score, bringing the lung structure of fibrotic rats close to that of control rats. As well, Mae obviously acted on the BLM inflammatory reaction, and the counting of bronchoalveolar lavage fluid (Balf) cells showed an increase in total cell number and a decrease in the infiltration of inflammatory cells in the bronchoalveolar space. In addition, the BLM instillation was accompanied by oxidative stress in the lung, liver, and kidney tissues, proven by an increase in lipid peroxidation, as well as through depletion of superoxide dismutase (SOD) and catalase (CAT). The Mae treatment reversed all disturbances of BLM-induced oxidative stress parameters promoting antioxidant and anti-inflammatory of the latter. These findings point to Mae as a promising candidate for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Anouar Abidi
- Unit of Functional Physiology and
Valorization of Bio-Resources of the Higher Institute of Biotechnology of Béja, University of Jendouba, Tunisia
- Laboratory of Physiology, Faculty of Medicine of
Tunis, Tunis, Tunisia
| | - Jihen Dhaouafi
- Unit of Functional Physiology and
Valorization of Bio-Resources of the Higher Institute of Biotechnology of Béja, University of Jendouba, Tunisia
| | - Chirine Brinsi
- Unit of Functional Physiology and
Valorization of Bio-Resources of the Higher Institute of Biotechnology of Béja, University of Jendouba, Tunisia
| | - Haifa Tounsi
- Laboratory of Human and
Experimental Pathology, Pasteur Institute of
Tunis, Tunis, Tunisia
| | - Hichem Sebai
- Unit of Functional Physiology and
Valorization of Bio-Resources of the Higher Institute of Biotechnology of Béja, University of Jendouba, Tunisia
| |
Collapse
|
22
|
Zhao X, Hui QC, Xu R, Gao N, Cao P. Resveratrol: A new approach to ameliorate hyperhomocysteinaemia-induced renal dysfunction. Exp Ther Med 2022; 24:510. [PMID: 35837032 DOI: 10.3892/etm.2022.11437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/16/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Xuan Zhao
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Qing-Chen Hui
- Department of Cardiology, Jimo District Qingdao Hospital of Traditional Chinese Medicine, Qingdao, Shandong 266200, P.R. China
| | - Rui Xu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ning Gao
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Ping Cao
- Department of Geriatric Medicine, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| |
Collapse
|
23
|
Su M, Zhao W, Xu S, Weng J. Resveratrol in Treating Diabetes and Its Cardiovascular Complications: A Review of Its Mechanisms of Action. Antioxidants (Basel) 2022; 11:antiox11061085. [PMID: 35739982 PMCID: PMC9219679 DOI: 10.3390/antiox11061085] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent chronic diseases worldwide. High morbidity and mortality caused by DM are closely linked to its complications in multiple organs/tissues, including cardiovascular complications, diabetic nephropathy, and diabetic neuropathy. Resveratrol is a plant-derived polyphenolic compound with pleiotropic protective effects, ranging from antioxidant and anti-inflammatory to hypoglycemic effects. Recent studies strongly suggest that the consumption of resveratrol offers protection against diabetes and its cardiovascular complications. The protective effects of resveratrol involve the regulation of multiple signaling pathways, including inhibition of oxidative stress and inflammation, enhancement of insulin sensitivity, induction of autophagy, regulation of lipid metabolism, promotion of GLUT4 expression, and translocation, and activation of SIRT1/AMPK signaling axis. The cardiovascular protective effects of resveratrol have been recently reviewed in the literature, but the role of resveratrol in preventing diabetes mellitus and its cardiovascular complications has not been systematically reviewed. Therefore, in this review, we summarize the pharmacological effects and mechanisms of action of resveratrol based on in vitro and in vivo studies, highlighting the therapeutic potential of resveratrol in the prevention and treatment of diabetes and its cardiovascular complications.
Collapse
|
24
|
Guerreiro Í, Ferreira-Pêgo C, Carregosa D, Santos CN, Menezes R, Fernandes AS, Costa JG. Polyphenols and Their Metabolites in Renal Diseases: An Overview. Foods 2022; 11:foods11071060. [PMID: 35407148 PMCID: PMC8997953 DOI: 10.3390/foods11071060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Kidney diseases constitute a worldwide public health problem, contributing to morbidity and mortality. The present study aimed to provide an overview of the published data regarding the potential beneficial effects of polyphenols on major kidney diseases, namely acute kidney injury, chronic kidney disease, diabetic nephropathy, renal cancer, and drug-induced nephrotoxicity. This study consists of a bibliographical review including in vitro and in vivo studies dealing with the effects of individual compounds. An analysis of the polyphenol metabolome in human urine was also conducted to estimate those compounds that are most likely to be responsible for the kidney protective effects of polyphenols. The biological effects of polyphenols can be highly attributed to the modulation of specific signaling cascades including those involved in oxidative stress responses, anti-inflammation processes, and apoptosis. There is increasing evidence that polyphenols afford great potential in renal disease protection. However, this evidence (especially when in vitro studies are involved) should be considered with caution before its clinical translation, particularly due to the unfavorable pharmacokinetics and extensive metabolization that polyphenols undergo in the human body. Future research should consider polyphenols and their metabolites that indeed reach kidney tissues.
Collapse
Affiliation(s)
- Íris Guerreiro
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - Cíntia Ferreira-Pêgo
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - Diogo Carregosa
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
| | - Cláudia N. Santos
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
| | - Regina Menezes
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Ana S. Fernandes
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - João G. Costa
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
- Correspondence:
| |
Collapse
|
25
|
Hu HC, Lei YH, Zhang WH, Luo XQ. Antioxidant and Anti-inflammatory Properties of Resveratrol in Diabetic Nephropathy: A Systematic Review and Meta-analysis of Animal Studies. Front Pharmacol 2022; 13:841818. [PMID: 35355720 PMCID: PMC8959544 DOI: 10.3389/fphar.2022.841818] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/18/2022] [Indexed: 12/25/2022] Open
Abstract
Background: Accumulated experimental evidence suggests that resveratrol may have an effect on diabetic nephropathy by inhibiting inflammation and decreasing oxidative stress. However, the credibility of the evidence for this practice is unclear. Thus, we aimed to perform a systematic review and meta-analysis of animal studies to evaluate the antioxidant and anti-inflammatory properties of resveratrol when used in the treatment of diabetic nephropathy. Methods: Electronic bibliographic databases including PubMed, EMBASE, and Web of Science were searched for relevant studies. The methodological quality of animal studies was assessed based on the SYstematic Review Center for Laboratory animal Experimentation Risk of Bias (SYRCLE’s RoB) tool. A meta-analysis was performed based on the Cochrane Handbook for Systematic Reviews of Interventions by using RevMan 5.4 software. This study was registered within International Prospective Register of Systematic Reviews (PROSPERO) as number CRD42021293784. Results: Thirty-six qualified studies involving 726 animals were included. There was a significant association of resveratrol with the levels of blood glucose (BG), serum creatinine (Scr), blood urea nitrogen (BUN), catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GPx), and interleukin-1β (IL-1β). Nevertheless, resveratrol treatment did not effectively decrease the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In addition, more remarkable antioxidant and hypoglycemic effects were observed in type 2 diabetic nephropathy rather than in type 1 diabetic nephropathy based on subgroup analysis. Conclusion: In this meta-analysis, resveratrol can exert its antioxidant activities by reducing the levels of MDA and recovering the activities of SOD, CAT, GSH, and GPx. With regard to pro-inflammatory cytokines, resveratrol had a positive effect on the reduction of IL-1β. However, the analysis indicated that resveratrol had no effect on IL-6 and TNF-α levels, probably because of the methodological quality of the studies and their heterogeneity. Current evidence supports the antioxidant and anti-inflammatory properties of resveratrol, but its relationship with the levels of some inflammatory cytokines such as IL-6 and TNF-α in animals with diabetic nephropathy needs further elucidation.
Collapse
Affiliation(s)
- Heng-Chang Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan-Hong Lei
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei-Hua Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Qiong Luo
- Department of Neurology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
26
|
Hu Y, Liu S, Liu W, Zhang Z, Liu Y, Li S, Sun D, Zhang G, Fang J. Potential Molecular Mechanism of Yishen Capsule in the Treatment of Diabetic Nephropathy Based on Network Pharmacology and Molecular Docking. Diabetes Metab Syndr Obes 2022; 15:943-962. [PMID: 35378831 PMCID: PMC8976486 DOI: 10.2147/dmso.s350062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Using network pharmacology and molecular docking to explore the mechanism of Yishen Capsule in the treatment of diabetic nephropathy. MATERIALS AND METHODS Active components of Yishen Capsule were obtained using database such as TCMSP and TCMID. UniProt protein database was used to screen and standardize the human-derived targets of the active chemical components. Diabetic nephropathy (DN) targets were obtained from databases such as GeneCards, OMIM, TTD, DisGeNET and DrugBank. A network of "Yishen Capsule Components-diabetic nephropathy Targets-Pathways" was constructed by analyzing data above to screening out core targets for molecular docking verification. DN is induced by streptozocin in rats after left nephrectomy. Renal tubular epithelial cells (RTECs) was isolated and cultured under high glucose conditions. Based on these experimental models, key pathway target genes screened by network pharmacology were verified both in vitro and in vivo. RESULTS The main active components of Yishen Capsule in the treatment of DN include quercetin, kaempferol, gallic acid, astragaloside IV, etc. Some key targets (such as AR, AKT1, TP53, ESR1, JUN) and important signal pathways (such as AGE-RAGE, HIF-1 and JAK-STAT signal pathway) were included in the treatment of DN with Yishen Capsule. Molecular docking assay showed that most of the targets have good binding activity with the components of Yishen Capsule. Based on the results of network pharmacology, key target proteins in HIF-1α and JAK2/STAT3 signaling pathways were selected for experimental verification. Results presented that HIF-1α, JAK2, STAT3, TGF-β and MCP-1 were increased under high glucose environment. With the treatment of Yishen Capsule, the expression of HIF-1α further increased, while the expression of JAK2, STAT3, MCP-1 and TGF-β was decreased. CONCLUSION This study revealed the mechanism of Yishen Capsule in the treatment of DN, which possesses the characteristics of multi-component, multi-target, and multi-pathway. Further experiments confirmed that Yishen Capsule interfered with HIF-1α and JAK/STAT signaling pathways to reduce inflammation and fibrosis damage in the kidney tissue of rats with diabetic nephropathy.
Collapse
Affiliation(s)
- Yaling Hu
- Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Shuang Liu
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Wenyuan Liu
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Ziyuan Zhang
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Yuxiang Liu
- Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Sufen Li
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Dalin Sun
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Guang Zhang
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Jingai Fang
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| |
Collapse
|
27
|
Guo M, Dai Y, Jiang L, Gao J. Bioinformatics Analysis of the Mechanisms of Diabetic Nephropathy via Novel Biomarkers and Competing Endogenous RNA Network. Front Endocrinol (Lausanne) 2022; 13:934022. [PMID: 35909518 PMCID: PMC9329782 DOI: 10.3389/fendo.2022.934022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the common chronic complications of diabetes with unclear molecular mechanisms, which is associated with end-stage renal disease (ESRD) and chronic kidney disease (CKD). Our study intended to construct a competing endogenous RNA (ceRNA) network via bioinformatics analysis to determine the potential molecular mechanisms of DN pathogenesis. The microarray datasets (GSE30122 and GSE30529) were downloaded from the Gene Expression Omnibus database to find differentially expressed genes (DEGs). GSE51674 and GSE155188 datasets were used to identified the differentially expressed microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), respectively. The DEGs between normal and DN renal tissues were performed using the Linear Models for Microarray (limma) package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to reveal the mechanisms of DEGs in the progression of DN. The protein-protein interactions (PPI) of DEGs were carried out by STRING database. The lncRNA-miRNA-messenger RNA (mRNA) ceRNA network was constructed and visualized via Cytoscape on the basis of the interaction generated through the miRDB and TargetScan databases. A total of 94 significantly upregulated and 14 downregulated mRNAs, 31 upregulated and 121 downregulated miRNAs, and nine upregulated and 81 downregulated lncRNAs were identified. GO and KEGG pathways enriched in several functions and expression pathways, such as inflammatory response, immune response, identical protein binding, nuclear factor kappa b (NF-κB) signaling pathway, and PI3K-Akt signaling pathway. Based on the analysis of the ceRNA network, five differentially expressed lncRNAs (DElncRNAs) (SNHG6, KCNMB2-AS1, LINC00520, DANCR, and PCAT6), five DEmiRNAs (miR-130b-5p, miR-326, miR-374a-3p, miR-577, and miR-944), and five DEmRNAs (PTPRC, CD53, IRF8, IL10RA, and LAPTM5) were demonstrated to be related to the pathogenesis of DN. The hub genes were validated by using receiver operating characteristic curve (ROC) and real-time PCR (RT-PCR). Our research identified hub genes related to the potential mechanism of DN and provided new lncRNA-miRNA-mRNA ceRNA network that contributed to diagnostic and potential therapeutic targets for DN.
Collapse
Affiliation(s)
- Mingfei Guo
- Department of Pharmacy, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yaji Dai
- Department of Pharmacy, Anhui No.2 Provincial People’s Hospital, Hefei, China
- *Correspondence: Yaji Dai,
| | - Lei Jiang
- Department of Pharmacy, Anhui No.2 Provincial People’s Hospital, Hefei, China
| | - Jiarong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
28
|
Abstract
Diabetes mellitus (DM) is gradually attacking the health and life of people all over the world. Diabetic kidney disease (DKD) is one of the most common chronic microvascular complications of DM, whose mechanism is complex and still lacks research. Sirtuin family is a class III histone deacetylase with highly conserved NAD+ binding domain and catalytic functional domain, while different N-terminal and C-terminal structures enable them to bind different deacetylated substrates to participate in the cellular NAD+ metabolism. The kidney is an organ rich in NAD+ and database exploration of literature shows that the Sirtuin family has different expression localization in renal, cellular, and subcellular structures. With the progress of modern technology, a variety of animal models and reagents for the Sirtuin family and DKD emerged. Machine learning in the literature shows that the Sirtuin family can regulate pathophysiological injury mainly in the glomerular filtration membrane, renal tubular absorption, and immune inflammation through various mechanisms such as epigenetics, multiple signaling pathways, and mitochondrial function. These mechanisms are the key nodes participating in DKD. Thus, it is of great significance for target therapy to study biological functions of the Sirtuin family and DKD regulation mechanism in-depth.
Collapse
Affiliation(s)
- Che Bian
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
- *Correspondence: Huiwen Ren,
| |
Collapse
|
29
|
Yang M, Luo S, Yang J, Chen W, He L, Liu D, Zhao L, Wang X. Bone-kidney axis: A potential therapeutic target for diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:996776. [PMID: 36353239 PMCID: PMC9637707 DOI: 10.3389/fendo.2022.996776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). However, its pathogenesis remains unclear, and effective prevention and treatment strategies are lacking. Recently, organ-to-organ communication has become a new focus of studies on pathogenesis. Various organs or tissues (the liver, muscle and adipose tissue) secrete a series of proteins or peptides to regulate the homeostasis of distal organs in an endocrine manner. Bone, an important part of the body, can also secrete bone-derived proteins or peptides that act on distal organs. As an organ with high metabolism, the kidney is responsible for signal and material exchange with other organs at any time through circulation. In this review, we briefly discussed bone composition and changes in bone structure and function in DN and summarized the current status of bone-derived proteins and their role in the progression of DN. We speculated that the "bone-kidney axis" is a potential target for early diagnosis and treatment of DN.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, China
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zhao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xi Wang,
| |
Collapse
|
30
|
Xiang Z, Zhang S, Yao X, Xu L, Hu J, Yin C, Chen J, Xu H. Resveratrol promotes axonal regeneration after spinal cord injury through activating Wnt/β-catenin signaling pathway. Aging (Albany NY) 2021; 13:23603-23619. [PMID: 34647904 PMCID: PMC8580349 DOI: 10.18632/aging.203628] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022]
Abstract
Background: Spinal cord injury (SCI) is characterized by autonomic dysreflexia, chronic pain, sensory and motor deficits. Resveratrol has shown potential neuroprotective function in several neurodegenerative diseases’ models. However, if resveratrol could improve the function recovery after SCI and the further mechanism have not been investigated. Methods: SCI rat model was established through laminectomy at lamina T9-10 aseptically. Basso, beattie and bresnahan (BBB) and inclined plane score, sensory recovery, spinal cord content, and inflammatory factors were measured. The levels of GAP43, NF421, GFAP, Bax, Bcl-2 and caspase-3 were measured using immunohistochemical staining. Tunel staining was applied to detect apoptosis level. Results: Resveratrol significantly improved the function recovery, promoted axonal regeneration, suppressed apoptosis after SCI. The activation of Wnt/β-catenin signaling pathway was achieved by resveratrol. XAV939 significantly reversed the influence of resveratrol on function recovery, axonal regeneration, apoptosis after SCI. Conclusions: Resveratrol could promote the function recovery and axonal regeneration, improve histological damage, inhibit apoptosis level after SCI through regulating Wnt/β-catenin signaling pathway. This research expanded the regulatory mechanism of resveratrol in SCI injury.
Collapse
Affiliation(s)
- Zimin Xiang
- Department of Orthopaedics, The 900th Hospital, Joint Logistics Support Force, Fuzhou 350025, Fujian Province, P.R. China.,Department of Orthopaedics, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, Fujian Province, P.R. China.,Department of Orthopaedics, Xiamen University Affiliated East Hospital Affiliated East Hospital, Fuzhou 350025, Fujian Province, P.R. China
| | - Shuai Zhang
- Department of Orthopaedics, The 900th Hospital, Joint Logistics Support Force, Fuzhou 350025, Fujian Province, P.R. China.,Department of Orthopaedics, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, Fujian Province, P.R. China.,Department of Orthopaedics, Xiamen University Affiliated East Hospital Affiliated East Hospital, Fuzhou 350025, Fujian Province, P.R. China
| | - Xiaodong Yao
- Department of Orthopaedics, The 900th Hospital, Joint Logistics Support Force, Fuzhou 350025, Fujian Province, P.R. China.,Department of Orthopaedics, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, Fujian Province, P.R. China.,Department of Orthopaedics, Xiamen University Affiliated East Hospital Affiliated East Hospital, Fuzhou 350025, Fujian Province, P.R. China
| | - Libin Xu
- Department of Orthopaedics, The 900th Hospital, Joint Logistics Support Force, Fuzhou 350025, Fujian Province, P.R. China.,Department of Orthopaedics, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, Fujian Province, P.R. China.,Department of Orthopaedics, Xiamen University Affiliated East Hospital Affiliated East Hospital, Fuzhou 350025, Fujian Province, P.R. China
| | - Jianwei Hu
- Department of Orthopaedics, The 900th Hospital, Joint Logistics Support Force, Fuzhou 350025, Fujian Province, P.R. China.,Department of Orthopaedics, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, Fujian Province, P.R. China.,Department of Orthopaedics, Xiamen University Affiliated East Hospital Affiliated East Hospital, Fuzhou 350025, Fujian Province, P.R. China
| | - Chenghui Yin
- Department of Orthopaedics, The 900th Hospital, Joint Logistics Support Force, Fuzhou 350025, Fujian Province, P.R. China.,Department of Orthopaedics, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, Fujian Province, P.R. China.,Department of Orthopaedics, Xiamen University Affiliated East Hospital Affiliated East Hospital, Fuzhou 350025, Fujian Province, P.R. China
| | - Jianmei Chen
- Department of Orthopaedics, The 900th Hospital, Joint Logistics Support Force, Fuzhou 350025, Fujian Province, P.R. China.,Department of Orthopaedics, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, Fujian Province, P.R. China.,Department of Orthopaedics, Xiamen University Affiliated East Hospital Affiliated East Hospital, Fuzhou 350025, Fujian Province, P.R. China
| | - Hao Xu
- Department of Orthopaedics, The 900th Hospital, Joint Logistics Support Force, Fuzhou 350025, Fujian Province, P.R. China.,Department of Orthopaedics, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, Fujian Province, P.R. China.,Department of Orthopaedics, Xiamen University Affiliated East Hospital Affiliated East Hospital, Fuzhou 350025, Fujian Province, P.R. China
| |
Collapse
|
31
|
Floris B, Galloni P, Conte V, Sabuzi F. Tailored Functionalization of Natural Phenols to Improve Biological Activity. Biomolecules 2021; 11:1325. [PMID: 34572538 PMCID: PMC8467377 DOI: 10.3390/biom11091325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Phenols are widespread in nature, being the major components of several plants and essential oils. Natural phenols' anti-microbial, anti-bacterial, anti-oxidant, pharmacological and nutritional properties are, nowadays, well established. Hence, given their peculiar biological role, numerous studies are currently ongoing to overcome their limitations, as well as to enhance their activity. In this review, the functionalization of selected natural phenols is critically examined, mainly highlighting their improved bioactivity after the proper chemical transformations. In particular, functionalization of the most abundant naturally occurring monophenols, diphenols, lipidic phenols, phenolic acids, polyphenols and curcumin derivatives is explored.
Collapse
Affiliation(s)
- Barbara Floris
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| |
Collapse
|
32
|
Alatawi KA, Alshubaily FA. Coconut products alleviate hyperglycaemic, hyperlipidimic and nephropathy indices in streptozotocin-induced diabetic wistar rats. Saudi J Biol Sci 2021; 28:4224-4231. [PMID: 34354403 PMCID: PMC8324991 DOI: 10.1016/j.sjbs.2021.06.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 01/14/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic and one of the most common metabolic diseases affecting large proportion of world population. Diabetes-induced changes in lipid and renal parameters are major risk factors contributing to diabetic complications such as diabetic nephropathy and cardiovascular diseases. Due to adverse effects associated with pharmacological intervention in the T2DM treatment, there is an increased interest in the research focussing on identifying novel plant based therapeutic agents. Here we report the effects of various coconut products on diabetic, lipid and renal parameters in streptozotocin (STZ)-induced diabetic rat model. Diabetic rats demonstrated a significant increase in serum glucose, and glycated haemoglobin levels (HbA1c). Lipid parameters including triglycerides, total cholesterol, low density lipoprotein cholesterol (LDL-cholesterol) and very low density lipoprotein cholesterol (VLDL-cholesterol) were found to be significantly increased, while high density lipoprotein cholesterol (HDL-cholesterol) was significantly declined in diabetic rats. Diabetic rats also displayed increased serum and kidney creatinine, urea, and total protein levels and increased urine glucose, urea, albumin and creatinine levels. Contrastingly, treatment with virgin and filtered coconut oils, coconut water and coconut milk resulted in a significant reversal in the levels of above studied parameters in diabetic rats. Further, these coconut products markedly prevented diabetes induced histopathological changes in kidney tissue. Collectively, the data demonstrate the antidiabetic, hypolipidemic and renal protective properties of various coconut products and underscore the importance of regular consumption of plant based medicinal products in the treatment of T2DM and its complications.
Collapse
Affiliation(s)
- Karemah A. Alatawi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21533, Saudi Arabia
| | - Fawzia A. Alshubaily
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21533, Saudi Arabia
| |
Collapse
|