1
|
Huang H, Liu X, Liu Y, Wu F, Jin W. Genome-Wide Identification and Expression Analysis of 1-Aminocyclopropane-1-Carboxylate Synthase (ACS) Gene Family in Myrica rubra. Int J Mol Sci 2025; 26:4580. [PMID: 40429726 PMCID: PMC12111025 DOI: 10.3390/ijms26104580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/30/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Ethylene plays a crucial role in plant growth, development, and stress responses, with 1-aminocyclopropane-1-carboxylate synthase (ACS) being a key enzyme in its biosynthetic pathway. However, the ACS gene family of Myrica rubra has not yet been systematically identified and characterized. In this study, we identified and characterized seven ACS genes (MrACS) in Myrica rubra through genome-wide analysis. Phylogenetic analysis revealed that these genes belong to three major subfamilies, with certain members clustering closely with ACS genes from Rosaceae species, suggesting a conserved evolutionary relationship. Gene structure and the conserved motif analyses confirmed functional conservation, while chromosomal localization indicated an uneven distribution across the genome. Collinearity analysis revealed strong homologous relationships between Myrica rubra and other plant species, particularly Solanum lycopersicum, Vitis vinifera, and Prunus persica. Furthermore, the transcriptome data demonstrated distinct temporal and tissue-specific expression patterns, with MrACS5 showing fruit-specific expression, suggesting its potential role in fruit ripening. These findings provide comprehensive insights into the ACS gene family in Myrica rubra, offering a valuable foundation for further functional studies on ethylene biosynthesis and its regulatory mechanisms in fruit development.
Collapse
Affiliation(s)
- Huanhui Huang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.H.); (X.L.); (Y.L.); (F.W.)
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312366, China
| | - Xintong Liu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.H.); (X.L.); (Y.L.); (F.W.)
| | - Yiqing Liu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.H.); (X.L.); (Y.L.); (F.W.)
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312366, China
| | - Fangli Wu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.H.); (X.L.); (Y.L.); (F.W.)
| | - Weibo Jin
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.H.); (X.L.); (Y.L.); (F.W.)
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312366, China
| |
Collapse
|
2
|
Yin L, Zhang X, Gao A, Cao M, Yang D, An K, Guo S, Yin H. Genome-Wide Identification and Expression Analysis of 1-Aminocyclopropane-1-Carboxylate Synthase ( ACS) Gene Family in Chenopodium quinoa. PLANTS (BASEL, SWITZERLAND) 2023; 12:4021. [PMID: 38068656 PMCID: PMC10707884 DOI: 10.3390/plants12234021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 04/10/2024]
Abstract
Ethylene plays an important role in plant development and stress resistance. The rate-limiting enzyme in ethylene biosynthesis is 1-aminocyclopropane-1-carboxylic acid synthase (ACS). C. quinoa (Chenopodium quinoa) is an important food crop known for its strong tolerance to abiotic stresses. However, knowledge regarding the ACS gene family in C. quinoa remains restricted. In this study, we successfully identified 12 ACS genes (CqACSs) from the C. quinoa genome. Through thorough analysis of their sequences and phylogenetic relationships, it was verified that 8 out of these 12 CqACS isozymes exhibited substantial resemblance to ACS isozymes possessing ACS activity. Furthermore, these eight isozymes could be categorized into three distinct groups. The four remaining CqACS genes grouped under category IV displayed notable similarities with AtACS10 and AtACS12, known as amido transferases lacking ACS activity. The CqACS proteins bore resemblance to the AtACS proteins and had the characteristic structural features typically observed in plant ACS enzymes. Twelve CqACS genes were distributed across 8 out of the 18 chromosomes of C. quinoa. The CqACS genes were expanded from segment duplication. Many cis-regulatory elements related with various abiotic stresses, phytohormones, and light were found. The expression patterns of ACS genes varied across different tissues of C. quinoa. Furthermore, the analysis of gene expression patterns under abiotic stress showed that CqACS genes can be responsive to various stresses, implying their potential functions in adapting to various abiotic stresses. The findings from this research serve as a foundation for delving deeper into the functional roles of CqACS genes.
Collapse
Affiliation(s)
- Lu Yin
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| | - Xia Zhang
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| | - Aihong Gao
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| | - Meng Cao
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| | - Dongdong Yang
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| | - Kexin An
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| | - Shanli Guo
- College of Grassland Sciences, Qingdao Agricultural University, Qingdao 266109, China
- High-Efficiency Agricultural Technology Industry Research Institute of Saline and Alkaline Land of Dongying, Qingdao Agricultural University, Dongying 257300, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
| | - Haibo Yin
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| |
Collapse
|
3
|
Neves M, Correia S, Canhoto J. Ethylene Inhibition Reduces De Novo Shoot Organogenesis and Subsequent Plant Development from Leaf Explants of Solanum betaceum Cav. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091854. [PMID: 37176912 PMCID: PMC10180641 DOI: 10.3390/plants12091854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
In de novo shoot organogenesis (DNSO) plant cells develop into new shoots, without the need of an existing meristem. Generally, this process is triggered by wounding and specific growth regulators, such as auxins and cytokinins. Despite the potential significance of the plant hormone ethylene in DNSO, its effect in regeneration processes of woody species has not been thoroughly investigated. To address this gap, Solanum betaceum Cav. was used as an experimental model to explore the role of this hormone on DNSO and potentially extend the findings to other woody species. In this work it was shown that ethylene positively regulates DNSO from tamarillo leaf explants. Ethylene precursors ACC and ethephon stimulated shoot regeneration by increasing the number of buds and shoots regenerated. In contrast, the inhibition of ethylene biosynthesis or perception by AVG and AgNO3 decreased shoot regeneration. Organogenic callus induced in the presence of ethylene precursors showed an upregulated expression of the auxin efflux carrier gene PIN1, suggesting that ethylene may enhance shoot regeneration by affecting auxin distribution prior to shoot development. Additionally, it was found that the de novo shoot meristems induced in explants in which ethylene biosynthesis and perception was suppressed were unable to further develop into elongated shoots. Overall, these results imply that altering ethylene levels and perception could enhance shoot regeneration efficiency in tamarillo. Moreover, we offer insights into the possible molecular mechanisms involved in ethylene-induced shoot regeneration.
Collapse
Affiliation(s)
- Mariana Neves
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- InnovPlantProtect CoLab, 7350-478 Elvas, Portugal
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
4
|
Zeng L, Zeng L, Wang Y, Xie Z, Zhao M, Chen J, Ye X, Tie W, Li M, Shang S, Tian L, Zeng J, Hu W. Identification and expression of the CCO family during development, ripening and stress response in banana. Genetica 2023; 151:87-96. [PMID: 36652142 DOI: 10.1007/s10709-023-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/17/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Plant hormone abscisic acid (ABA) plays an important role in plant growth, development and response to biotic / abiotic stressors. Thus, it is necessary to investigate the crucial genes associated with ABA synthesis. Currently, the carotenoid cleavage oxygenases (CCOs) family that function as the key step for ABA synthesis are not well understood in banana. In this study, 13 MaCCO genes and 12 MbCCO genes, divided into NCED subgroup and CCD subgroup, were identified from the banana genome, and their evolutionary relationship, protein motifs, and gene structures were also determined. Transcriptomic analysis suggested the involvement of CCO genes in banana development, ripening, and response to abiotic and biotic stressors, and homologous gene pairs showed homoeologue expression bias in the A or B subgenome. Our results identified MaNCED3A, MaCCD1, and MbNCED3B as the genes with the highest expression during fruit development and ripening. MaNCED5 / MbNCED5 and MaNCED9A might respond to abiotic stress, and MaNCED3A, 3B, 6 A, 9 A, and MbNCED9A showed transcriptional changes that could be a response to Foc4 infection. These findings may contribute to the characterization of key enzymes involved in ABA biosynthesis, as well as to identify potential targets for the genetic improvement of banana.
Collapse
Affiliation(s)
- Liming Zeng
- Sanya Nanfan Research Institute of Hainan University, Sanya, Hainan, China.,Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Liwang Zeng
- Institute of Scientific and Technical Information, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Yu Wang
- Institute of Scientific and Technical Information, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Zhengnan Xie
- Institute of Scientific and Technical Information, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Minhua Zhao
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern China, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Jie Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern China, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Xiaoxue Ye
- Institute of Scientific and Technical Information, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Weiwei Tie
- Institute of Scientific and Technical Information, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Meiying Li
- Institute of Scientific and Technical Information, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Sang Shang
- Sanya Nanfan Research Institute of Hainan University, Sanya, Hainan, China.,School of Life Sciences, Hainan University, Haikou, China
| | - Libo Tian
- Sanya Nanfan Research Institute of Hainan University, Sanya, Hainan, China. .,Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China.
| | - Jian Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern China, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China.
| | - Wei Hu
- Institute of Scientific and Technical Information, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China. .,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan, China.
| |
Collapse
|
5
|
Wang Z, Zhang S, Yang Y, Li Z, Li H, Yu R, Luan F, Zhang X, Wei C. Novel Bisexual Flower Control Gene Regulates Sex Differentiation in Melon ( Cucumis melo L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15401-15414. [PMID: 36450102 DOI: 10.1021/acs.jafc.2c05998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The sex-control system involves several mechanisms in melon. The present study identified a novel bisexual flower control gene from the hermaphroditic melon germplasm, different from the previously recognized one. Genetic analysis showed that a single recessive gene in the newly identified locus b controlled the bisexual flower phenotype in melons. We generated 1431 F2 segregating individuals for genetic mapping of locus b, which was delimited to a 47.94 kb region. Six candidate genes were identified in the delimited interval, and candidate No. 4 encoding melon CPR5 protein was selected as the suitable one for locus b and was denoted CmCPR5. CPR5 reportedly interacted with ethylene receptor ETR1 to regulate ethylene signal transduction. Moreover, the ethephon assays showed that the parental lines (unisexual line and bisexual line) had contrasting expression patterns of CmCPR5. The BiFC and LCI assays also confirmed that CmCPR5 interacted with CmETR1 in 0426 but not in Y101. However, crossover tests showed that CmETR1 functioned normally in both parental lines, suggesting CPR5 malfunction in Y101. This study proposed a corollary mechanism of bisexual flower regulation during stamen primordium development in which the inhibition of stamen primordia development was prevented by the malfunctioning CmCPR5, resulting in bisexual flowers.
Collapse
Affiliation(s)
- Zhongyuan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Siyu Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Yongchao Yang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi 661100, China
| | - Zheng Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Hao Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Rong Yu
- Institute of Horticulture, Ningxia Academy of Agriculture and Forestry Sciences,Yinchuan 750002, China
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300384, China
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
| |
Collapse
|
6
|
Mahmoud A, Qi R, Zhao H, Yang H, Liao N, Ali A, Malangisha GK, Ma Y, Zhang K, Zhou Y, Xia Y, Lyu X, Yang J, Zhang M, Hu Z. An allelic variant in the ACS7 gene promotes primary root growth in watermelon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3357-3373. [PMID: 35980402 DOI: 10.1007/s00122-022-04173-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Gene mining in a C. lanatus × C. amarus population revealed one gene, ACS7, linked to primary root elongation in watermelon. Watermelon is a xerophytic crop characterized by a long primary root and robust lateral roots. Therefore, watermelon serves as an excellent model for studying root elongation and development. However, the genetic mechanism underlying the primary root elongation in watermelon remains unknown. Herein, through bulk segregant analysis we identified a genetic locus, qPRL.Chr03, controlling primary root length (PRL) using two different watermelon species (Citrullus lanatus and Citrullus amarus) that differ in their root architecture. Fine mapping revealed that xaa-Pro dipeptidase and 1-aminocyclopropane-1-carboxylate synthase 7 (ACS7) are candidate regulators of the primary root growth. Allelic variation in the delimited region among 193 watermelon accessions indicated that the long-root alleles might only exist in C. amarus. Interestingly, the discrepancy in PRL among the C. amarus accessions was clearly associated with a nonsynonymous single nucleotide polymorphism variant within the ACS7 gene. The ACS7 expression and ethylene levels in the primary root tips suggested that ethylene is a negative regulator of root elongation in watermelon, as supported by the application of 1-aminocyclopropane-1-carboxylate (ACC, the ethylene precursor) or 2-aminoethoxyvinyl glycine (AVG, an ACS inhibitor). To the best of our knowledge, these findings provide the first description of the genetic basis of root elongation in watermelon. The detected markers of the ACS7 gene will facilitate marker-assisted selection for the PRL trait to improve water and nutrient use efficacy in watermelon and beyond.
Collapse
Affiliation(s)
- Ahmed Mahmoud
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Agriculture Research Center, Horticulture Research Institute, 9 Gmaa St, Giza, 12619, Egypt
| | - Rui Qi
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, People's Republic of China
| | - Haoshun Zhao
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Haiyang Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Nanqiao Liao
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Abid Ali
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Guy Kateta Malangisha
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuyuan Ma
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Kejia Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yimei Zhou
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuelin Xia
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaolong Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, People's Republic of China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, People's Republic of China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, People's Republic of China.
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, People's Republic of China.
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, People's Republic of China.
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Wang C, Li W, Chen F, Cheng Y, Huang X, Zou B, Wang Y, Xu W, Qu S. Genome-Wide Identification and Characterization of Members of the ACS Gene Family in Cucurbita maxima and Their Transcriptional Responses to the Specific Treatments. Int J Mol Sci 2022; 23:8476. [PMID: 35955610 PMCID: PMC9369044 DOI: 10.3390/ijms23158476] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
Ethylene biosynthesis and signal transduction play critical roles in plant sex differentiation. ACS (1-aminocyclopropane-1-carboxylic acid synthase) is a rate-limiting enzyme in ethylene biosynthesis. However, the understanding of the ACS gene family in Cucurbita maxima is limited. Here, we identified and characterized 13 ACS genes in the C. maxima genome. All ACS genes could be divided into three groups according to a conserved serine residue at the C-terminus. Thirteen CmaACS genes were found to be randomly distributed on 10 of the 20 chromosomes of C. maxima. The ACS gene exhibits different tissue-specific expression patterns in pumpkin, and four ACS genes (CmaACS1, CmaACS4, CmaACS7, and CmaACS9) were expressed specifically in both the female and male flowers of C. maxima. In addition, the expression levels of CmaACS4 and CmaACS7 were upregulated after ethephon and IAA treatments, which ultimately increased the number of female flowers, decreased the position of the first female flower and decreased the number of bisexual flowers per plant. These results provide relevant information for determining the function of the ACS genes in C. maxima, especially for regulating the function of ethylene in sex determination.
Collapse
Affiliation(s)
- Chaojie Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China; (C.W.); (W.L.); (F.C.); (Y.C.); (X.H.); (B.Z.); (Y.W.); (W.X.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenling Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China; (C.W.); (W.L.); (F.C.); (Y.C.); (X.H.); (B.Z.); (Y.W.); (W.X.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Fangyuan Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China; (C.W.); (W.L.); (F.C.); (Y.C.); (X.H.); (B.Z.); (Y.W.); (W.X.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yaqian Cheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China; (C.W.); (W.L.); (F.C.); (Y.C.); (X.H.); (B.Z.); (Y.W.); (W.X.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xin Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China; (C.W.); (W.L.); (F.C.); (Y.C.); (X.H.); (B.Z.); (Y.W.); (W.X.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Bingxue Zou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China; (C.W.); (W.L.); (F.C.); (Y.C.); (X.H.); (B.Z.); (Y.W.); (W.X.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China; (C.W.); (W.L.); (F.C.); (Y.C.); (X.H.); (B.Z.); (Y.W.); (W.X.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China; (C.W.); (W.L.); (F.C.); (Y.C.); (X.H.); (B.Z.); (Y.W.); (W.X.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China; (C.W.); (W.L.); (F.C.); (Y.C.); (X.H.); (B.Z.); (Y.W.); (W.X.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Genome-Wide Identification of CCD Gene Family in Six Cucurbitaceae Species and Its Expression Profiles in Melon. Genes (Basel) 2022; 13:genes13020262. [PMID: 35205307 PMCID: PMC8872574 DOI: 10.3390/genes13020262] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
The carotenoid cleavage dioxygenase (CCD) gene family in plants comprises two subfamilies: CCD and 9-cis-epoxycarotenoid dioxygenase (NCED). Genes in the NCED subfamily are mainly involved in plant responses to abiotic stresses such as salt, low temperature, and drought. Members of the NCED subfamily are the most important rate-limiting enzymes in the biosynthesis of abscisic acid (ABA). In the present study, genome-wide analysis was performed to identify CCD gene members in six Cucurbitaceae species, including watermelon (Citrullus lanatus), melon (Cucumis melo), cucumber (C.sativus), pumpkin (Cucurbita moschata), bottle gourd (Lagenaria siceraria), and wax gourd (Benincasa hispida). A total of 10, 9, 9, 13, 8, 8 CCD genes were identified in the six species, respectively, and these genes were unevenly distributed in different chromosomes. Phylogenetic analysis showed that CCD genes of the six species clustered into two subfamilies: CCD and NCED, with five and three independent clades, respectively. The number of exons ranged from 1 to 15, and the number of motifs were set to 15 at most. The cis-acting elements analysis showed that a lot of the cis-acting elements were implicated in stress and hormone response. Melon seedlings were treated with salt, low temperature, drought, and ABA, and then tissue-specific analysis of CCDs expression were performed on the root, stem, upper leaf, middle leaf, female flower, male flower, and tendril of melon. The results showed that genes in CCD family exhibited various expression patterns. Different CCD genes of melon showed different degrees of response to abiotic stress. This study presents a comprehensive analysis of CCD gene family in six species of Cucurbitaceae, providing a strong foundation for future studies on specific genes in this family.
Collapse
|