1
|
Li C, Fang L, Su X, Zhang J, Xiong H, Yu H, Zhu Z, Lin X, Min K, Wu D, Chen Z, Gong J, Xie CM. Macrophage miR-4524a-5p/TBP promotes β-TrCP -TIM3 complex activation and TGFβ release and aggravates NAFLD-associated fibrosis. Cell Death Dis 2025; 16:315. [PMID: 40251185 PMCID: PMC12008196 DOI: 10.1038/s41419-025-07574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/20/2025]
Abstract
Macrophages hold a critical position in maintenance of hepatic homeostasis and in injury and repair processes in acute and chronic liver diseases. TIM3 is a promising protector in MCD-induced steatohepatitis in acute liver injury. However, we recently find TIM3 as a driver of fibrosis in MCD/HFD-induced chronic liver injury. This study aims to explore how macrophage TIM3 drivers NAFLD-associated chronic liver injury as well as identify a subtype of fibrotic patients suitable for anti-TIM3 immunotherapy. Here, we found that TIM3 was highly expressed in liver macrophages in a long-term MCD- or HFD-fed mice with fibrotic NASH. Elevated β-TrCP in macrophages promoted TIM3 polyubiquitination and membrane translocation. The ubiquitinated TIM3 then bound with PI3K and followed by inhibition of mTOR and activation of macrophage M2 polarization and TGF-β release, leading to HSC activation and liver fibrosis. Furthermore, elevated TIM3 was attributed to the transcriptional TBP upregulation and miR-4524a-5p downregulation. Targeting of TIM3 significantly attenuated liver fibrosis in mice. In clinical NASH patients, elevated macrophage TIM3 is positively correlated with TBP expression and negatively associated with miR-4524a-5p. Decreased miR-4524a-5p in plasma was a biomarker for the NASH fibrosis patients suitable for anti-TIM3 therapy. In conclusion, this study reveals that miR-4524a-5p/TBP promotes β-TrCP/TIM3 complex activation in macrophages and aggravates chronic NASH fibrosis, providing miR-4524a-5p as an effective blood biomarker for a subtype of chronic NASH patients with fibrosis suitable for anti-TIM3 treatment.
Collapse
Affiliation(s)
- Chunming Li
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Fang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xingxing Su
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haojun Xiong
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongqiang Yu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhu Zhu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaotong Lin
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ke Min
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Di Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhiyu Chen
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
2
|
Osadchiy I, Umnova A, Pokholkova GV, Golovnin A, Gvozdev VA, Zhimulev IF, Georgiev P, Maksimenko O. Drosophila architectural proteins M1BP and Opbp cooperatively form the active promoter of a ribosomal protein gene. Epigenetics Chromatin 2025; 18:20. [PMID: 40241195 PMCID: PMC12001521 DOI: 10.1186/s13072-025-00584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 04/05/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND In Drosophila, architectural proteins are frequently found in promoters, including those of genes with extremely high expression levels, such as ribosomal protein genes (RPGs). The involvement of several of these proteins in gene regulation in Drosophila has been shown, but the exact mechanisms of their possible cooperative action have not been fully elucidated. RESULTS In this study we dissected the contribution of the architectural proteins Opbp and M1BP, which are co-localized at several RPG promoters near the transcription start site, to promoter functioning. We found that Opbp has two domains that directly interact with CP190, Putzig (Pzg), and Chromator (Chro) proteins, the cofactors which are required for the activation of housekeeping (hk) gene promoters. These domains have redundant functions in vivo and can tether the cofactors forming open chromatin regions when are artificially recruited to the "closed" chromatin. Additionally, we observed interactions between M1BP and the same cofactors. In the transgene assay, the transcription driven by the 192-bp part of Rpl27A RPG promoter is fully dependent on the presence of at least one Opbp or M1BP binding site and it is sufficient for the very high activity of this promoter integrated into the hk gene cluster and moderate expression outside the cluster, while presence of both sites even more facilitates transcription. CONCLUSIONS This study demonstrates that different architectural proteins can work independently and in cooperation and fulfill partially redundant functions in the activation of RPG promoters.
Collapse
Affiliation(s)
- Igor Osadchiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Anastasia Umnova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Galina V Pokholkova
- Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Vladimir A Gvozdev
- NRC "Kurchatov Institute"-Institute of Molecular Genetics, Moscow, 123182, Russia
| | - Igor F Zhimulev
- Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia.
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia.
| |
Collapse
|
3
|
Rucli S, Descostes N, Ermakova Y, Chitnavis U, Couturier J, Boskovic A, Boulard M. Functional genomic profiling of O-GlcNAc reveals its context-specific interplay with RNA polymerase II. Genome Biol 2025; 26:69. [PMID: 40128797 PMCID: PMC11931877 DOI: 10.1186/s13059-025-03537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND How reversible glycosylation of DNA-bound proteins acts on transcription remains scarcely understood. O-linked β-N-acetylglucosamine (O-GlcNAc) is the only known form of glycosylation modifying nuclear proteins, including RNA polymerase II (RNA Pol II) and many transcription factors. Yet, the regulatory function of the O-GlcNAc modification in mammalian chromatin remains unclear. RESULTS Here, we combine genome-wide profiling of O-GlcNAc-modified proteins with perturbations of intracellular glycosylation, RNA Pol II-degron, and super-resolution microscopy. Genomic profiling of O-GlcNAc-modified proteins shows a non-random distribution across the genome, with high densities in heterochromatin regions as well as on actively transcribed gene promoters. Large-scale intersection of the O-GlcNAc signal at promoters with public ChIP-seq datasets identifies a high overlap with RNA Pol II and specific cofactors. Knockdown of O-GlcNAc Transferase (Ogt) shows that most direct target genes are downregulated, supporting a global positive role of O-GlcNAc on the transcription of cellular genes. Rapid degradation of RNA Pol II results in the decrease of the O-GlcNAc levels at promoters encoding transcription factors and DNA modifying enzymes. RNA Pol II depletion also unexpectedly causes an increase of O-GlcNAc levels at a set of promoters encoding for the transcription machinery. CONCLUSIONS This study provides a deconvoluted genomic profiling of O-GlcNAc-modified proteins in murine and human cells. Perturbations of O-GlcNAc or RNA Pol II uncover a context-specific reciprocal functional interplay between the transcription machinery and the O-GlcNAc modification.
Collapse
Affiliation(s)
- Sofia Rucli
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy
- Collaboration for a joint PhD degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Nicolas Descostes
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy
| | - Yulia Ermakova
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy
| | - Urvashi Chitnavis
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy
| | - Jeanne Couturier
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy
| | - Ana Boskovic
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy
| | - Matthieu Boulard
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy.
| |
Collapse
|
4
|
Rajalekshmi R, Rai V, Agrawal DK. 14-3-3ζ: an optimal housekeeping protein for western blot analysis in swine rotator cuff tendon studies. Mol Cell Biochem 2025:10.1007/s11010-025-05255-6. [PMID: 40121578 DOI: 10.1007/s11010-025-05255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Healthy biomechanics of the shoulder involving rotator cuff muscles and rotator cuff tendon (RCT) is pivotal for joint stability, yet co-morbid conditions like hyperlipidemia and hyperglycemia can lead to degenerative changes jeopardizing tendon integrity. A change in protein expression, the functional moiety for molecular events, may result in altered healing of RCT and prolonged morbidity. Expression and activity of proteins are critical while investigating the underlying molecular and cellular changes involved in tendinopathy. While investigating the changes in the protein expression of various inflammatory mediators, we observed that the Western Blot bands for commonly used housekeeping genes (GAPDH, β-actin, and α-tubulin) were not uniform in different tendon samples. Therefore, we investigated for an optimal housekeeping gene for Western blot analysis in swine RCT under normal and hyperlipidemic conditions, as this is essential for accurate normalization of protein expression. The study evaluated several housekeeping genes-GAPDH, beta-actin, alpha and beta-tubulin, Ubiquitin C, Cyclophilin A, TATA-box binding protein, and 14-3-3ζ-to ensure robust normalization across experimental setups. The results revealed that the protein expression of 14-3-3ζ was uniform in all samples, thereby validating its suitability as a stable housekeeping protein. The findings are important while studying the RCT pathology in a clinically relevant animal model, like swine, which mimics human RCT and provides translationally significant findings. Thus, the 14-3-3ζ protein will be an ideal housekeeping gene in the design of experiments utilizing musculoskeletal tissues.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|
5
|
Zhang T, Wang J, Bai Y, Wang Q, Wang K, Zhu H, Qu L, Guo Z, Pan C, Lan X. A functional SNP of the core promoter region within goat C DC25A gene affects litter size. Front Vet Sci 2025; 11:1471123. [PMID: 39981136 PMCID: PMC11841496 DOI: 10.3389/fvets.2024.1471123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/22/2024] [Indexed: 02/22/2025] Open
Abstract
The Cell division cycle 25A (CDC25A) gene has been considered as a candidate gene associated with reproductive traits for goat breeding. In this study, five truncated fragments divided at position-2285 nt to +198 nt were amplified and cloned into the luciferase reporter vectors to identify the core promoter. The luciferase reporter assay showed that the core promoter of CDC25A was located at position-663 nt to-237 nt. Afterwards, a single nucleotide polymorphism (NC_030829.1:g.51731829A > C) at the core promoter was detected using sequencing and KASP in a population of 1,016 goats and luciferase reporter vectors carrying the A allele or C allele were transfected into cells, respectively. The results displayed that the higher relative luciferase activity was observed in plasmids carrying the A allele rather than the C allele. The litter size of individuals with the AA genotype was significantly better than those with other genotypes, which corresponded to increased transcriptional activity in plasmids carrying the A allele. In short, our study provides a potential molecular genetic marker for improving reproductive efficiency in goat breeding.
Collapse
Affiliation(s)
- Taiyuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jingxuan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yangyang Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qian Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ke Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, College of Life Science, Yulin University, Yulin, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, College of Life Science, Yulin University, Yulin, China
| | - Zhengang Guo
- Testing Center for Livestock and Poultry Germplasm, Guiyang, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Leydon AR, Downing B, Solano Sanchez J, Loll-Krippleber R, Belliveau NM, Rodriguez-Mias RA, Bauer AJ, Watson IJ, Bae L, Villén J, Brown GW, Nemhauser JL. A function of TPL/TBL1-type corepressors is to nucleate the assembly of the preinitiation complex. J Cell Biol 2025; 224:e202404103. [PMID: 39652081 PMCID: PMC11627113 DOI: 10.1083/jcb.202404103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/04/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024] Open
Abstract
The plant corepressor TPL is recruited to diverse chromatin contexts, yet its mechanism of repression remains unclear. Previously, we leveraged the fact that TPL retains its function in a synthetic transcriptional circuit in the yeast model Saccharomyces cerevisiae to localize repressive function to two distinct domains. Here, we employed two unbiased whole-genome approaches to map the physical and genetic interactions of TPL at a repressed locus. We identified SPT4, SPT5, and SPT6 as necessary for repression with SPT4 acting as a bridge connecting TPL to SPT5 and SPT6. We discovered the association of multiple additional constituents of the transcriptional preinitiation complex at TPL-repressed promoters, specifically those involved early in transcription initiation. These findings were validated in yeast and plants, including a novel method to analyze the conditional loss of function of essential genes in plants. Our findings support a model where TPL nucleates preassembly of the transcription activation machinery to facilitate the rapid onset of transcription once repression is relieved.
Collapse
Affiliation(s)
| | - Benjamin Downing
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | | | | | | | - Andrew J. Bauer
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | - Lena Bae
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Grant W. Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON, USA
| | | |
Collapse
|
7
|
Hu M, Deng Y, Bai Y, Zhang J, Shen X, Shen L, Zhou L. Identifying Key Biomarkers Related to Immune Response in the Progression of Diabetic Kidney Disease: Mendelian Randomization Combined With Comprehensive Transcriptomics and Single-Cell Sequencing Analysis. J Inflamm Res 2025; 18:949-972. [PMID: 39871959 PMCID: PMC11769850 DOI: 10.2147/jir.s482047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
Background Renal failure related death caused by diabetic kidney disease (DKD) is an inevitable outcome for most patients. This study aimed to identify the critical genes involved in the onset and progression of DKD and to explore potential therapeutic targets of DKD. Methods We conducted a batch of protein quantitative trait loci (pQTL) Mendelian randomization analysis to obtain a group of proteins with causal relationships with DKD and then identified key proteins through colocalization analysis to determine correlations between variant proteins and disease outcomes. Subsequently, the specific mechanisms of key regulatory genes involved in disease progression were analyzed through transcriptome and single-cell analysis. Finally, we validated the mRNA expression of five key genes in the DKD mice model using reverse transcription quantitative PCR (RT-qPCR). Results Five characteristic genes, known as protein kinase B beta (AKT2), interleukin-2 receptor beta (IL2RB), neurexin 3(NRXN3), slit homolog 3(SLIT3), and TATA box binding protein like protein 1 (TBPL1), demonstrated causal relationships with DKD. These key genes are associated with the infiltration of immune cells, and they are related to the regulatory genes associated with immunity. In addition, we also conducted gene enrichment analysis to explore the complex network of potential signaling pathways that may regulate these key genes. Finally, we identified the effectiveness and reliability of these selected key genes through RT-qPCR in the DKD mice model. Conclusion Our results indicated that the AKT2, IL2RB, NRXN3, SLIT3, and TBPL1 genes are closely related to DKD, which may be useful in the diagnosis and therapy of DKD.
Collapse
Affiliation(s)
- Miao Hu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Yi Deng
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Yujie Bai
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Jiayan Zhang
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Xiahong Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Lei Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Ling Zhou
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
8
|
Chen X, Cai W, Xia J, Wang J, Yuan H, Wang Q, Pang F, Zhao M, Qiao Y. Integration of ATAC-Seq and RNA-Seq Reveals the Role of FaTIP1 in Red Light-Induced Fruit Ripening in Strawberry. Int J Mol Sci 2025; 26:511. [PMID: 39859225 PMCID: PMC11765184 DOI: 10.3390/ijms26020511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Light is an important environmental factor affecting the ripening and quality of strawberry fruit. Previous studies have shown that red light treatment can promote strawberry ripening. Gene expression is closely associated with chromatin openness, and changes in chromatin accessibility are crucial for the binding of transcription factors to downstream regulatory sequences. However, the changes in chromatin accessibility in response to different light treatments in octoploid strawberry plants are still unclear. In this study, the landscape of chromatin accessibility of octoploid strawberry under red (R) and yellow-green (YG) light conditions was analyzed by the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq). Through bioinformatics and Venn diagram analyses, a total of 1456 and 1854 group-specific genes (GSGs) were screened in the R and YG groups, respectively. By using RNA sequencing (RNA-seq), 440 differentially expressed genes (DEGs) were identified. Among these genes, 194 were upregulated under red light treatment. Through joint analysis of ATAC-seq and RNA-seq data, three red group-specific genes with increased expression were identified, namely, FaTIP1, FaQKY and FaLBD1. Through gene expression and transient transformation analyses of strawberry fruit, we further demonstrated that FaTIP1 can respond to red light induction and promote the ripening process of strawberry fruit. Our results provide a reference for the study of chromatin accessibility in octoploid strawberry and reveal new factors involved in the fruit's response to red light and the regulation of the ripening process of strawberry fruit.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yushan Qiao
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Jiangsu Province Engineering Research Center of Modern Strawberry Industry/Zhongshan Biological Breeding Laboratory, 50 Zhonglin Road, Nanjing 210014, China; (X.C.)
| |
Collapse
|
9
|
Liu M, Li Y, Yuan X, Rong S, Du J. Novel insights into RNA polymerase II transcription regulation: transcription factors, phase separation, and their roles in cardiovascular diseases. Biochem Cell Biol 2025; 103:1-21. [PMID: 39540550 DOI: 10.1139/bcb-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Transcription factors (TFs) are specialized proteins that bind DNA in a sequence-specific manner and modulate RNA polymerase II (Pol II) in multiple steps of the transcription process. Phase separation is a spontaneous or driven process that can form membrane-less organelles called condensates. By creating different liquid phases at active transcription sites, the formation of transcription condensates can reduce the water content of the condensate and lower the dielectric constant in biological systems, which in turn alters the structure and function of proteins and nucleic acids in the condensate. In RNA Pol II transcription, phase separation formation shortens the time at which TFs bind to target DNA sites and promotes transcriptional bursting. RNA Pol II transcription is engaged in developing several diseases, such as cardiovascular disease, by regulating different TFs and mediating the occurrence of phase separation. This review aims to summarize the advances in the molecular mechanisms of RNA Pol II transcriptional regulation, in particular the effect of TFs and phase separation. The role of RNA Pol II transcriptional regulation in cardiovascular disease will be elucidated, providing potential therapeutic targets for the management and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 4000l0, China
| | - Shunkang Rong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
10
|
Khosraviani N, Yerlici VT, St-Germain J, Hou YY, Cao SB, Ghali C, Bokros M, Krishnan R, Hakem R, Lee S, Raught B, Mekhail K. Nucleolar Pol II interactome reveals TBPL1, PAF1, and Pol I at intergenic rDNA drive rRNA biogenesis. Nat Commun 2024; 15:9603. [PMID: 39505901 PMCID: PMC11541992 DOI: 10.1038/s41467-024-54002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Ribosomal DNA (rDNA) repeats harbor ribosomal RNA (rRNA) genes and intergenic spacers (IGS). RNA polymerase (Pol) I transcribes rRNA genes yielding rRNA components of ribosomes. IGS-associated Pol II prevents Pol I from excessively synthesizing IGS non-coding RNAs (ncRNAs) that can disrupt nucleoli and rRNA production. Here, compartment-enriched proximity-dependent biotin identification (compBioID) revealed the TATA-less-promoter-binding TBPL1 and transcription-regulatory PAF1 with nucleolar Pol II. TBPL1 localizes to TCT motifs, driving Pol II and Pol I and maintaining its baseline ncRNA levels. PAF1 promotes Pol II elongation, preventing unscheduled R-loops that hyper-restrain IGS Pol I-associated ncRNAs. PAF1 or TBPL1 deficiency disrupts nucleolar organization and rRNA biogenesis. In PAF1-deficient cells, repressing unscheduled IGS R-loops rescues nucleolar organization and rRNA production. Depleting IGS Pol I-dependent ncRNAs is sufficient to compromise nucleoli. We present the nucleolar interactome of Pol II and show that its regulation by TBPL1 and PAF1 ensures IGS Pol I ncRNAs maintaining nucleolar structure and function.
Collapse
Affiliation(s)
- Negin Khosraviani
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - V Talya Yerlici
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yi Yang Hou
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shi Bo Cao
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Carla Ghali
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael Bokros
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rehna Krishnan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Razqallah Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Lee
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, Ontario, Canada.
- College of New Scholars, Artists and Scientists, The Royal Society of Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
11
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
12
|
He AY, Danko CG. Dissection of core promoter syntax through single nucleotide resolution modeling of transcription initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.583868. [PMID: 38559255 PMCID: PMC10979970 DOI: 10.1101/2024.03.13.583868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
How the DNA sequence of cis-regulatory elements encode transcription initiation patterns remains poorly understood. Here we introduce CLIPNET, a deep learning model trained on population-scale PRO-cap data that predicts the position and quantity of transcription initiation with single nucleotide resolution from DNA sequence more accurately than existing approaches. Interpretation of CLIPNET revealed a complex regulatory syntax consisting of DNA-protein interactions in five major positions between -200 and +50 bp relative to the transcription start site, as well as more subtle positional preferences among transcriptional activators. Transcriptional activator and core promoter motifs work non-additively to encode distinct aspects of initiation, with the former driving initiation quantity and the latter initiation position. We identified core promoter motifs that explain initiation patterns in the majority of promoters and enhancers, including DPR motifs and AT-rich TBP binding sequences in TATA-less promoters. Our results provide insights into the sequence architecture governing transcription initiation.
Collapse
Affiliation(s)
- Adam Y. He
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University
- Graduate Field of Computational Biology, Cornell University
| | - Charles G. Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University
| |
Collapse
|
13
|
Wu R, Jia Q, Guo Y, Lin Y, Liu J, Chen J, Yan Q, Yuan N, Xue C, Chen X, Yuan X. Characterization of TBP and TAFs in Mungbean ( Vigna radiata L.) and Their Potential Involvement in Abiotic Stress Response. Int J Mol Sci 2024; 25:9558. [PMID: 39273505 PMCID: PMC11394781 DOI: 10.3390/ijms25179558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
The TATA-box binding protein (TBP) and TBP-associated factors (TAFs) constitute the transcription factor IID (TFIID), a crucial component of RNA polymerase II, essential for transcription initiation and regulation. Several TFIID subunits are shared with the Spt-Ada-Gcn5-acetyltransferase (SAGA) coactivator complex. Recent research has revealed the roles of TBP and TAFs in organogenesis and stress adaptation. In this study, we identified 1 TBP and 21 putative TAFs in the mungbean genome, among which VrTAF5, VrTAF6, VrTAF8, VrTAF9, VrTAF14, and VrTAF15 have paralogous genes. Their potential involvement in abiotic stress responses was also investigated here, including high salinity, water deficit, heat, and cold. The findings indicated that distinct genes exerted predominant influences in the response to different abiotic stresses through potentially unique mechanisms. Specifically, under salt stress, VrTBP, VrTAF2, and VrTAF15-1 were strongly induced, while VrTAF10, VrTAF11, and VrTAF13 acted as negative regulators. In the case of water-deficit stress, it was likely that VrTAF1, VrTAF2, VrTAF5-2, VrTAF9, and VrTAF15-1 were primarily involved. Additionally, in response to changes in ambient temperature, it was possible that genes such as VrTAF5-1, VrTAF6-1, VrTAF9-2, VrTAF10, VrTAF13, VrTAF14b-2, and VrTAF15-1 might play a dominant role. This comprehensive exploration of VrTBP and VrTAFs can offer a new perspective on understanding plant stress responses and provide valuable insights into breeding improvement.
Collapse
Affiliation(s)
- Ranran Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Qiyuan Jia
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingjian Guo
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jinyang Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Qiang Yan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Na Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Chenchen Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
14
|
Donato L, Scimone C, Alibrandi S, Vadalà M, Castellucci M, Bonfiglio VME, Scalinci SZ, Abate G, D'Angelo R, Sidoti A. The genomic mosaic of mitochondrial dysfunction: Decoding nuclear and mitochondrial epigenetic contributions to maternally inherited diabetes and deafness pathogenesis. Heliyon 2024; 10:e34756. [PMID: 39148984 PMCID: PMC11324998 DOI: 10.1016/j.heliyon.2024.e34756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Aims Maternally inherited diabetes and deafness (MIDD) is a complex disorder characterized by multiorgan clinical manifestations, including diabetes, hearing loss, and ophthalmic complications. This pilot study aimed to elucidate the intricate interplay between nuclear and mitochondrial genetics, epigenetic modifications, and their potential implications in the pathogenesis of MIDD. Main methods A comprehensive genomic approach was employed to analyze a Sicilian family affected by clinically characterized MIDD, negative to the only known causative m.3243 A > G variant, integrating whole-exome sequencing and whole-genome bisulfite sequencing of both nuclear and mitochondrial analyses. Key findings Rare and deleterious variants were identified across multiple nuclear genes involved in retinal homeostasis, mitochondrial function, and epigenetic regulation, while complementary mitochondrial DNA analysis revealed a rich tapestry of genetic diversity across genes encoding components of the electron transport chain and ATP synthesis machinery. Epigenetic analyses uncovered significant differentially methylated regions across the genome and within the mitochondrial genome, suggesting a nuanced landscape of epigenetic modulation. Significance The integration of genetic and epigenetic data highlighted the potential crosstalk between nuclear and mitochondrial regulation, with specific mtDNA variants influencing methylation patterns and potentially impacting the expression and regulation of mitochondrial genes. This pilot study provides valuable insights into the complex molecular mechanisms underlying MIDD, emphasizing the interplay between nucleus and mitochondrion, tracing the way for future research into targeted therapeutic interventions and personalized approaches for disease management.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Maria Vadalà
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | - Massimo Castellucci
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | - Vincenza Maria Elena Bonfiglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | | | - Giorgia Abate
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| |
Collapse
|
15
|
Elpek GO. Tata-box-binding protein-associated factor 15 as a new potential marker in gastrointestinal tumors. World J Gastroenterol 2024; 30:3367-3372. [PMID: 39091718 PMCID: PMC11290397 DOI: 10.3748/wjg.v30.i28.3367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
In this editorial, the roles of tata-box-binding protein-associated factor 15 (TAF15) in oncogenesis, tumor behavior, and as a therapeutic target in cancers in the context of gastrointestinal (GI) tumors are discussed concerning the publication by Guo et al. TAF15 is a member of the FET protein family with a comprehensive range of cellular processes. Besides, evidence has shown that TAF15 is involved in many diseases, including cancers. TAF15 contributes to carcinogenesis and tumor behavior in many tumors. Besides, its relationship with the mitogen-activated protein kinases (MAPK) signaling pathway makes TAF15 a new target for therapy. Although, the fact that there is few studies investigating the expression of TAF15 constitutes a potential limitation in GI system, the association of TAF15 expression with aggressive tumor behavior and, similar to other organ tumors, the influence of TAF15 on the MAPK signaling pathway emphasize that this protein could serve as a new molecular biomarker to predict tumor behavior and target therapeutic intervention in GI cancers. In conclusion, more studies should be performed to better understand the prognostic and therapeutic role of TAF15 in GI tumors, especially in tumors resistant to therapy.
Collapse
Affiliation(s)
- Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Türkiye
| |
Collapse
|
16
|
La Force H, Freindorf M, Kraka E. Ligand Characterization and DNA Intercalation of Ru(II) Polypyridyl Complexes: A Local Vibrational Mode Study. J Phys Chem A 2024; 128:5925-5940. [PMID: 38990174 DOI: 10.1021/acs.jpca.4c02954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
We investigated in this work ruthenium-ligand bonding across the RuN framework in 12 Ru(II) polypyridyl complexes in the gas phase and solution for both singlet and triplet states, in addition to their affinity for DNA binding through π-π stacking interactions with DNA nucleobases. As a tool to assess the intrinsic strength of the ruthenium-ligand bonds, we determined local vibrational force constants via our local vibrational mode analysis software. We introduced a novel local force constant that directly accounts for the intrinsic strength of the π-π stacking interaction between DNA and the intercalated Ru(II) complex. According to our findings, [Ru(phen)2(dppz)]2+ and [Ru(phen)2(11-CN-dppz)]2+ provide an intriguing trade-off between photoinduced complex excitation and the strength of the subsequent π-π stacking interaction with DNA. [Ru(phen)2(dppz)]2+ displays a small singlet-triplet splitting and a strong π-π stacking interaction in its singlet state, suggesting a favorable photoexcitation but potentially weaker interaction with DNA in the excited state. Conversely, [Ru(phen)2(11-CN-dppz)]2+ exhibits a larger singlet-triplet splitting and a stronger π-π stacking interaction with DNA in its triplet state, indicating a less favorable photoinduced transition but a stronger interaction with DNA postexcitation. We hope our study will inspire future experimental and computational work aimed at the design of novel Ru-polypyridyl drug candidates and that our new quantitative measure of π-π stacking interactions in DNA will find a general application in the field.
Collapse
Affiliation(s)
- Hunter La Force
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| |
Collapse
|
17
|
Tandon S, Aggarwal P, Sarkar S. Polyglutamine disorders: Pathogenesis and potential drug interventions. Life Sci 2024; 344:122562. [PMID: 38492921 DOI: 10.1016/j.lfs.2024.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Polyglutamine/poly(Q) diseases are a group nine hereditary neurodegenerative disorders caused due to abnormally expanded stretches of CAG trinucleotide in functionally distinct genes. All human poly(Q) diseases are characterized by the formation of microscopically discernable poly(Q) positive aggregates, the inclusion bodies. These toxic inclusion bodies are responsible for the impairment of several cellular pathways such as autophagy, transcription, cell death, etc., that culminate in disease manifestation. Although, these diseases remain largely without treatment, extensive research has generated mounting evidences that various events of poly(Q) pathogenesis can be developed as potential drug targets. The present review article briefly discusses the key events of disease pathogenesis, model system-based investigations that support the development of effective therapeutic interventions against pathogenesis of human poly(Q) disorders, and a comprehensive list of pharmacological and bioactive compounds that have been experimentally shown to alleviate poly(Q)-mediated neurotoxicity. Interestingly, due to the common cause of pathogenesis, all poly(Q) diseases share etiology, thus, findings from one disease can be potentially extrapolated to other poly(Q) diseases as well.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Prerna Aggarwal
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
18
|
Leydon AR, Downing B, Sanchez JS, Loll-Krippleber R, Belliveau NM, Rodriguez-Mias RA, Bauer A, Watson IJ, Bae L, Villén J, Brown GW, Nemhauser JL. A conserved function of corepressors is to nucleate assembly of the transcriptional preinitiation complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587599. [PMID: 38617365 PMCID: PMC11014602 DOI: 10.1101/2024.04.01.587599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The plant corepressor TPL is recruited to diverse chromatin contexts, yet its mechanism of repression remains unclear. Previously, we have leveraged the fact that TPL retains its function in a synthetic transcriptional circuit in the yeast model Saccharomyces cerevisiae to localize repressive function to two distinct domains. Here, we employed two unbiased whole genome approaches to map the physical and genetic interactions of TPL at a repressed locus. We identified SPT4, SPT5 and SPT6 as necessary for repression with the SPT4 subunit acting as a bridge connecting TPL to SPT5 and SPT6. We also discovered the association of multiple additional constituents of the transcriptional preinitiation complex at TPL-repressed promoters, specifically those involved in early transcription initiation events. These findings were validated in yeast and plants through multiple assays, including a novel method to analyze conditional loss of function of essential genes in plants. Our findings support a model where TPL nucleates preassembly of the transcription activation machinery to facilitate rapid onset of transcription once repression is relieved.
Collapse
Affiliation(s)
| | - Benjamin Downing
- Department of Biology, University of Washington, Seattle, 98195, USA
| | | | | | | | | | - Andrew Bauer
- Department of Biology, University of Washington, Seattle, 98195, USA
| | | | - Lena Bae
- Department of Biology, University of Washington, Seattle, 98195, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, 98195, USA
| | - Grant W. Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, Ontario, CA
| | | |
Collapse
|
19
|
Luna-Arias JP, Castro-Muñozledo F. Participation of the TBP-associated factors (TAFs) in cell differentiation. J Cell Physiol 2024; 239:e31167. [PMID: 38126142 DOI: 10.1002/jcp.31167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The understanding of the mechanisms that regulate gene expression to establish differentiation programs and determine cell lineages, is one of the major challenges in Developmental Biology. Besides the participation of tissue-specific transcription factors and epigenetic processes, the role of general transcription factors has been ignored. Only in recent years, there have been scarce studies that address this issue. Here, we review the studies on the biological activity of some TATA-box binding protein (TBP)-associated factors (TAFs) during the proliferation of stem/progenitor cells and their involvement in cell differentiation. Particularly, the accumulated evidence suggests that TAF4, TAF4b, TAF7L, TAF8, TAF9, and TAF10, among others, participate in nervous system development, adipogenesis, myogenesis, and epidermal differentiation; while TAF1, TAF7, TAF15 may be involved in the regulation of stem cell proliferative abilities and cell cycle progression. On the other hand, evidence suggests that TBP variants such as TBPL1 and TBPL2 might be regulating some developmental processes such as germ cell maturation and differentiation, myogenesis, or ventral specification during development. Our analysis shows that it is necessary to study in greater depth the biological function of these factors and its participation in the assembly of specific transcription complexes that contribute to the differential gene expression that gives rise to the great diversity of cell types existing in an organism. The understanding of TAFs' regulation might lead to the development of new therapies for patients which suffer from mutations, alterations, and dysregulation of these essential elements of the transcriptional machinery.
Collapse
Affiliation(s)
- Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | - Federico Castro-Muñozledo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| |
Collapse
|
20
|
Liu X, Chen M, Qu X, Liu W, Dou Y, Liu Q, Shi D, Jiang M, Li H. Cis-Regulatory Elements in Mammals. Int J Mol Sci 2023; 25:343. [PMID: 38203513 PMCID: PMC10779164 DOI: 10.3390/ijms25010343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
In cis-regulatory elements, enhancers and promoters with complex molecular interactions are used to coordinate gene transcription through physical proximity and chemical modifications. These processes subsequently influence the phenotypic characteristics of an organism. An in-depth exploration of enhancers and promoters can substantially enhance our understanding of gene regulatory networks, shedding new light on mammalian development, evolution and disease pathways. In this review, we provide a comprehensive overview of the intrinsic structural attributes, detection methodologies as well as the operational mechanisms of enhancers and promoters, coupled with the relevant novel and innovative investigative techniques used to explore their actions. We further elucidated the state-of-the-art research on the roles of enhancers and promoters in the realms of mammalian development, evolution and disease, and we conclude with forward-looking insights into prospective research avenues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingsheng Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
21
|
Felício D, du Mérac TR, Amorim A, Martins S. Functional implications of paralog genes in polyglutamine spinocerebellar ataxias. Hum Genet 2023; 142:1651-1676. [PMID: 37845370 PMCID: PMC10676324 DOI: 10.1007/s00439-023-02607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023]
Abstract
Polyglutamine (polyQ) spinocerebellar ataxias (SCAs) comprise a group of autosomal dominant neurodegenerative disorders caused by (CAG/CAA)n expansions. The elongated stretches of adjacent glutamines alter the conformation of the native proteins inducing neurotoxicity, and subsequent motor and neurological symptoms. Although the etiology and neuropathology of most polyQ SCAs have been extensively studied, only a limited selection of therapies is available. Previous studies on SCA1 demonstrated that ATXN1L, a human duplicated gene of the disease-associated ATXN1, alleviated neuropathology in mice models. Other SCA-associated genes have paralogs (i.e., copies at different chromosomal locations derived from duplication of the parental gene), but their functional relevance and potential role in disease pathogenesis remain unexplored. Here, we review the protein homology, expression pattern, and molecular functions of paralogs in seven polyQ dominant ataxias-SCA1, SCA2, MJD/SCA3, SCA6, SCA7, SCA17, and DRPLA. Besides ATXN1L, we highlight ATXN2L, ATXN3L, CACNA1B, ATXN7L1, ATXN7L2, TBPL2, and RERE as promising functional candidates to play a role in the neuropathology of the respective SCA, along with the parental gene. Although most of these duplicates lack the (CAG/CAA)n region, if functionally redundant, they may compensate for a partial loss-of-function or dysfunction of the wild-type genes in SCAs. We aim to draw attention to the hypothesis that paralogs of disease-associated genes may underlie the complex neuropathology of dominant ataxias and potentiate new therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Felício
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313, Porto, Portugal
| | - Tanguy Rubat du Mérac
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Faculty of Science, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Sandra Martins
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| |
Collapse
|
22
|
Ozturk S. Genetic variants underlying developmental arrests in human preimplantation embryos. Mol Hum Reprod 2023; 29:gaad024. [PMID: 37335858 DOI: 10.1093/molehr/gaad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Developmental arrest in preimplantation embryos is one of the major causes of assisted reproduction failure. It is briefly defined as a delay or a failure of embryonic development in producing viable embryos during ART cycles. Permanent or partial developmental arrest can be observed in the human embryos from one-cell to blastocyst stages. These arrests mainly arise from different molecular biological defects, including epigenetic disturbances, ART processes, and genetic variants. Embryonic arrests were found to be associated with a number of variants in the genes playing key roles in embryonic genome activation, mitotic divisions, subcortical maternal complex formation, maternal mRNA clearance, repairing DNA damage, transcriptional, and translational controls. In this review, the biological impacts of these variants are comprehensively evaluated in the light of existing studies. The creation of diagnostic gene panels and potential ways of preventing developmental arrests to obtain competent embryos are also discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
23
|
Li K, Wei Y, Wang Y, Tan B, Chen S, Li H. Genome-Wide Identification of LBD Genes in Foxtail Millet ( Setaria italica) and Functional Characterization of SiLBD21. Int J Mol Sci 2023; 24:ijms24087110. [PMID: 37108274 PMCID: PMC10138450 DOI: 10.3390/ijms24087110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Plant-specific lateral organ boundaries domain (LBD) proteins play important roles in plant growth and development. Foxtail millet (Setaria italica) is one new C4 model crop. However, the functions of foxtail millet LBD genes are unknown. In this study, a genome-wide identification of foxtail millet LBD genes and a systematical analysis were conducted. A total of 33 SiLBD genes were identified. They are unevenly distributed on nine chromosomes. Among these SiLBD genes, six segmental duplication pairs were detected. The thirty-three encoded SiLBD proteins could be classified into two classes and seven clades. Members in the same clade have similar gene structure and motif composition. Forty-seven kinds of cis-elements were found in the putative promoters, and they are related to development/growth, hormone, and abiotic stress response, respectively. Meanwhile, the expression pattern was investigated. Most SiLBD genes are expressed in different tissues, while several genes are mainly expressed in one or two kinds of tissues. In addition, most SiLBD genes respond to different abiotic stresses. Furthermore, the function of SiLBD21, which is mainly expressed in roots, was characterized by ectopic expression in Arabidopsis and rice. Compared to controls, transgenic plants generated shorter primary roots and more lateral roots, indicating the function of SiLBD21 in root development. Overall, our study laid the foundation for further functional elucidation of SiLBD genes.
Collapse
Affiliation(s)
- Kunjie Li
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yaning Wei
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yimin Wang
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Bin Tan
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Shoukun Chen
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Haifeng Li
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
24
|
Savinkova LK, Sharypova EB, Kolchanov NA. On the Role of TATA Boxes and TATA-Binding Protein in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:1000. [PMID: 36903861 PMCID: PMC10005294 DOI: 10.3390/plants12051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
For transcription initiation by RNA polymerase II (Pol II), all eukaryotes require assembly of basal transcription machinery on the core promoter, a region located approximately in the locus spanning a transcription start site (-50; +50 bp). Although Pol II is a complex multi-subunit enzyme conserved among all eukaryotes, it cannot initiate transcription without the participation of many other proteins. Transcription initiation on TATA-containing promoters requires the assembly of the preinitiation complex; this process is triggered by an interaction of TATA-binding protein (TBP, a component of the general transcription factor TFIID (transcription factor II D)) with a TATA box. The interaction of TBP with various TATA boxes in plants, in particular Arabidopsis thaliana, has hardly been investigated, except for a few early studies that addressed the role of a TATA box and substitutions in it in plant transcription systems. This is despite the fact that the interaction of TBP with TATA boxes and their variants can be used to regulate transcription. In this review, we examine the roles of some general transcription factors in the assembly of the basal transcription complex, as well as functions of TATA boxes of the model plant A. thaliana. We review examples showing not only the involvement of TATA boxes in the initiation of transcription machinery assembly but also their indirect participation in plant adaptation to environmental conditions in responses to light and other phenomena. Examples of an influence of the expression levels of A. thaliana TBP1 and TBP2 on morphological traits of the plants are also examined. We summarize available functional data on these two early players that trigger the assembly of transcription machinery. This information will deepen the understanding of the mechanisms underlying transcription by Pol II in plants and will help to utilize the functions of the interaction of TBP with TATA boxes in practice.
Collapse
|
25
|
Ovejero S, Viziteu E, Dutrieux L, Devin J, Lin YL, Alaterre E, Jourdan M, Basbous J, Requirand G, Robert N, de Boussac H, Seckinger A, Hose D, Vincent L, Herbaux C, Constantinou A, Pasero P, Moreaux J. The BLM helicase is a new therapeutic target in multiple myeloma involved in replication stress survival and drug resistance. Front Immunol 2022; 13:983181. [PMID: 36569948 PMCID: PMC9780552 DOI: 10.3389/fimmu.2022.983181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic cancer characterized by accumulation of malignant plasma cells in the bone marrow. To date, no definitive cure exists for MM and resistance to current treatments is one of the major challenges of this disease. The DNA helicase BLM, whose depletion or mutation causes the cancer-prone Bloom's syndrome (BS), is a central factor of DNA damage repair by homologous recombination (HR) and genomic stability maintenance. Using independent cohorts of MM patients, we identified that high expression of BLM is associated with a poor outcome with a significant enrichment in replication stress signature. We provide evidence that chemical inhibition of BLM by the small molecule ML216 in HMCLs (human myeloma cell lines) leads to cell cycle arrest and increases apoptosis, likely by accumulation of DNA damage. BLM inhibition synergizes with the alkylating agent melphalan to efficiently inhibit growth and promote cell death in HMCLs. Moreover, ML216 treatment re-sensitizes melphalan-resistant cell lines to this conventional therapeutic agent. Altogether, these data suggest that inhibition of BLM in combination with DNA damaging agents could be of therapeutic interest in the treatment of MM, especially in those patients with high BLM expression and/or resistance to melphalan.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Elena Viziteu
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Laure Dutrieux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Julie Devin
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Yea-Lih Lin
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Elina Alaterre
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Michel Jourdan
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Jihane Basbous
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | | | | | - Dirk Hose
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laure Vincent
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Charles Herbaux
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France,Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Philippe Pasero
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France,Department of Clinical Hematology, CHU Montpellier, Montpellier, France,*Correspondence: Jérôme Moreaux,
| |
Collapse
|
26
|
Zhang Q, Yang P, Pang X, Guo W, Sun Y, Wei Y, Pang C. Preliminary exploration of the co-regulation of Alzheimer's disease pathogenic genes by microRNAs and transcription factors. Front Aging Neurosci 2022; 14:1069606. [PMID: 36561136 PMCID: PMC9764863 DOI: 10.3389/fnagi.2022.1069606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Alzheimer's disease (AD) is the most common form of age-related neurodegenerative disease. Unfortunately, due to the complexity of pathological types and clinical heterogeneity of AD, there is a lack of satisfactory treatment for AD. Previous studies have shown that microRNAs and transcription factors can modulate genes associated with AD, but the underlying pathophysiology remains unclear. Methods The datasets GSE1297 and GSE5281 were downloaded from the gene expression omnibus (GEO) database and analyzed to obtain the differentially expressed genes (DEGs) through the "R" language "limma" package. The GSE1297 dataset was analyzed by weighted correlation network analysis (WGCNA), and the key gene modules were selected. Next, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis for the key gene modules were performed. Then, the protein-protein interaction (PPI) network was constructed and the hub genes were identified using the STRING database and Cytoscape software. Finally, for the GSE150693 dataset, the "R" package "survivation" was used to integrate the data of survival time, AD transformation status and 35 characteristics, and the key microRNAs (miRNAs) were selected by Cox method. We also performed regression analysis using least absolute shrinkage and selection operator (Lasso)-Cox to construct and validate prognostic features associated with the four key genes using different databases. We also tried to find drugs targeting key genes through DrugBank database. Results GO and KEGG enrichment analysis showed that DEGs were mainly enriched in pathways regulating chemical synaptic transmission, glutamatergic synapses and Huntington's disease. In addition, 10 hub genes were selected from the PPI network by using the algorithm Between Centrality. Then, four core genes (TBP, CDK7, GRM5, and GRIA1) were selected by correlation with clinical information, and the established model had very good prognosis in different databases. Finally, hsa-miR-425-5p and hsa-miR-186-5p were determined by COX regression, AD transformation status and aberrant miRNAs. Conclusion In conclusion, we tried to construct a network in which miRNAs and transcription factors jointly regulate pathogenic genes, and described the process that abnormal miRNAs and abnormal transcription factors TBP and CDK7 jointly regulate the transcription of AD central genes GRM5 and GRIA1. The insights gained from this study offer the potential AD biomarkers, which may be of assistance to the diagnose and therapy of AD.
Collapse
Affiliation(s)
- Qi Zhang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Ping Yang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Xinping Pang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenbo Guo
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Yue Sun
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Yanyu Wei
- National Key Laboratory of Science and Technology on Vacuum Electronics, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Chaoyang Pang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|