1
|
Liang Y, Xian L, Pan J, Zhu K, Guo H, Liu B, Zhang N, Ou-Yang Y, Zhang Q, Zhang D. De Novo Genome Assembly of the Whitespot Parrotfish ( Scarus forsteni): A Valuable Scaridae Genomic Resource. Genes (Basel) 2024; 15:249. [PMID: 38397238 PMCID: PMC10888354 DOI: 10.3390/genes15020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Scarus forsteni, a whitespot parrotfish from the Scaridae family, is a herbivorous fish inhabiting coral reef ecosystems. The deterioration of coral reefs has highly affected the habitats of the parrotfish. The decline in genetic diversity of parrotfish emphasizes the critical importance of conserving their genetic variability to ensure the resilience and sustainability of marine ecosystems for future generations. In this study, a genome of S. forsteni was assembled de novo through using Illumina and Nanopore sequencing. The 1.71-Gb genome of S. forsteni, was assembled into 544 contigs (assembly level: contig). It exhibited an N50 length of 17.97 Mb and a GC content percentage of 39.32%. Our BUSCO analysis revealed that the complete protein of the S. forsteni genome had 98.10% integrity. Combined with structure annotation data, 34,140 (74.81%) genes were functionally annotated out of 45,638 predicted protein-coding genes. Upon comparing the genome size and TE content of teleost fishes, a roughly linear relationship was observed between these two parameters. However, TE content is not a decisive factor in determining the genome size of S. forsteni. Population history analysis results indicate that S. forsteni experienced two major population expansions, both of which occurred before the last interglacial period. In addition, through a comparative genomic analysis of the evolutionary relationship of other species, it was found that S. forsteni had the closest relationship with Cheilinus undulatus, another member of the Labridae family. Our expansion and contraction analysis of the gene family showed that the expansion genes were mainly associated with immune diseases, organismal systems, and cellular processes. At the same time, cell transcription and translation, sex hormone regulation, and other related pathways were also more prominent in the positive selection genes. The genomic sequence of S. forsteni offers valuable resources for future investigations on the conservation, evolution, and behavior of fish species.
Collapse
Affiliation(s)
- Yu Liang
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lin Xian
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Jinmin Pan
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Kecheng Zhu
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Huayang Guo
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Baosuo Liu
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Nan Zhang
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Yan Ou-Yang
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Qin Zhang
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Dianchang Zhang
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| |
Collapse
|