1
|
Yekani M, Dastgir M, Fattahi S, Shahi S, Maleki Dizaj S, Memar MY. Microbiological and molecular aspects of periodontitis pathogenesis: an infection-induced inflammatory condition. Front Cell Infect Microbiol 2025; 15:1533658. [PMID: 40406516 PMCID: PMC12095233 DOI: 10.3389/fcimb.2025.1533658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/07/2025] [Indexed: 05/26/2025] Open
Abstract
Periodontitis (PD) is the most common oral infectious disease. The primary etiologic cause of the onset and development of PD is dental plaque, which consists of bacterial biofilm domiciled within a complex extracellular mass. In PD patients, there is a progressive breakdown of the periodontal ligament and the alveolar bone. In more advanced stages, tooth loss occurs. The progression of this chronic inflammatory disease involves interactions among numerous microbial pathogens particularly, bacteria, the host's immune factors, and various environmental factors. Due to persistent infection by periodonto-pathogenic bacteria, there is an impairment of both innate and acquired immunity, leading to tissue destruction. Chronic inflammation in PD may be associated with several systemic diseases, including cardiovascular conditions, respiratory issues, diabetes, neurological diseases, cancer, and adverse pregnancy outcomes. Antibiotic treatment is one of the effective strategies for treating PD cases, although the emergence of some resistant strains may limit the effectiveness some antibiotics. In this review study, we discussed the main bacteria in PD, the interaction with the immune response, the pathogenesis of bacteria in PD and antibiotic treatment. We also outlined the emergence of resistance to antibiotics among these pathogens.
Collapse
Affiliation(s)
- Mina Yekani
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Dastgir
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Fattahi
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Oral and Maxillofacial Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Jiang H, Xi Y, Jiang Q, Dai W, Qin X, Zhang J, Jiang Z, Yang G, Chen Q. LRP5 Down-Regulation Exacerbates Inflammation and Alveolar Bone Loss in Periodontitis by Inhibiting PI3K/c-FOS Signalling. J Clin Periodontol 2025; 52:637-650. [PMID: 39837316 DOI: 10.1111/jcpe.14112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/11/2024] [Accepted: 12/15/2024] [Indexed: 01/23/2025]
Abstract
AIM To investigate the involvement of low-density lipoprotein receptor-related protein 5 (LRP5) in inflammation and alveolar bone loss in periodontitis. MATERIALS AND METHODS Gingival tissues were obtained from 10 periodontitis patients and 10 healthy individuals. Wild-type (WT) and osteoblast-specific Lrp5 conditional knock-out C57BL/6 (LRP5fl/fl;Oc-Cre) mice were used to establish a ligature-induced mouse model of periodontitis. Human periodontal ligament stem cells (hPDLSCs) were isolated and used to further verify the mechanism through which LRP5 mediates periodontitis in vitro. Micro-computed tomography, haematoxylin and eosin staining, immunohistochemistry, quantitative reverse transcription PCR, western blotting, enzyme-linked immunosorbent assay and RNA sequencing were performed to explore the role of LRP5 in periodontitis and the underlying mechanism. RESULTS LRP5 expression was down-regulated in human/mouse periodontal tissues compared to that in healthy controls. Compared to those in wild-type mice, the periodontal tissues of LRP5fl/fl;Oc-Cre mice had increased alveolar bone loss, higher proinflammatory cytokine levels, and lower osteogenesis-related factor expression. LRP5 expression was down-regulated in hPDLSCs after lipopolysaccharide treatment in vitro. LRP5 knockdown increased proinflammatory cytokine production and inhibited osteoblastogenesis by inhibiting PI3K/c-FOS signalling. CONCLUSION LRP5 down-regulation exacerbates inflammation and alveolar bone loss in periodontitis by inhibiting PI3K/c-FOS signalling, suggesting LRP5 as a potential therapeutic target for periodontitis.
Collapse
Affiliation(s)
- Hui Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yue Xi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Qifeng Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Wei Dai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Xiaoru Qin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jing Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Irwandi RA, Marruganti C, Collins G, Carvalho JDS, Gilroy D, D’Aiuto F. The translational potential of inflammation-induced skin blister human models in exploring the pathogenesis of periodontitis and its systemic health implications. Front Immunol 2024; 15:1469828. [PMID: 39737182 PMCID: PMC11682961 DOI: 10.3389/fimmu.2024.1469828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Periodontitis is a highly prevalent chronic disease. Despite decades of extensive research on the topic, a complete understanding of its immunopathogenesis, especially when linked to other inflammatory comorbidities, is lacking. Ex vivo human and in vivo animal experiments have shown the host inflammatory response's crucial role in both the disease's onset and its systemic implications. These approaches, however, remain questionable when translating these findings into real-world scenarios linked to periodontitis. A clear need for new in vivo human models is discussed, especially within the context of understanding the host response to key pathogens linked to periodontitis, such as Porphyromonas gingivalis (P. gingivalis). Therefore, a skin blister model was employed to describe the stages of the host immune response in humans after challenges by microbial and/or sterile insults. A novel human challenge model using UV-killed P. gingivalis holds promise in producing new evidence and bridging the gap of the host response to periodontitis and its links with other common chronic diseases.
Collapse
Affiliation(s)
- Rizky Aditya Irwandi
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, United Kingdom
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Crystal Marruganti
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, United Kingdom
- Unit of Periodontology, Endodontology and Restorative Dentistry, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - George Collins
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London, United Kingdom
- Department of Cardiology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Jhonatan de Souza Carvalho
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London, United Kingdom
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Derek Gilroy
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Francesco D’Aiuto
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, United Kingdom
| |
Collapse
|
4
|
Xu Y, Huang F, Guo W, Feng K, Zhu L, Zeng Z, Huang T, Cai YD. Characterization of chromatin accessibility patterns in different mouse cell types using machine learning methods at single-cell resolution. Front Genet 2023; 14:1145647. [PMID: 36936430 PMCID: PMC10014730 DOI: 10.3389/fgene.2023.1145647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Chromatin accessibility is a generic property of the eukaryotic genome, which refers to the degree of physical compaction of chromatin. Recent studies have shown that chromatin accessibility is cell type dependent, indicating chromatin heterogeneity across cell lines and tissues. The identification of markers used to distinguish cell types at the chromosome level is important to understand cell function and classify cell types. In the present study, we investigated transcriptionally active chromosome segments identified by sci-ATAC-seq at single-cell resolution, including 69,015 cells belonging to 77 different cell types. Each cell was represented by existence status on 20,783 genes that were obtained from 436,206 active chromosome segments. The gene features were deeply analyzed by Boruta, resulting in 3897 genes, which were ranked in a list by Monte Carlo feature selection. Such list was further analyzed by incremental feature selection (IFS) method, yielding essential genes, classification rules and an efficient random forest (RF) classifier. To improve the performance of the optimal RF classifier, its features were further processed by autoencoder, light gradient boosting machine and IFS method. The final RF classifier with MCC of 0.838 was constructed. Some marker genes such as H2-Dmb2, which are specifically expressed in antigen-presenting cells (e.g., dendritic cells or macrophages), and Tenm2, which are specifically expressed in T cells, were identified in this study. Our analysis revealed numerous potential epigenetic modification patterns that are unique to particular cell types, thereby advancing knowledge of the critical functions of chromatin accessibility in cell processes.
Collapse
Affiliation(s)
- Yaochen Xu
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai, China
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Lin Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhenbing Zeng
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai, China
- *Correspondence: Zhenbing Zeng, ; Tao Huang, ; Yu-Dong Cai,
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Zhenbing Zeng, ; Tao Huang, ; Yu-Dong Cai,
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Zhenbing Zeng, ; Tao Huang, ; Yu-Dong Cai,
| |
Collapse
|
5
|
Dosseva-Panova V, Pashova-Tasseva Z, Mlachkova A. Relationship between smoking and periodontal clinical findings and gene expression of IL-6 and TNF-α in severe periodontitis (clinical and laboratory data). BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2118074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Velitchka Dosseva-Panova
- Department of Periodontology, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Zdravka Pashova-Tasseva
- Department of Periodontology, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Antoaneta Mlachkova
- Department of Periodontology, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
6
|
Read E, Curtis MA, Neves JF. The role of oral bacteria in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2021; 18:731-742. [PMID: 34400822 DOI: 10.1038/s41575-021-00488-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Over the past two decades, the importance of the microbiota in health and disease has become evident. Pathological changes to the oral bacterial microbiota, such as those occurring during periodontal disease, are associated with multiple inflammatory conditions, including inflammatory bowel disease. However, the degree to which this association is a consequence of elevated oral inflammation or because oral bacteria can directly drive inflammation at distal sites remains under debate. In this Perspective, we propose that in inflammatory bowel disease, oral disease-associated bacteria translocate to the intestine and directly exacerbate disease. We propose a multistage model that involves pathological changes to the microbial and immune compartments of both the oral cavity and intestine. The evidence to support this hypothesis is critically evaluated and the relevance to other diseases in which oral bacteria have been implicated (including colorectal cancer and liver disease) are discussed.
Collapse
Affiliation(s)
- Emily Read
- Centre for Host-Microbiome Interactions, King's College London, London, UK.,Wellcome Trust Cell Therapies and Regenerative Medicine PhD Programme, King's College London, London, UK
| | - Michael A Curtis
- Centre for Host-Microbiome Interactions, King's College London, London, UK
| | - Joana F Neves
- Centre for Host-Microbiome Interactions, King's College London, London, UK.
| |
Collapse
|
7
|
Gholami L, Movafagh A, Badrlou E, Nazer N, Yari M, Sadeghi G, Mirzajani S, Shadnoush M, Sayad A, Ghafouri-Fard S. Altered expression of STAT genes in periodontitis. Hum Antibodies 2021; 29:209-216. [PMID: 34057143 DOI: 10.3233/hab-210444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Signal Transducer and Activator of Transcription (STAT) pathway is functionally located downstream of Janus kinases proteins and can integrate signals from diverse pathways, thus regulating several aspects of immune responses. Although contribution of STAT proteins in the pathogenesis of several inflammatory conditions has been confirmed, their role in the development of periodontitis has been less appraised. Thus, we assessed levels of STAT transcripts in the periodontal tissues and circulation of affected individuals compared with the corresponding controls. Expression of STAT1 was remarkably lower in tissues samples of patients compared with control tissues (Ratio of mean expression (RME) = 0.15, SE = 0.99, P value = 0.01). Expression of STAT3 was lower in total periodontitis tissues compared with total control tissues (RME = 0.20, SE = 0.95, P value = 0.02). Expression of STAT6 was higher in total periodontitis tissues compared with total control tissues (RME = 0.5.38, SE = 0.74, P value < 0.001). Expressions of other STAT genes were statistically similar in tissues obtained from cases and controls. Moreover, blood levels of all STAT genes were statistically similar between patients and controls. Correlation analysis demonstrated significant correlations between tissues levels of individual STAT genes as well as between their blood levels. However, tissue and blood levels of each STAT gene were not correlated. The current investigation potentiates the role of certain STAT genes in the development of this immune-related condition and warrants functional assays to clarify the mechanism.
Collapse
Affiliation(s)
- Leila Gholami
- Department of Periodontics, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Badrlou
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naghme Nazer
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohsen Yari
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ghasem Sadeghi
- Bureau of Dentistry, Vice Chancellery for Treatment, Ministry of Health and Education, Tehran, Iran
| | - Sara Mirzajani
- Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Shadnoush
- Department of Clinical Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Dental Research Center, Research Institute for Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|