1
|
Osorio-Pérez SM, Estrada-Meza C, Ruiz-Manriquez LM, Arvizu-Espinosa MG, Srivastava A, Sharma A, Paul S. Thymoquinone Potentially Modulates the Expression of Key Onco- and Tumor Suppressor miRNAs in Prostate and Colon Cancer Cell Lines: Insights from PC3 and HCT-15 Cells. Genes (Basel) 2023; 14:1730. [PMID: 37761870 PMCID: PMC10531155 DOI: 10.3390/genes14091730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Prostate cancer (PC) and colon cancer significantly contribute to global cancer-related morbidity and mortality. Thymoquinone (TQ), a naturally occurring phytochemical found in black cumin, has shown potential as an anticancer compound. This study aimed to investigate the effects of TQ on the expression profile of key tumor suppressor and onco-suppressor miRNAs in PC3 prostate cancer cells and HCT-15 colon cancer cells. Cell viability assays revealed that TQ inhibited the growth of both cell lines in a dose-dependent manner, with IC50 values of approximately 82.59 μM for HCT-15 and 55.83 μM for PC3 cells. Following TQ treatment at the IC50 concentrations, miRNA expression analysis demonstrated that TQ significantly downregulated miR-21-5p expression in HCT-15 cells and upregulated miR-34a-5p, miR-221-5p, miR-17-5p, and miR-21-5p expression in PC3 cells. However, no significant changes were observed in the expression levels of miR-34a-5p and miR-200a-5p in HCT-15 cells. The current findings suggest that TQ might exert its antiproliferative effects by modulating specific tumor suppressor and onco-suppressor miRNAs in prostate and colon cancer cells. Further investigations are warranted to elucidate the precise underlying mechanisms and to explore the therapeutic potential of TQ in cancer treatment. To the best of our knowledge, this is the first report regarding the effect of TQ on the miRNA expression profile in colon and prostate cancer cell lines.
Collapse
Affiliation(s)
- Sofía Madeline Osorio-Pérez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Carolina Estrada-Meza
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Luis M. Ruiz-Manriquez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
- School of Medicine and Health Science, Tecnologico de Monterrey, Monterrey 64700, Mexico
| | - María Goretti Arvizu-Espinosa
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Aashish Srivastava
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Ashutosh Sharma
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| |
Collapse
|
2
|
Kovaleski G, Kholany M, Dias LMS, Correia SFH, Ferreira RAS, Coutinho JAP, Ventura SPM. Extraction and purification of phycobiliproteins from algae and their applications. Front Chem 2022; 10:1065355. [PMID: 36531328 PMCID: PMC9752866 DOI: 10.3389/fchem.2022.1065355] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/14/2022] [Indexed: 09/02/2023] Open
Abstract
Microalgae, macroalgae and cyanobacteria are photosynthetic microorganisms, prokaryotic or eukaryotic, living in saline or freshwater environments. These have been recognized as valuable carbon sources, able to be used for food, feed, chemicals, and biopharmaceuticals. From the range of valuable compounds produced by these cells, some of the most interesting are the pigments, including chlorophylls, carotenoids, and phycobiliproteins. Phycobiliproteins are photosynthetic light-harvesting and water-soluble proteins. In this work, the downstream processes being applied to recover fluorescent proteins from marine and freshwater biomass are reviewed. The various types of biomasses, namely macroalgae, microalgae, and cyanobacteria, are highlighted and the solvents and techniques applied in the extraction and purification of the fluorescent proteins, as well as their main applications while being fluorescent/luminescent are discussed. In the end, a critical perspective on how the phycobiliproteins business may benefit from the development of cost-effective downstream processes and their integration with the final application demands, namely regarding their stability, will be provided.
Collapse
Affiliation(s)
- Gabriela Kovaleski
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Mariam Kholany
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Lília M. S. Dias
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | | | - Rute A. S. Ferreira
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - João A. P. Coutinho
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Sónia P. M. Ventura
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
3
|
Karthika C, Sureshkumar R, Sajini DV, Ashraf GM, Rahman MH. 5-fluorouracil and curcumin with pectin coating as a treatment regimen for titanium dioxide with dimethylhydrazine-induced colon cancer model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63202-63215. [PMID: 35459988 DOI: 10.1007/s11356-022-20208-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Colorectal cancer was inducted in Wister rats using titanium dioxide nanoparticles (TiO2NPs) and dimethylhydrazine (DMH) and treatment using 5-fluorouracil (5-FU) and curcumin (CUR), individually and following a synergistic approach. Compatibility studies are evaluated by using FT-IR spectra analysis, and Vero cell lines as well as HCT-116 cell lines are used for evaluating the synergistic approach. It was then followed by induction of colorectal cancer in rats for 70 days and treatment using 5-FU and CUR with pectin coating (individually and in combination) for 28 days. The reports state that 5-FU and CUR combination was found to be compatible. The synergistic effect was evaluated for1:1, 1:2, 1:4, and 2:1 ratio of 5-FU:CUR, where 1:4 ratio shows a CI50 value of 0.853, selected further for the animal studies. The 1:4 ratio of 5-FU and CUR (50:200) shows to be effective for the treatment of colorectal cancer within 28 days, proven using histopathology report, bodyweight analysis, and hematological reports. 5-FU and CUR (1:4) ratio with pectin coating was proven effective for the treatment of colorectal cancer induced by TiO2NPs with DMH and was found to produce a synergistic effect.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Raman Sureshkumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| | - Deepak Vasudevan Sajini
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju, 26426, Korea.
- Department of Pharmacy, Southeast University, Banani Street, Dhaka, 1213, Bangladesh.
| |
Collapse
|
4
|
Saleh RO, Essia INA, Jasim SA. The Anticancer Effect of a Conjugated Antimicrobial Peptide Against Colorectal Cancer (CRC) Cells. J Gastrointest Cancer 2022; 54:165-170. [PMID: 35217999 DOI: 10.1007/s12029-021-00799-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE Although antimicrobial peptides (AMPs) were initially known as compounds of the innate immune system to fight microbial pathogens, it has been recently proposed that differences in normal and cancer cell membranes cause the anticancer effect of these peptides. The aim of this study was to evaluate the anticancer effect of MELITININ+BMAP27-conjugated peptide against colorectal cancer (CRC) cells. METHODS The MELITININ+BMAP27-conjugated peptides were designed and the β-naphthylalanine residues were added to the termini to improve the anticancer effect. CRC cancer cell lines including HT29, SW742, HCT-116, and WiDr were used. After preparing concentrations of 5, 10, 25, 50, 100, 150, 200, and 400 μg/mL of peptide solution, the rate of cell death after 12, 24, and 48 h was assessed using MTT test. After confirmation of the 30 µg/mL efficacy and nontoxic concentration, the cells were exposed to this concentration, and the total RNA was extracted. The quantitative real-time PCR (RT-qPCR) technique was performed for the amplification of Bax, caspase3, atg5, and GAPDH (glyceraldehyde 3-phosphate dehydrogenase as the internal control) genes. RESULTS The cytotoxicity of peptide against normal cells exhibited that the IC50 at 24 and 4 h included 80 and 100 µg/mL, respectively. After 24-72 h of treatment, a significant difference in the mean percentage of CRC living cells was observed at concentrations of 50-400 μg/mL of conjugated peptide (p < 0.05). The IC50 of the peptide at 24, 48, and 72 h of exposure was measured as 30, 20, and 10 μg/mL, respectively. The peptide resulted in a significant increase of 2.35-fold in the mean expression of Bax gene in CRC cells (p < 0.001). It also caused a significant increase of 1.75 times (p = 0.0112) of caspase 3 gene and 1.2 times (p = 0.0217) of atg5 gene. There was no significant difference among cell lines regarding the expression of each gene. CONCLUSION The conjugated peptide caused the death of CRC lines via induction of the apoptosis and necrosis mechanisms. More studies are needed in this regard.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Pharmacy, Al-Maarif University College, Ramadi City, Al-Anbar, Iraq
| | | | | |
Collapse
|
5
|
Anti-Cancer Properties of Coix Seed Oil against HT-29 Colon Cells through Regulation of the PI3K/AKT Signaling Pathway. Foods 2021; 10:foods10112833. [PMID: 34829119 PMCID: PMC8621869 DOI: 10.3390/foods10112833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/22/2023] Open
Abstract
This study aims to observe the effects of coix seed oil (CSO) on HT-29 cells and investigate its possible regulation mechanism of the PI3K/Akt signaling pathway. Fatty acid analysis showed that coix seed oil mainly contains oleic acid (50.54%), linoleic acid (33.76%), palmitic acid (11.74%), and stearic acid (2.45%). Fourier transform infrared results found that the fatty acid functional groups present in the oil matched well with the vegetable oil band. The results from CCK-8 assays showed that CSO dose-dependently and time-dependently inhibited the viability of HT-29 cells in vitro. CSO inhibited cell viability, with IC50 values of 5.30 mg/mL for HT-29 obtained after 24 h treatment. Morphological changes were observed by apoptotic body/cell nucleus DNA (Hoechst 33258) staining using inverted and fluorescence microscopy. Moreover, flow cytometry analysis was used to evaluate the cell cycle and cell apoptosis. It showed that CSO induced cell apoptosis and cycle arrest in the G2 phase. Quantitative real-time PCR and Western blotting revealed that CSO induced cell apoptosis by downregulating the PI3K/AKT signaling pathway. Additionally, CSO can cause apoptosis in cancer cells by activating caspase-3, up-regulating Bax, and down-regulating Bcl-2. In conclusion, the results revealed that CSO induced G2 arrest and apoptosis of HT-29 cells by regulating the PI3K/AKT signaling pathway.
Collapse
|
6
|
Banoon SR, Ghasemian A. The Characters of Graphene Oxide Nanoparticles and Doxorubicin Against HCT-116 Colorectal Cancer Cells In Vitro. J Gastrointest Cancer 2021; 53:410-414. [PMID: 33742370 DOI: 10.1007/s12029-021-00625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Colorectal cancer (CRC) is among the leading causes of cancer death worldwide. Graphene oxide (GO) plus doxorubicin (DOX) have low toxicity and facilitate drug carriage and provide enough surface. The GO-DOX anticancer effects against HCT-116 human CRC cells were compared with that of pure GO and DOX compounds. METHODS Different concentrations of graphene oxide (GO), doxorubicin (DOX), and graphene oxide plus doxorubicin (GO-DOX) were prepared. The MTT test was conducted to determine the viability of cells and flow cytometry was performed following DOX, GO, and GO-DOX exposure. Expressions of caspase 3, Bax, and ATG5 autophagy-related genes were investigated using RT-qPCR technique. RESULTS In the MTT test, DOX and GO at 100 µg/mL and 40 µg/mL exerted 50% cell death (LC50) against the HCT-116 cells. We observed significant differences in GO-DOX LC50 at concentrations of 1 (p = 0.003), 2.5 (p = 0.003), 5 (p = 0.00009), and 10 µg/mL (p = 0.0001). The rate of apoptosis following GO, DOX, and GO-DOX included 24%, 31%, and 56%, respectively. The GO-DOX significantly increased the ATG5 (3.1-fold, p < 0.0001), caspase 3 (4.7-fold, p < 0.0001), and Bax (4.3-fold, p < 0.0001) gene expression. CONCLUSION The GO-DOX exerted anticancer effects against the HCT-116 cells via inducing the apoptosis and autophagy.
Collapse
Affiliation(s)
| | - Abdolmajid Ghasemian
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|