1
|
Acar N, Soylu H, Avci S, Ustunel I. Expressions of Notch signalling pathway members during early pregnancy in mice. J Mol Histol 2023; 54:297-312. [PMID: 37344690 DOI: 10.1007/s10735-023-10132-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/04/2023] [Indexed: 06/23/2023]
Abstract
Although pregnancy is initiated and maintained through highly complex mechanisms, it is essential to understand the events that occur before and during early pregnancy to understand a healthy implantation process. The Notch signal, thought to be involved in this process, is frequently the subject of research with its different aspects. To better understand the role of Notch signaling in the peri-implantation period of the mouse uterus, we investigated the state of expression and localization of Notch 3, Notch 4, Rbp-J, Hes1, Hes7, Hey2, HeyL, and Fbw7 in the uterus and implantation sites in early pregnancy. Balb/C mice were divided into groups D1, D4, D5, D6, and D8. For D5 and D6 groups, implantation sites were identified by intravenous injection of Chicago blue. IHC, WB, and QRT-PCR methods were used. Notch 3 was very strong positive on the 4th day of pregnancy. Notch 4 was highly expressed on days 4, 5, 6, and 8 of pregnancy when P4 levels were high. Hes 1 level was at the lowest on the 4th day of pregnancy. Hes 7 protein expression gradually increased from D1 to D8 in the uteri and implantation sites. Hey 2 expression was at the highest level on the 1st and 4th days. Hey L expression was on the apical of the glands. Fbxw7 that expression was high on the 1st and 4th days of pregnancy. Notch signaling may play an essential role in regulating endometrial receptivity. In addition, our Hes7 results are new to the literature.
Collapse
Affiliation(s)
- Nuray Acar
- School of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya, Turkey.
| | - Hakan Soylu
- School of Medicine, Department of Histology and Embryology, Duzce University, Duzce, Turkey
| | - Sema Avci
- School of Medicine, Department of Histology and Embryology, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Ismail Ustunel
- School of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
2
|
Qu H, Khalil RA. Role of ADAM and ADAMTS Disintegrin and Metalloproteinases in Normal Pregnancy and Preeclampsia. Biochem Pharmacol 2022; 206:115266. [PMID: 36191626 DOI: 10.1016/j.bcp.2022.115266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022]
Abstract
Normal pregnancy (NP) involves intricate processes starting with egg fertilization, proceeding to embryo implantation, placentation and gestation, and culminating in parturition. These pregnancy-related processes require marked uteroplacental and vascular remodeling by proteolytic enzymes and metalloproteinases. A disintegrin and metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) are members of the zinc-dependent family of proteinases with highly conserved protein structure and sequence homology, which include a pro-domain, and a metalloproteinase, disintegrin and cysteine-rich domain. In NP, ADAMs and ADAMTS regulate sperm-egg fusion, embryo implantation, trophoblast invasion, placental angiogenesis and spiral arteries remodeling through their ectodomain proteolysis of cell surface cytokines, cadherins and growth factors as well as their adhesion with integrins and cell-cell junction proteins. Preeclampsia (PE) is a serious complication of pregnancy characterized by new-onset hypertension (HTN) in pregnancy (HTN-Preg) at or after 20 weeks of gestation, with or without proteinuria. Insufficient trophoblast invasion of the uterine wall, inadequate expansive remodeling of the spiral arteries, reduced uteroplacental perfusion pressure, and placental ischemia/hypoxia are major initiating events in the pathogenesis of PE. Placental ischemia/hypoxia increase the release of reactive oxygen species (ROS), which lead to aberrant expression/activity of certain ADAMs and ADAMTS. In PE, abnormal expression/activity of specific ADAMs and ADAMTS that function as proteolytic sheddases could alter proangiogenic and growth factors, and promote the release of antiangiogenic factors and inflammatory cytokines into the placenta and maternal circulation leading to generalized inflammation, endothelial cell injury and HTN-Preg, renal injury and proteinuria, and further decreases in uteroplacental blood flow, exaggeration of placental ischemia, and consequently fetal growth restriction. Identifying the role of ADAMs and ADAMTS in NP and PE has led to a better understanding of the underlying molecular and vascular pathways, and advanced the potential for novel biomarkers for prediction and early detection, and new approaches for the management of PE.
Collapse
Affiliation(s)
- Hongmei Qu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA.
| |
Collapse
|
3
|
Avci S, Kuscu N, Durkut B, Kilinc L, Ustunel I, Celik-Ozenci C. Altered expression of Notch signaling, Tlr receptors, and surfactant protein expression after prostaglandin inhibition may be associated with the delayed labor in LPS-induced mice. J Assist Reprod Genet 2022; 39:1531-1544. [PMID: 35538257 DOI: 10.1007/s10815-022-02515-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/02/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE This study aims to investigate whether indomethacin (IND) delays preterm birth by regulating the Notch pathway, Tlr receptors, and Sp-A in the placenta in lipopolysaccharide (LPS)-induced preterm labor (PTL) model. METHODS CD-1 mice were distributed to the pregnant control (PC), Sham, PBS, IND (2 mg/kg; i.p.), LPS (25 μg/100 μl; intrauterine), and LPS + IND groups. The injections were performed on day 14.5 of pregnancy. Placentae were collected on day 15.5 of pregnancy, and immunohistochemical analyzes were performed. Differences in staining intensities between the Cox-1, Notch-1 (N1), Dll-1, Jagged-2 (Jag-2), Tlr-2, and Tlr-4 proteins were compared. RESULTS Preterm labor rates were 100% and 66% (preterm delivery delayed 5 h) in the LPS and LPS + IND groups, respectively. In LPS-treated mice, a general morphological deterioration was observed in the placenta. Total placental mid-sagittal measurement was significantly reduced in the LPS-treated group, while it was similar to the PC group in the LPS + IND group. Cox-1 expression in the LZ increased, and Sp-A expression decreased after LPS injection, and IND administration diminished this increase. N1 expression increased in the labyrinth zone (LZ) and the junctional zone (JZ). Dll-1 and Jag-2 expression increased in the JZ after LPS injection (p < 0.0001). IND administration diminished Tlr-2 expression in the LZ and Tlr-4 expression in the JZ after LPS injection. CONCLUSION In conclusion, PG (prostaglandin) inhibition may alter Notch signaling, Tlr, and Sp-A protein expression and may be associated with delayed labor in LPS-induced mice.
Collapse
Affiliation(s)
- Sema Avci
- Department of Histology and Embryology, School of Medicine, Alanya Alaaddin Keykubat University, Alanya, Turkey
| | - Nilay Kuscu
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Begum Durkut
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Leyla Kilinc
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Ismail Ustunel
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Ciler Celik-Ozenci
- Department of Histology and Embryology, School of Medicine, Koc University, Istanbul, Turkey. .,Koç University Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey.
| |
Collapse
|
4
|
Spatiotemporal coordination of trophoblast and allantoic Rbpj signaling directs normal placental morphogenesis. Cell Death Dis 2019; 10:438. [PMID: 31165749 PMCID: PMC6549187 DOI: 10.1038/s41419-019-1683-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
The placenta, responsible for the nutrient and gas exchange between the mother and fetus, is pivotal for successful pregnancy. It has been shown that Rbpj, the core transcriptional mediator of Notch signaling pathway, is required for normal placentation in mice. However, it remains largely unclear how Rbpj signaling in different placental compartments coordinates with other important regulators to ensure normal placental morphogenesis. In this study, we found that systemic deletion of Rbpj led to abnormal chorioallantoic morphogenesis and defective trophoblast differentiation in the ectoplacental cone (EPC). Employing mouse models with selective deletion of Rbpj in the allantois versus trophoblast, combining tetraploid aggregation assay, we demonstrated that allantois-expressed Rbpj is essential for chorioallantoic attachment and subsequent invagination of allantoic blood vessels into the chorionic ectoderm. Further studies uncovered that allantoic Rbpj regulates chorioallantoic fusion and morphogenesis via targeting Vcam1 in a Notch-dependent manner. Meanwhile, we also revealed that trophoblast-expressed Rbpj in EPC facilitates Mash2’s transcriptional activity, promoting the specification of Tpbpα-positive trophoblasts, which differentiate into trophoblast subtypes responsible for interstitial and endovascular invasion at the later stage of placental development. Collectively, our study further shed light on the molecular network governing placental development and functions, highlighting the necessity of a spatiotemporal coordination of Rbpj signaling for normal placental morphogenesis.
Collapse
|
5
|
Natale BV, Mehta P, Vu P, Schweitzer C, Gustin K, Kotadia R, Natale DRC. Reduced Uteroplacental Perfusion Pressure (RUPP) causes altered trophoblast differentiation and pericyte reduction in the mouse placenta labyrinth. Sci Rep 2018; 8:17162. [PMID: 30464252 PMCID: PMC6249310 DOI: 10.1038/s41598-018-35606-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
This study characterized the effect of the reduced utero-placental perfusion pressure (RUPP) model of placental insufficiency on placental morphology and trophoblast differentiation at mid-late gestation (E14.5). Altered trophoblast proliferation, reduced syncytiotrophoblast gene expression, increased numbers of sinusoidal trophoblast giant cells, decreased Vegfa and decreased pericyte presence in the labyrinth were observed in addition to changes in maternal blood spaces, the fetal capillary network and reduced fetal weight. Further, the junctional zone was characterized by reduced spongiotrophoblast and glycogen trophoblast with increased trophoblast giant cells. Increased Hif-1α and TGF-β-3 in vivo with supporting hypoxia studies in trophoblast stem (TS) cells in vitro, support hypoxia as a contributing factor to the RUPP placenta phenotype. Together, this study identifies altered cell populations within the placenta that may contribute to the phenotype, and thus support the use of RUPP in the mouse as a model of placenta insufficiency. As such, this model in the mouse provides a valuable tool for understanding the phenotypes resulting from genetic manipulation of isolated cell populations to further understand the etiology of placenta insufficiency and fetal growth restriction. Further this study identifies a novel relationship between placental insufficiency and pericyte depletion in the labyrinth layer.
Collapse
Affiliation(s)
- Bryony V Natale
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Prutha Mehta
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Priscilla Vu
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christina Schweitzer
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Katarina Gustin
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ramie Kotadia
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - David R C Natale
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada.
- Department of Obstetrics and Gynecology in Reproductive Sciences, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
6
|
Dynamic expression of TET1, TET2, and TET3 dioxygenases in mouse and human placentas throughout gestation. Placenta 2017; 59:46-56. [PMID: 29108636 DOI: 10.1016/j.placenta.2017.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/07/2017] [Accepted: 09/18/2017] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Throughout pregnancy, the placenta dynamically changes as trophoblast progenitors differentiate into mature trophoblast cell subtypes. This process is in part controlled by epigenetic regulation of DNA methylation leading to the inactivation of 'progenitor cell' genes and the activation of 'differentiation' genes. TET methylcytosine dioxygenases convert 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) during DNA demethylation events. Here, we determine the spatiotemporal expression of TET1, TET2, and TET3 in specific trophoblast cell populations of mouse and human placentas throughout gestation, and consider their role in trophoblast cell differentiation and function. METHODS In situ hybridization analysis was conducted to localize Tet1, Tet2, and Tet3 mRNA at key stages of mouse placental development. The distribution of 5-mC and 5-hmC in these samples was also evaluated. In comparison, expression patterns of TET1, TET2, and TET3 protein in human placentas were determined in first trimester and term pregnancies. RESULTS In mouse, Tet1-3 mRNA was widely expressed in trophoblast cell populations from embryonic (E) day 8.5 to E12.5 including in progenitor and differentiated cells. However, expression became restricted to specific trophoblast giant cell subtypes by late gestation (E14.5 to E18.5). This coincided with cellular changes in 5-mC and 5-hmC levels. In human, cell columns, extravillous trophoblast and syncytiotrophoblast expressed TET1-3 whereas only TET3 was expressed in villus cytotrophoblast cells in first trimester and term placentas. DISCUSSION Altogether, our data suggest that TET enzymes may play a dynamic role in the regulation of transcriptional activity of trophoblast progenitors and differentiated cell subtypes in mouse and human placentas.
Collapse
|
7
|
Levin HI, Sullivan-Pyke CS, Papaioannou VE, Wapner RJ, Kitajewski JK, Shawber CJ, Douglas NC. Dynamic maternal and fetal Notch activity and expression in placentation. Placenta 2017; 55:5-12. [PMID: 28623973 PMCID: PMC5754215 DOI: 10.1016/j.placenta.2017.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/25/2017] [Accepted: 04/18/2017] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Murine placentation requires trophoblast Notch2, while the Notch ligand, JAGGED1, is reduced in invasive trophoblasts from women with preeclampsia. However, the placental cells with active Notch signaling and expression of other Notch proteins and ligands in placentation have yet to be defined. We sought to identify endothelial cell and trophoblast subtypes with canonical Notch signaling in the decidua and placenta and correlate this to expression of Notch proteins and ligands. METHODS Notch reporter transgenic mice were used to define canonical Notch activity and immunofluorescence staining performed to characterize expression of Notch1, 2, 3, 4 and ligands, Delta-like 4 (Dll4) and Jagged1 (Jag1) during early placentation and in the mature placenta. RESULTS Notch signaling is active in maternal and fetal endothelial cells and trophoblasts during early placentation and in the mature placenta. Dll4, Jag1, Notch1, and Notch4 are expressed in maternal vasculature in the decidua. Dll4, Jag1 and Notch1 are expressed in fetal vasculature in the labyrinth. Dll4, Notch2 and Notch4 are co-expressed in the ectoplacental cone. Notch2 and Notch4 are expressed in parietal-trophoblast giant cells and junctional zone trophoblasts with active canonical Notch signaling and in labyrinthine syncytiotrophoblasts and sinusoidal-trophoblast giant cells. DISCUSSION Canonical Notch activity and distinct expression patterns for Notch proteins and ligands was evident in endothelium and trophoblasts, suggesting Notch1, Notch2, Notch4, Dll4, and Jag1 have distinct and overlapping functions in placentation. Characterization of Notch signaling defects in existing mouse models of preeclampsia may shed light on the role of Notch in developing the preeclampsia phenotype.
Collapse
Affiliation(s)
- Heather I Levin
- Department of Obstetrics and Gynecology, Columbia University Medical Center, 622 West 168th St., New York, NY 10032, USA
| | - Chantae S Sullivan-Pyke
- Department of Obstetrics and Gynecology, Columbia University Medical Center, 622 West 168th St., New York, NY 10032, USA
| | - Virginia E Papaioannou
- Department of Genetics and Development, Columbia University Medical Center, 701 West 168th St., New York, NY 10032, USA
| | - Ronald J Wapner
- Department of Obstetrics and Gynecology, Columbia University Medical Center, 622 West 168th St., New York, NY 10032, USA; Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Columbia University Medical Center, 630 West 168th St., New York, NY 10032, USA
| | - Jan K Kitajewski
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Columbia University Medical Center, 630 West 168th St., New York, NY 10032, USA; Department of Physiology and Biophysics, University of Illinois, 835 S. Wolcott Avenue, Room E202, Chicago, IL 60612, USA
| | - Carrie J Shawber
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Columbia University Medical Center, 630 West 168th St., New York, NY 10032, USA; Department of Surgery, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St., New York, NY 10032, USA
| | - Nataki C Douglas
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Columbia University Medical Center, 630 West 168th St., New York, NY 10032, USA; Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Columbia University Medical Center, 622 West 168th St., New York, NY 10032, USA.
| |
Collapse
|
8
|
Notch signalling in placental development and gestational diseases. Placenta 2017; 56:65-72. [PMID: 28117145 DOI: 10.1016/j.placenta.2017.01.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 01/14/2023]
Abstract
Activation of Notch signalling upon cell-cell contact of neighbouring cells controls a plethora of cellular processes such as stem cell maintenance, cell lineage determination, cell proliferation, and survival. Accumulating evidence suggests that the pathway also critically regulates these events during placental development and differentiation. Herein, we summarize our present knowledge about Notch signalling in murine and human placentation and discuss its potential role in the pathophysiology of gestational disorders. Studies in mice suggest that Notch controls trophectoderm formation, decidualization, placental branching morphogenesis and endovascular trophoblast invasion. In humans, the particular signalling cascade promotes formation of the extravillous trophoblast lineage and regulates trophoblast proliferation, survival and differentiation. Expression patterns as well as functional analyses indicate distinct roles of Notch receptors in different trophoblast subtypes. Altered effects of Notch signalling have been detected in choriocarcinoma cells, consistent with its role in cancer development and progression. Moreover, deregulation of Notch signalling components were observed in pregnancy disorders such as preeclampsia and fetal growth restriction. In summary, Notch plays fundamental roles in different developmental processes of the placenta. Abnormal signalling through this pathway could contribute to the pathogenesis of gestational diseases with aberrant placentation and trophoblast function.
Collapse
|
9
|
Polychlorinated biphenyls target Notch/Dll and VEGF R2 in the mouse placenta and human trophoblast cell lines for their anti-angiogenic effects. Sci Rep 2017; 7:39885. [PMID: 28071720 PMCID: PMC5223111 DOI: 10.1038/srep39885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/29/2016] [Indexed: 01/02/2023] Open
Abstract
The intrauterine environment is particularly vulnerable to environmental exposures. We previously established a mouse model that provided evidence for pregnancy complications and placental anti-angiogenesis in response to Aroclor 1254 (A-1254), a mixture of polychlorinated biphenyls (PCBs). Importantly, these effects were observed in IL-10-/-, but not wild type, mice, suggesting that IL-10 deficiency predisposes to pregnancy disruptive effects of environmental toxicants. However, the mechanisms by which PCBs cause anti-angiogenic effects are unclear. Here, we evaluated PCB-mediated anti-angiogenic effects by diverse but complementary approaches, including HUVEC-mediated trophoblast invasion in nude mice, in vitro three-dimensional capillary tube formation involving HUVEC and/or HTR8 trophoblasts, and aortic ring endothelial cell outgrowth/sprouting. Taken together, our data suggest that PCBs act as potent anti-angiogenic agents. Importantly, we show that treatment of pregnant IL-10-/- mice with A-1254 resulted in placental activation of the Notch/Delta-like ligand (Dll) pathway, a master regulator of cell-cell interaction and vascular patterning. Similar results were obtained with HUVEC and HTR8 trophoblasts. Rescue of A-1254-induced disruption of HUVEC-based tube formation by γ-secretase inhibitor L1790 confirmed the critical role of the Notch/Dll pathway. Our data suggest that PCBs impart pregnancy disruptive functions by activating the Notch/Dll pathway and by inducing anti-angiogenic effects at the maternal-fetal interface.
Collapse
|
10
|
Decidual vascular endothelial cells promote maternal-fetal immune tolerance by inducing regulatory T cells through canonical Notch1 signaling. Immunol Cell Biol 2015; 94:458-69. [PMID: 26714886 DOI: 10.1038/icb.2015.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/22/2015] [Accepted: 12/25/2015] [Indexed: 12/27/2022]
Abstract
Adaptation of the maternal immune response to accommodate the semiallogeneic fetus is necessary for pregnancy success. However, the mechanisms by which the fetus avoids rejection despite expression of paternal alloantigens remain incompletely understood. Regulatory T cells (Treg cells) are pivotal for maintaining immune homeostasis, preventing autoimmune disease and fetus rejection. In this study, we found that maternal decidual vascular endothelial cells (DVECs) sustained Foxp3 expression in resting Treg cells in vitro. Moreover, under in vitro Treg cell induction condition with agonistic antibodies and transforming growth factor (TGF)-β, DVECs promoted Treg cell differentiation from non-Treg conventional T cells. Consistent with the promotion of Treg cell maintenance and differentiation, Treg cell-associated gene expression such as TGF-β, Epstein-Barr-induced gene-3, CD39 and glucocorticoid-induced tumor necrosis factor receptor was also increased in the presence of DVECs. Further study revealed that DVECs expressed Notch ligands such as Jagged-1, Delta-like protein 1 (DLL-1) and DLL-4, while Treg cells expressed Notch1 on their surface. The effects of DVECs on Treg cells was inhibited by siRNA-induced knockdown of expression of Jagged-1 and DLL-1 in DVECs. Downregulation of Notch1 in Treg cells using lentiviral shRNA transduction decreased Foxp3 expression in Treg cells. Adoptive transfer of Notch1-deficient Treg cells increased abortion rate in a murine semiallogeneic pregnancy model. Taken together, our study suggests that maternal DVECs are able to maintain decidual Treg cell identity and promote Treg cell differentiation through activation of Notch1 signal pathway in Treg cells and subsequently inhibit the immune response against semiallogeneic fetuses and preventing spontaneous abortion.
Collapse
|
11
|
Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in Drosophila. Genetics 2015; 202:191-219. [PMID: 26567182 PMCID: PMC4701085 DOI: 10.1534/genetics.115.182154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022] Open
Abstract
High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain-containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades.
Collapse
|
12
|
Abstract
The placenta sits at the interface between the maternal and fetal vascular beds where it mediates nutrient and waste exchange to enable in utero existence. Placental cells (trophoblasts) accomplish this via invading and remodeling the uterine vasculature. Amazingly, despite being of fetal origin, trophoblasts do not trigger a significant maternal immune response. Additionally, they maintain a highly reliable hemostasis in this extremely vascular interface. Decades of research into how the placenta differentiates itself from embryonic tissues to accomplish these and other feats have revealed a previously unappreciated level of complexity with respect to the placenta's cellular composition. Additionally, novel insights with respect to roles played by the placenta in guiding fetal development and metabolism have sparked a renewed interest in understanding the interrelationship between fetal and placental well-being. Here, we present an overview of emerging research in placental biology that highlights these themes and the importance of the placenta to fetal and adult health.
Collapse
|
13
|
Plessl K, Haider S, Fiala C, Pollheimer J, Knöfler M. Expression pattern and function of Notch2 in different subtypes of first trimester cytotrophoblast. Placenta 2015; 36:365-71. [PMID: 25659500 PMCID: PMC4368107 DOI: 10.1016/j.placenta.2015.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 12/19/2022]
Abstract
Introduction Notch signalling has been shown to control cytotrophoblast (CTB) proliferation, differentiation and motility suggesting that the conserved signalling pathway could be critical for human placental development. Since individual Notch receptors have not been elucidated, we herein investigated expression pattern and function of Notch2 in different first trimester trophoblast subpopulations. Methods Localisation of Notch2 was analysed in first trimester placental and decidual tissues using immunofluorescence. Notch2 transcript and protein levels were studied by qRT-PCR and Western blotting in proliferative EGF receptor (EGFR)+ and differentiated HLA-G+ CTBs, respectively, isolated from early placentae by MACS. CTB migration through fibronectin-coated transwells as well as proliferation (EdU labelling) in floating villous explant cultures and primary CTBs were investigated in the presence of Notch2 siRNAs or specific antibodies blocking Notch2 cleavage. Results In tissue sections Notch2 expression was higher in HLA-G+ distal cell column trophoblasts (dCCTs) compared to proximal CCTs. Accordingly, expression of Notch2 mRNA and protein were elevated in isolated HLA-G+ CTBs compared to EGFR+ CTBs. Notch2 was also detectable in interstitial CTBs as well as in intramural CTBs associated with maternal decidual vessels. Antibody-mediated inhibition of Notch2 signalling did not affect proliferation, but increased migration of SGHPL-5 cells and primary CTBs. Similarly, Notch2 siRNA treatment promoted trophoblast motility. Discussion Notch2 is present in differentiated cells of the extravillous trophoblast lineage, such as dCCTs, interstitial and intramural CTBs, suggesting diverse roles of the particular receptor. Notch2 signalling, activated by cell–cell contact of neighbouring dCCTs, could attenuate trophoblast migration. Notch2 is induced during EVT differentiation. Notch2 in interstitial trophoblasts could regulate cross-talk with decidual cells. Notch2 expressed by intramural trophoblasts may play a role in vessel remodelling. Notch2 impairs trophoblast migration in vitro.
Collapse
Affiliation(s)
- K Plessl
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - S Haider
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - C Fiala
- Gynmed Clinic, Vienna, Austria
| | - J Pollheimer
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - M Knöfler
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Outhwaite JE, Natale BV, Natale DRC, Simmons DG. Expression of aldehyde dehydrogenase family 1, member A3 in glycogen trophoblast cells of the murine placenta. Placenta 2014; 36:304-11. [PMID: 25577283 DOI: 10.1016/j.placenta.2014.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/24/2014] [Accepted: 12/05/2014] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Retinoic acid (RA) signaling is a well known regulator of trophoblast differentiation and placental development, and maternal decidual cells are recognized as the source of much of this RA. We explored possible trophoblast-derived sources of RA by examining the expression of RA synthesis enzymes in the developing mouse placenta, as well as addressed potential sites of RA action by examining the ontogeny of gene expression for other RA metabolizing and receptor genes. Furthermore, we investigated the effects of endogenous RA production on trophoblast differentiation. METHODS Placental tissues were examined by in situ hybridization and assayed for RARE-LacZ transgene activity to locate sites of RAR signaling. Trophoblast stem cell cultures were differentiated in the presence of ALDH1 inhibitors (DEAB and citral), and expression of labyrinth (Syna, Ctsq) and junctional zone (Tpbpa, Prl7b1, Prl7a2) marker genes were analyzed by qRT-PCR. RESULTS We show Aldh1a3 is strongly expressed in a subset of ectoplacental cone cells and in glycogen trophoblast cells of the definitive murine placenta. Most trophoblast subtypes of the placenta express RA receptor combinations that would enable them to respond to RA signaling. Furthermore, expression of junctional zone markers decrease in differentiating trophoblast cultures when endogenous ALDH1 enzymes are inhibited. DISCUSSION Aldh1a3 is a novel marker for glycogen trophoblast cells and their precursors and may play a role in the differentiation of junctional zone cell types via production of a local source of RA.
Collapse
Affiliation(s)
- J E Outhwaite
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - B V Natale
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - D R C Natale
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - D G Simmons
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
15
|
Rai A, Cross JC. Three-dimensional cultures of trophoblast stem cells autonomously develop vascular-like spaces lined by trophoblast giant cells. Dev Biol 2014; 398:110-9. [PMID: 25499676 DOI: 10.1016/j.ydbio.2014.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/12/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
The maternal blood space in the mouse placenta is lined not by endothelial cells but rather by various subtypes of trophoblast giant cells (TGCs), defined by their location and different patterns of gene expression. While TGCs invade the spiral arteries to displace the maternal endothelium, the rest of the vascular space is created de novo but the mechanisms are not well understood. We cultured mouse trophoblast stem (TS) cells in suspension and found that they readily form spheroids (trophospheres). Compared to cells grown in monolayer, differentiating trophospheres showed accelerated expression of TGC-specific genes. Morphological and gene expression studies showed that cavities form within the trophospheres that are primarily lined by Prl3d1/Pl1α-positive cells analogous to parietal-TGCs (P-TGCs) which line the maternal venous blood within the placenta. Lumen formation in trophospheres and in vivo was associated with cell polarization including CD34 sialomucin deposition on the apical side and cytoskeletal rearrangement. While P-TGCs preferentially formed in trophospheres at atmospheric oxygen levels (19%), decreasing oxygen to 3% shifted differentiation towards Ctsq-positive sinusoidal and/or channel TGCs. These studies show that trophoblast cells have the intrinsic ability to form vascular channels in ways analogous to endothelial cells. The trophosphere system will be valuable for assessing mechanisms that regulate specification of different TGC subtypes and their morphogenesis into vascular spaces.
Collapse
Affiliation(s)
- Anshita Rai
- Departments of Biochemistry and Molecular Biology, Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - James C Cross
- Departments of Biochemistry and Molecular Biology, Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1.
| |
Collapse
|
16
|
Soncin F, Natale D, Parast MM. Signaling pathways in mouse and human trophoblast differentiation: a comparative review. Cell Mol Life Sci 2014; 72:1291-302. [PMID: 25430479 DOI: 10.1007/s00018-014-1794-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/02/2014] [Accepted: 11/20/2014] [Indexed: 12/01/2022]
Abstract
The mouse is often used as a model for understanding human placentation and offers multiple advantages, including the ability to manipulate gene expression in specific compartments and to derive trophoblast stem cells, which can be maintained or differentiated in vitro. Nevertheless, there are numerous differences between the mouse and human placentas, only the least of which are structural. This review aims to compare mouse and human placentation, with a focus on signaling pathways involved in trophoblast lineage-specific differentiation.
Collapse
Affiliation(s)
- Francesca Soncin
- Department of Pathology, Sanford Consortium for Regenerative Medicine, University of California San Diego, 9500 Gilman Drive, MC 0695, La Jolla, CA, 92093, USA,
| | | | | |
Collapse
|
17
|
Otti GR, Saleh L, Velicky P, Fiala C, Pollheimer J, Knöfler M. Notch2 controls prolactin and insulin-like growth factor binding protein-1 expression in decidualizing human stromal cells of early pregnancy. PLoS One 2014; 9:e112723. [PMID: 25397403 PMCID: PMC4232464 DOI: 10.1371/journal.pone.0112723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/14/2014] [Indexed: 12/29/2022] Open
Abstract
Decidualization, the transformation of the human uterine mucosa into the endometrium of pregnancy, is critical for successful implantation and embryonic development. However, key regulatory factors controlling differentiation of uterine stromal cells into hormone-secreting decidual cells have not been fully elucidated. Hence, we herein investigated the role of the Notch signaling pathway in human decidual stromal cells (HDSC) isolated from early pregnancy samples. Immunofluorescence of first trimester decidual tissues revealed expression of Notch2 receptor and its putative, membrane-anchored interaction partners Jagged1, Delta-like (DLL) 1 and DLL4 in stromal cells whereas other Notch receptors and ligands were absent from these cells. During in vitro differentiation with estrogen/progesterone (E2P4) and/or cyclic adenosine monophosphate (cAMP) HDSC constitutively expressed Notch2 and weakly downregulated Jagged1 mRNA and protein, measured by quantitative PCR (qPCR) and Western blotting, respectively. However, increased levels of DLL1 and DLL4 were observed in the decidualizing cultures. Transfection of a Notch luciferase reporter and qPCR of the Notch target gene hairy and enhancer of split 1 (HES1) revealed an induction of canonical Notch activity during in vitro differentiation. In contrast, treatment of HDSC with a chemical Notch/γ-secretase inhibitor decreased cAMP/E2P4-stimulated Notch luciferase activity, HES1 transcript levels and mRNA expression of the decidual marker genes prolactin (PRL) and insulin-like growth factor binding protein 1 (IGFBP1). Similarly, siRNA-mediated gene silencing or antibody-mediated blocking of Notch2 diminished HES1, PRL and IGFBP1 mRNA levels as well as secreted PRL protein. In summary, the data suggest that canonical, Notch2-dependent signaling plays a role in human decidualization.
Collapse
Affiliation(s)
- Gerlinde R. Otti
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Leila Saleh
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Philipp Velicky
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | | | - Jürgen Pollheimer
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Martin Knöfler
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
18
|
Samore WR, Gondi CS. Brief overview of selected approaches in targeting pancreatic adenocarcinoma. Expert Opin Investig Drugs 2014; 23:793-807. [PMID: 24673265 DOI: 10.1517/13543784.2014.902933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Pancreatic adenocarcinoma (PDAC) has the worst prognosis of any major malignancy, with 5-year survival painfully inadequate at under 5%. Investigators have struggled to target and exploit PDAC unique biology, failing to bring meaningful results from bench to bedside. Nonetheless, in recent years, several promising targets have emerged. AREAS COVERED This review will discuss novel drug approaches in development for use in PDAC. The authors examine the continued efforts to target Kirsten rat sarcoma viral oncogene homolog (KRas), which have recently been successfully abated using novel small interfering RNA (siRNA) eluting devices. The authors also discuss other targets relevant to PDAC including those downstream of mutated KRas, such as MAPK kinase and phosphatidylinositol 3-kinase. EXPERT OPINION Although studies into novel biomarkers and advanced imaging have highlighted the potential new avenues toward discovering localized tumors earlier, the current therapeutic options highlight the fact that PDAC is a highly metastatic and chemoresistant cancer that often must be fought with virulent, systemic therapies. Several newer approaches, including siRNA targeting of mutated KRas and enzymatic depletion of hyaluronan with PEGylated hyaluronidase are particularly exciting given their early stage results. Further research should help in elucidating their potential impact as therapeutic options.
Collapse
Affiliation(s)
- Wesley R Samore
- M3 student, University of Illinois College of Medicine , One Illini Drive Peoria, IL 61605 , USA
| | | |
Collapse
|
19
|
Lacko LA, Massimiani M, Sones JL, Hurtado R, Salvi S, Ferrazzani S, Davisson RL, Campagnolo L, Stuhlmann H. Novel expression of EGFL7 in placental trophoblast and endothelial cells and its implication in preeclampsia. Mech Dev 2014; 133:163-76. [PMID: 24751645 DOI: 10.1016/j.mod.2014.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/13/2014] [Accepted: 04/10/2014] [Indexed: 11/28/2022]
Abstract
The mammalian placenta is the site of nutrient and gas exchange between the mother and fetus, and is comprised of two principal cell types, trophoblasts and endothelial cells. Proper placental development requires invasion and differentiation of trophoblast cells, together with coordinated fetal vasculogenesis and maternal vascular remodeling. Disruption in these processes can result in placental pathologies such as preeclampsia (PE), a disease characterized by late gestational hypertension and proteinuria. Epidermal Growth Factor Like Domain 7 (EGFL7) is a largely endothelial-restricted secreted factor that is critical for embryonic vascular development, and functions by modulating the Notch signaling pathway. However, the role of EGFL7 in placental development remains unknown. In this study, we use mouse models and human placentas to begin to understand the role of EGFL7 during normal and pathological placentation. We show that Egfl7 is expressed by the endothelium of both the maternal and fetal vasculature throughout placental development. Importantly, we uncovered a previously unknown site of EGFL7 expression in the trophoblast cell lineage, including the trophectoderm, trophoblast stem cells, and placental trophoblasts. Our results demonstrate significantly reduced Egfl7 expression in human PE placentas, concurrent with a downregulation of Notch target genes. Moreover, using the BPH/5 mouse model of PE, we show that the downregulation of Egfl7 in compromised placentas occurs prior to the onset of characteristic maternal signs of PE. Together, our results implicate Egfl7 as a possible factor in normal placental development and in the etiology of PE.
Collapse
Affiliation(s)
- Lauretta A Lacko
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, United States.
| | - Micol Massimiani
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Jenny L Sones
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, T9-014 Veterinary Research Tower, Ithaca, NY 14853, United States.
| | - Romulo Hurtado
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States.
| | - Silvia Salvi
- Department of Gynecology and Obstetrics, Catholic University of the Sacred Heart, Largo Agostino Gemelli 8, 00168 Rome, Italy.
| | - Sergio Ferrazzani
- Department of Gynecology and Obstetrics, Catholic University of the Sacred Heart, Largo Agostino Gemelli 8, 00168 Rome, Italy.
| | - Robin L Davisson
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, United States; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, T9-014 Veterinary Research Tower, Ithaca, NY 14853, United States.
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Heidi Stuhlmann
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, United States.
| |
Collapse
|
20
|
García-Pascual CM, Ferrero H, Zimmermann RC, Simón C, Pellicer A, Gómez R. Inhibition of Delta-like 4 mediated signaling induces abortion in mice due to deregulation of decidual angiogenesis. Placenta 2014; 35:501-8. [PMID: 24780197 DOI: 10.1016/j.placenta.2014.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 03/23/2014] [Accepted: 03/26/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To explore whether the Dll4/Notch1 pathway plays a key role in regulating the vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) driven decidual angiogenesis and related pregnancy through induction of a tip/stalk phenotype. METHODS Progesterone-replaced ovariectomized pregnant mice received a single injection of YW152F (Dll4 blocking antibody, BAb) or placebo at embryonic day (E) 4.5. Animals were sacrificed at different time points; blood and uterus were collected for further analysis. Number of embryos and implantation site, uteri weight, and serum progesterone levels were assessed. Alterations in the tip/stalk phenotype were determined by quantitative immunofluorescent analysis of vascularization, Dll4 expression, cellular proliferation and apoptosis in uterine sections. RESULTS Abrogation of Dll4 signaling leads to a promiscuous expression of Dll4, increased cell proliferation, apoptosis and vascularization at E 6.5. Such an abrogation was associated with a dramatic disruption of embryo growth and development starting at E 9.5. DISCUSSION The observed promiscuous expression of Dll4 and the increase in cell proliferation, apoptosis and vascularization are events compatible with loss of the tip/stalk phenotype. Excessive (although very likely defective) decidual angiogenesis due to such vascular alterations is the most likely cause of subsequent interruption of embryo development and related pregnancy in Dll4 treated mice. CONCLUSIONS Dll4 plays a key role in regulating decidual angiogenesis and related pregnancy through induction of a tip/stalk phenotype.
Collapse
Affiliation(s)
- C M García-Pascual
- Fundación IVI, Instituto Universitario IVI/INCLIVA, 46015, C/Catedrático Agustín Escardino n° 9, PARC CIENTIFIC UNIVERSITAT DE VALENCIA Edificio 3, CUE. 2ª Planta. Despacho 2.02, 46980 Paterna (Valencia), Spain
| | - H Ferrero
- Fundación IVI, Instituto Universitario IVI/INCLIVA, 46015, C/Catedrático Agustín Escardino n° 9, PARC CIENTIFIC UNIVERSITAT DE VALENCIA Edificio 3, CUE. 2ª Planta. Despacho 2.02, 46980 Paterna (Valencia), Spain
| | - R C Zimmermann
- Department of Obstetrics and Gynecology, Columbia University, 630 West 168th Street, New York 10032, United States.
| | - C Simón
- Fundación IVI, Instituto Universitario IVI/INCLIVA, 46015, C/Catedrático Agustín Escardino n° 9, PARC CIENTIFIC UNIVERSITAT DE VALENCIA Edificio 3, CUE. 2ª Planta. Despacho 2.02, 46980 Paterna (Valencia), Spain
| | - A Pellicer
- Fundación IVI, Instituto Universitario IVI/INCLIVA, 46015, C/Catedrático Agustín Escardino n° 9, PARC CIENTIFIC UNIVERSITAT DE VALENCIA Edificio 3, CUE. 2ª Planta. Despacho 2.02, 46980 Paterna (Valencia), Spain
| | - R Gómez
- Fundación IVI, Instituto Universitario IVI/INCLIVA, 46015, C/Catedrático Agustín Escardino n° 9, PARC CIENTIFIC UNIVERSITAT DE VALENCIA Edificio 3, CUE. 2ª Planta. Despacho 2.02, 46980 Paterna (Valencia), Spain
| |
Collapse
|
21
|
Cuman C, Menkhorst E, Winship A, Van Sinderen M, Osianlis T, Rombauts LJ, Dimitriadis E. Fetal–maternal communication: the role of Notch signalling in embryo implantation. Reproduction 2014; 147:R75-86. [DOI: 10.1530/rep-13-0474] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The establishment of a successful pregnancy requires the implantation of a competent blastocyst into a ‘receptive’ endometrium, facilitating the formation of a functional placenta. Inadequate or inappropriate implantation and placentation is a major reason for infertility and is thought to lead to first-trimester miscarriage, placental insufficiency and other obstetric complications. Blastocyst–endometrial interactions are critical for implantation and placental formation. The Notch signalling family is a receptor–ligand family that regulates cellular processes as diverse as proliferation, apoptosis, differentiation, invasion and adhesion. Notch signalling is achieved via cell–cell interaction; thus, via Notch, cells can have direct effects on the fate of their neighbours. Recently, a number of studies have identified Notch receptors and ligands in the endometrium, blastocyst and placenta. This review collates current knowledge of this large receptor–ligand family and explores the role of Notch signalling during implantation and placentation, drawing on information from both human and animal studies. Overall, the evidence suggests that Notch signalling is a critical component of fetal–maternal communication during implantation and placentation and that abnormal Notch expression is associated with impaired placentation and pre-eclampsia.
Collapse
|
22
|
Rai A, Cross JC. Development of the hemochorial maternal vascular spaces in the placenta through endothelial and vasculogenic mimicry. Dev Biol 2014; 387:131-41. [PMID: 24485853 DOI: 10.1016/j.ydbio.2014.01.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/14/2014] [Accepted: 01/19/2014] [Indexed: 11/27/2022]
Abstract
The maternal vasculature within the placenta in primates and rodents is unique because it is lined by fetal cells of the trophoblast lineage and not by maternal endothelial cells. In addition to trophoblast cells that invade the uterine spiral arteries that bring blood into the placenta, other trophoblast subtypes sit at different levels of the vascular space. In mice, at least five distinct subtypes of trophoblast cells have been identified which engage maternal endothelial cells on the arterial and venous frontiers of the placenta, but which also form the channel-like spaces within it through a process analogous to formation of blood vessels (vasculogenic mimicry). These cells are all large, post-mitotic trophoblast giant cells. In addition to assuming endothelial cell-like characteristics (endothelial mimicry), they produce dozens of different hormones that are thought to regulate local and systemic maternal adaptations to pregnancy. Recent work has identified distinct molecular pathways in mice that regulate the morphogenesis of trophoblast cells on the arterial and venous sides of the vascular circuit that may be analogous to specification of arterial and venous endothelial cells.
Collapse
Affiliation(s)
- Anshita Rai
- Department of Biochemistry and Molecular Biology, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada; Department of Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1
| | - James C Cross
- Department of Biochemistry and Molecular Biology, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada; Department of Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1.
| |
Collapse
|