1
|
Jia H, Wan H, Zhang C, Guo S, Zhang W, Mu S, Kang X. Genome-wide identification and expressional profile of the Dmrt gene family in the swimming crab (Portunus trituberculatus). Gene 2024; 927:148682. [PMID: 38876404 DOI: 10.1016/j.gene.2024.148682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
The swimming crab, Portunus trituberculatus is one of crucial aquaculture crabs with significant differences in growth and economic performance between male and female swimming crabs. Consequently, the culture of female populations presents higher economic value. The doublesex and mab-3 related transcription factor (Dmrt) gene family are known to play crucial role in gonad differentiation and development. However, there is limited information about this gene family in Portunus trituberculatus. In this study, we identified seven members of the Dmrt gene family in P. trituberculatus based on the published transcriptome and genome data and designated as Ptdmrt-1, Ptdoublesex (Ptdsx), Ptidmrt-1, Ptdmrt-11E, Ptidmrt-2, Ptdmrt-99B, and Ptdmrt-3 based on the homology analysis results, respectively. These Ptdmrt genes distributed across 6 chromosomes and were predicted to encode 283 aa, 288 aa, 529 aa, 436 aa, 523 aa, 224 aa, and 435 aa protein precursors, respectively. The expression patterns of these dmrt genes were characterized by qRT-PCR and gonad transcriptome data. The results showed that five members (Ptdmrt-99B, Ptdsx, Ptdmrt-1, Ptdmrt-3, and Ptdmrt-11E) were differentially expressed between the testis and ovary. In addition, their expression patterns from zoea 2 to juvenile 1 were characterized by published transcriptome data and the results showed that they were lowly expressed and did not exhibit notable difference except for Ptdsx during early development. Overall, majority of Ptdmrt genes were involved in gonad differentiation in the swimming crab. Current findings provide a solid foundation for further exploration of the roles of these genes in gonad development and differentiation in P. trituberculatus.
Collapse
Affiliation(s)
- Huizhuo Jia
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Haifu Wan
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China; Postdoctoral Research Station of Biology, Hebei University, Baoding City, Hebei Province 071002, China
| | - Chen Zhang
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Shuai Guo
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Weiwei Zhang
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China.
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China.
| |
Collapse
|
2
|
Zheng L, Cui X, Jiang Z, Li H, Zhu Z, Dai X, Liu X, Zhang L, Huang X, Ren Q. Differential expression of sNPF in male and female eyestalk leading to sex dimorphism of AMP expression in Procambarus clarkii intestine. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109735. [PMID: 38945414 DOI: 10.1016/j.fsi.2024.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Antimicrobial peptide (AMP) is an important component of crustaceans' innate immune system. In this study, a short neuropeptide F (sNPF) gene (Pc-sNPF) and a Forkhead box O (FOXO) gene (PcFOXO) from Procambarus clarkii were identified. Analysis findings showed that the expression level of AMP genes differed between male and female P. clarkii. Furthermore, Pc-sNPF and PcFOXO were related to the sex dimorphism of AMP. Knockdown of Pc-sNPF in the eyestalk significantly upregulated the expression of PcFOXO and two anti-lipopolysaccharide factors (PcALF4 and PcALFL) in the intestine of P. clarkii. The expression of PcFOXO in the intestine of female P. clarkii was higher than in that of males. Results from RNA interference revealed that PcFOXO positively regulated the expression of PcALF4 and PcALFL in the intestine of male and female P. clarkii. In summary, our study showed that differences in Pc-sNPF expression in eyestalk of male and female P. clarkii leading to sex dimorphism of AMP expression in the intestine are mediated by the sNPF-FOXO-AMP signal pathway called the eyestalk-intestine axis.
Collapse
Affiliation(s)
- Liangmin Zheng
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Xinyi Cui
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Zilin Jiang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Hao Li
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Ziyue Zhu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Xiaohan Liu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Lihua Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China.
| | - Qian Ren
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu Province, China.
| |
Collapse
|
3
|
Hull JJ, Heu CC, Gross RJ, LeRoy DM, Schutze IX, Langhorst D, Fabrick JA, Brent CS. Doublesex is essential for masculinization but not feminization in Lygus hesperus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 166:104085. [PMID: 38307215 DOI: 10.1016/j.ibmb.2024.104085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
In most holometabolous insects, sex differentiation occurs via a hierarchical cascade of transcription factors, with doublesex (dsx) regulating genes that control sex-specific traits. Although less is known in hemimetabolous insects, early evidence suggests that substantial differences exist from more evolutionarily advanced insects. Here, we identified and characterized dsx in Lygus hesperus (western tarnished plant bug), a hemipteran pest of many agricultural crops in western North America. The full-length transcript for L. hesperus dsx (Lhdsx) and several variants encode proteins with conserved DNA binding and oligomerization domains. Transcript profiling revealed that Lhdsx is ubiquitously expressed, likely undergoes alternative pre-mRNA splicing, and, unlike several model insects, is sex-biased rather than sex-specific. Embryonic RNA interference (RNAi) of Lhdsx only impacted sex development in adult males, which lacked both internal reproductive organs and external genitalia. No discernible impacts on adult female development or reproductivity were observed. RNAi knockdown of Lhdsx in nymphs likewise only affected adult males, which lacked the characteristic dimorphic coloration but had dramatically elevated vitellogenin transcripts. Gene knockout of Lhdsx by CRISPR/Cas9 editing yielded only females in G0 and strongly biased heterozygous G1 offspring to females with the few surviving males showing severely impaired genital development. These results indicate that L. hesperus male development requires Lhdsx, whereas female development proceeds via a basal pathway that functions independently of dsx. A fundamental understanding of sex differentiation in L. hesperus could be important for future gene-based management strategies of this important agricultural pest.
Collapse
Affiliation(s)
- J Joe Hull
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA.
| | - Chan C Heu
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Roni J Gross
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Dannialle M LeRoy
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Inana X Schutze
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Daniel Langhorst
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Jeffrey A Fabrick
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Colin S Brent
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| |
Collapse
|
4
|
Wahl M, Levy T, Ventura T, Sagi A. Monosex Populations of the Giant Freshwater Prawn Macrobrachium rosenbergii-From a Pre-Molecular Start to the Next Generation Era. Int J Mol Sci 2023; 24:17433. [PMID: 38139271 PMCID: PMC10743721 DOI: 10.3390/ijms242417433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Sexual manipulation in the giant freshwater prawn Macrobrachium rosenbergii has proven successful in generating monosex (both all-male and all-female) populations for aquaculture using a crustacean-specific endocrine gland, the androgenic gland (AG), which serves as a key masculinizing factor by producing and secreting an insulin-like AG hormone (IAG). Here, we provide a summary of the advancements from the discovery of the AG and IAG in decapods through to the development of monosex populations in M. rosenbergii. We discuss the broader sexual development pathway, which is highly divergent across decapods, and provide our future perspective on the utility of novel genetic and genomic tools in promoting refined approaches towards monosex biotechnology. Finally, the future potential benefits of deploying monosex prawn populations for environmental management are discussed.
Collapse
Affiliation(s)
- Melody Wahl
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
| | - Tom Levy
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA;
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia;
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| |
Collapse
|
5
|
Toyota K, Mekuchi M, Akashi H, Miyagawa S, Ohira T. Sexual dimorphic eyestalk transcriptome of kuruma prawn Marsupenaeus japonicus. Gene 2023; 885:147700. [PMID: 37572801 DOI: 10.1016/j.gene.2023.147700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/22/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Kuruma prawn (Marsupenaeus japonicus) is a benthic decapod crustacean that is widely distributed in the Indo-West Pacific region. It is one of the most important fishery resources in Japan, but its annual catches have declined sharply since the 1990s. To increase stocks, various approaches such as seed production and aquaculture were attempted. Since the demand for important fishery species, including kuruma prawn, is expected to increase worldwide in the future, there is a need to develop new technologies that will make aquaculture more efficient. Historically, the eyestalk endocrine organ is known to consist of the X-organ and sinus gland (XO/SG) complex that synthesizes and secrets various neuropeptide hormones that regulate growth, molt, sexual maturation, reproduction, and changes in body color. In the current study, eyestalk-derived neuropeptides were identified in the transcriptome. In addition, most orthologs of sex-determination genes were expressed in eyestalks. We identified two doublesex genes (MjapDsx1 and MjapDsx2) and found that MjapDsx1 showed male-biased expression in the eyestalk ganglion with no sex-specific splicing, unlike insect species. Therefore, this study will provide an opportunity to advance the research of neuropeptides and sex determination in the kuruma prawn.
Collapse
Affiliation(s)
- Kenji Toyota
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan; Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan; Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan.
| | - Miyuki Mekuchi
- Yokohama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Hukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| | - Hiroshi Akashi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan; Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Tsuyoshi Ohira
- Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan.
| |
Collapse
|
6
|
Zhang P, Yang Y, Xu Y, Cui Z. Analyses of the Dmrt family in a decapod crab, Eriocheir sinensis uncover new facets on the evolution of DM domain genes. Front Physiol 2023; 14:1201846. [PMID: 37304820 PMCID: PMC10252143 DOI: 10.3389/fphys.2023.1201846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
DM domain genes are a group of transcription factors that are integral to sexual development and its evolution in metazoans. Their functions and regulatory mechanisms are not well understood in Malacostraca (crabs and crayfish) while these sex regulators have been widely identified in the past decade. In this study, the Dmrt family was investigated in the decapod crab, Eriocheir sinensis. We find that most members of the EsDmrt family begin to enrich around the juvenile 1 stage. In reproductive organs, EsDsx1, EsDsx2, EsiDMY and EsiDmrt1a highly express in the male-specific androgenic gland (AG), while EsDmrt-like, EsDsx-like, EsDmrt11E, and EsiDmrt1b show relatively high expression in testis. Also, we find the highly aberrant expression of EsiDMY and EsiDmrt1a in the chimeric AG, strongly indicating their function in AG development. Moreover, RNA interference of EsDsx1, EsiDMY, and EsiDmrt1a results in a significant decrease in transcription of the Insulin-like androgenic hormone (IAG), respectively. Our findings suggest that Dmrt genes in E. sinensis primarily function in male sexual differentiation, especially in AG development. Besides, this study identifies two unique groups of Dmrt genes in Malacostraca: Dsx and iDmrt1. In Malacostraca Dsx, we uncover a cryptic mutation in the eight zinc motif-specific residues, which were firmly believed to be invariant across the Dmrt family. This mutation sets the Malacostraca Dsx apart from all the other Dmrt genes and implies a different way of transcriptional regulation. Genes from the iDmrt1 group show phylogenetical limitation to the malacostracan species and underwent positive selection, suggesting their highly specialized gene function to this class. Based on these findings, we propose that Dsx and iDmrt1 in Malacostraca have developed unique transcriptional regulation mechanisms to facilitate AG development. We hope that this study would contribute to our understandings of sexual development in Malacostraca and provide new insights into the evolutionary history of the Dmrt family.
Collapse
Affiliation(s)
- Peng Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yuanfeng Xu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, China
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
7
|
Wu WT, Xu LY, Yan ZJ, Bi N, Cheng CY, Yang F, Yang WJ, Yang JS. Identification and characterization of the Doublesex gene and its mRNA isoforms in the brine shrimp Artemia franciscana. Biochem J 2023; 480:385-401. [PMID: 36852878 DOI: 10.1042/bcj20220495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/01/2023]
Abstract
Doublesex (DSX) proteins are members of the Doublesex/mab-3-related (DMRT) protein family and play crucial roles in sex determination and differentiation among the animal kingdom. In the present study, we identified two Doublesex (Dsx)-like mRNA isoforms in the brine shrimp Artemia franciscana (Kellogg 1906), which are generated by the combination of alternative promoters, alternative splicing and alternative polyadenylation. The two transcripts exhibited sex-biased enrichment, which we termed AfrDsxM and AfrDsxF. They share a common region which encodes an identical N-terminal DNA-binding (DM) domain. RT-qPCR analyses showed that AfrDsxM is dominantly expressed in male Artemia while AfrDsxF is specifically expressed in females. Expression levels of both isoforms increased along with the developmental stages of their respective sexes. RNA interference with dsRNA showed that the knockdown of AfrDsxM in male larvae led to the appearance of female traits including an ovary-like structure in the original male reproductive system and an elevated expression of vitellogenin. However, silencing of AfrDsxF induced no clear phenotypic change in female Artemia. These results indicated that the male AfrDSXM may act as inhibiting regulator upon the default female developmental mode in Artemia. Furthermore, electrophoretic mobility shift assay analyses revealed that the unique DM domain of AfrDSXs can specifically bind to promoter segments of potential downstream target genes like AfrVtg. These data show that AfrDSXs play crucial roles in regulating sexual development in Artemia, and further provide insight into the evolution of sex determination/differentiation in sexual organisms.
Collapse
Affiliation(s)
- Wen-Tao Wu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lian-Ying Xu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhi-Jun Yan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ning Bi
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cai-Yuan Cheng
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fan Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei-Jun Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jin-Shu Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Wan H, Sheng Y, Zhang Z, Jia X, Wang Y. Comparative Transcriptome Reveals the Potential Modulation Mechanisms of Spdsx Affecting Ovarian Development of Scylla paramamosain. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1055-1065. [PMID: 36173492 DOI: 10.1007/s10126-022-10165-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
In previous study, we reported the identification, tissue distribution, and the roles of Spdsx played in the testis, androgenic gland, and ovary in Scylla paramamosain. Here, we primally identify its potential target genes in the ovary with RNAi and RNA-Seq technology. By comparing the transcriptome data of two groups (ovaries that injected with dsRNA for EGFP and Dsx), we found that 6520 Unigenes were differentially expressed, including a plenty of conserved crucial genes involved in ovarian development, such as vitellogenin (vtg), vtg receptor (vtgR), apolipoprotein D, adenylate cyclase 3, adenylate cyclase 5, cyclin A, cyclin B, and cell division cycle 2 (cdc2). In addition, these DEGs were also enriched in pathways related to ovary development, including PI3K-Akt signaling pathway, MAPK signaling pathway, insulin signaling pathway, Wnt signaling pathway, relaxin signaling pathway, estrogen signaling pathway, progesterone-mediated oocyte maturation, ovarian steroidogenesis, and oocyte meiosis. Moreover, several genes were selected for qRT-PCR to validate the accuracy of the bioinformatic result. According to current transcriptome result, we speculate that the Spdsx is a crucial regulator of ovary development in S. paramamosain. To the best of our knowledge, the current study was the first report about dsx function through comparative transcriptome analysis in crustacean species, which not only identified relevant genes and pathways involved in ovarian development of S. paramamosain, but also shed light on the regulatory mechanisms of dsx at the molecular level in crustacean.
Collapse
Affiliation(s)
- Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Yinzhen Sheng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Ziping Zhang
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiwei Jia
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.
| |
Collapse
|
9
|
Identification and Expression Analysis of Dsx and Its Positive Transcriptional Regulation of IAG in Black Tiger Shrimp ( Penaeus monodon). Int J Mol Sci 2022; 23:ijms232012701. [PMID: 36293554 PMCID: PMC9604489 DOI: 10.3390/ijms232012701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Doublesex (Dsx) is a polymorphic transcription factor of the DMRTs family, which is involved in male sex trait development and controls sexual dimorphism at different developmental stages in arthropods. However, the transcriptional regulation of the Dsx gene is largely unknown in decapods. In this study, we reported the cDNA sequence of PmDsx in Penaeus monodon, which encodes a 257 amino acid polypeptide. It shared many similarities with Dsx homologs and has a close relationship in the phylogeny of different species. We demonstrated that the expression of the male sex differentiation gene Dsx was predominantly expressed in the P. monodon testis, and that PmDsx dsRNA injection significantly decreased the expression of the insulin-like androgenic gland hormone (IAG) and male sex-determining gene while increasing the expression of the female sex-determining gene. We also identified a 5′-flanking region of PmIAG that had two potential cis-regulatory elements (CREs) for the PmDsx transcription. Further, the dual-luciferase reporter analysis and truncated mutagenesis revealed that PmDsx overexpression significantly promoted the transcriptional activity of the PmIAG promoter via a specific CRE. These results suggest that PmDsx is engaged in male reproductive development and positively regulates the transcription of the PmIAG by specifically binding upstream of the promoter of the PmIAG. It provides a theoretical basis for exploring the sexual regulation pathway and evolutionary dynamics of Dmrt family genes in P. monodon.
Collapse
|
10
|
Wan H, Zhong J, Zhang Z, Sheng Y, Wang Y. Identification and functional analysis of the doublesex gene in the mud crab Scylla paramamosain. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111150. [PMID: 35017065 DOI: 10.1016/j.cbpa.2022.111150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Doublesex (Dsx) is a crucial member of the Dmrt gene family and plays a vital role in sex determination and differentiation among the animal kingdom. In the present study, a doublesex (designated as Spdsx) gene was identified and characterized for the first time in the mud crab, Scylla paramamosain. The Spdsx cDNA contains an 801 bp open reading frame (ORF) encoding 266 amino acids with a conserved DM domain. Meanwhile, to elucidate the conservation of Dsx, its orthologus were identified in several crustacean species as well. In addition, the expression pattern of Spdsx in various adult tissues and during embryo development was analyzed with qRT-PCR technology. Finally, the roles of Spdsx might play in the testis, androgenic gland, and ovary were analyzed by RNAi technology. The main results are as follows: (1) the Spdsx gene widely existed in analyzed crustacean species, and the multiple sequences alignment result indicated the conservation of Dsx was low except for the DM domain; (2) only one dsx gene was identified in analyzed crab and lobster, while 2 dsx genes (dsx-1 and dsx-2) were identified in shrimps; (3) the Spdsx gene was widely expressed in analyzed tissues, and the expression level in androgenic gland was obviously higher than that in other tissues. Interestingly, the expression level of Spdsx in the ovary was significantly higher than that in testis (p < 0.05); (4) The expression pattern of Spdsx during embryo development was divided into two groups: remained stable from blastula stage to 5 pairs of appendages stage; after 5 pairs of appendages stage, the expression level increased and remained stable from 7 pairs of appendages stage to hatching stage; (5) After the silencing of Spdsx, the expression level of marker genes in testis, ovary, and androgenic gland significantly changed, among which the expression level of vtg and vtgR in ovary down-regulated, the dmrt-like and dmrt-1a (exclusively expressed in testis) in testis up-regulated and the IAG in androgenic gland down-regulated. All the results above demonstrated that the Spdsx play crucial roles in regulating the reproduction system development of mud crab.
Collapse
Affiliation(s)
- Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen 361021, China
| | - Jinying Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen 361021, China
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yinzhen Sheng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen 361021, China.
| |
Collapse
|
11
|
Zheng J, Chen L, Jia Y, Chi M, Li F, Cheng S, Liu S, Liu Y, Gu Z. Genomic structure, expression, and functional characterization of the Fem-1 gene family in the redclaw crayfish, Cherax quadricarinatus. Gen Comp Endocrinol 2022; 316:113961. [PMID: 34861280 DOI: 10.1016/j.ygcen.2021.113961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/07/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022]
Abstract
The Fem-1 (Feminization-1) gene, encoding an intracellular protein with conserved ankyrin repeat motifs, has been proven to play a key role in sex differentiation in Caenorhabditis elegans. In the present study, three members of the Fem-1 gene family (designating Fem-1A, Fem-1B, and Fem-1C, respectively) were cloned and characterized in the redclaw crayfish, Cherax quadricarinatus. Sequence analysis showed that all three Fem-1 genes contained the highly conserved ankyrin repeat motifs with variant repeat numbers, which shared similarity with other reported crustaceans. In addition, a phylogenetic tree revealed that the Fem-1 proteins from C. quadricarinatus were clustered with the crustacean Fem-1 homologs, and had the closest evolutionary relationship with Eriocheir sinensis. Quantitative real-time PCR (qRT-PCR) results demonstrated that Fem-1B exhibited a significant higher expression abundance in the ovary than in other tissues. In addition, a regular mRNA expression pattern of the Fem-1B gene appeared in the reproductive cycle of ovarian development. Furthermore, RNA interference experiments were employed to investigate the role of Fem-1B in ovarian development. Moreover, knockdown of Fem-1B by RNAi decreased the expression of VTG in the ovaries and hepatopancreas. In summary, this study pointed out that Fem-1B was involved in the sex differentiation process through regulating VTG expression in C. quadricarinatus, and provided new insights into the role of Fem-1B in ovary development.
Collapse
Affiliation(s)
- Jianbo Zheng
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Leran Chen
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yongyi Jia
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Meili Chi
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Fei Li
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Shun Cheng
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Shili Liu
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Yinuo Liu
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Zhimin Gu
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
12
|
Miyazaki S, Fujiwara K, Kai K, Masuoka Y, Gotoh H, Niimi T, Hayashi Y, Shigenobu S, Maekawa K. Evolutionary transition of doublesex regulation from sex-specific splicing to male-specific transcription in termites. Sci Rep 2021; 11:15992. [PMID: 34362973 PMCID: PMC8346542 DOI: 10.1038/s41598-021-95423-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
The sex determination gene doublesex (dsx) encodes a transcription factor with two domains, oligomerization domain 1 (OD1) and OD2, and is present throughout insects. Sex-specific Dsx splicing isoforms regulate the transcription of target genes and trigger sex differentiation in all Holometabola examined to date. However, in some hemimetabolous insects, dsx is not spliced sexually and its sequence is less conserved. Here, to elucidate evolutionary changes in dsx in domain organisation and regulation in termites, we searched genome and/or transcriptome databases for the dsx OD1 and OD2 in seven termite species and their sister group (Cryptocercus woodroaches). Molecular phylogenetic and synteny analyses identified OD1 sequences of termites and C. punctulatus that clustered with dsx of Holometabola and regarded them as dsx orthologues. The Cryptocercus dsx orthologue containing OD2 was spliced sexually, as previously shown in other insects. However, OD2 was not found in all termite dsx orthologues. These orthologues were encoded by a single exon in three termites for which genome information is available; they were not alternatively spliced but transcribed in a male-specific manner in two examined species. Evolution of dsx regulation from sex-specific splicing to male-specific transcription may have occurred at an early stage of social evolution in termites.
Collapse
Affiliation(s)
- Satoshi Miyazaki
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, 194-8610, Japan.
| | - Kokuto Fujiwara
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, 930-8555, Japan
| | - Keima Kai
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, 930-8555, Japan
| | - Yudai Masuoka
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, 930-8555, Japan.,Institute of Agrobiological Sciences, NARO (National Agriculture and Food Research Organization), Tsukuba, Ibaraki, 305-8634, Japan
| | - Hiroki Gotoh
- Department of Biological Science, Faculty of Science, Shizuoka University, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan.,Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi, 444-8585, Japan
| | - Yoshinobu Hayashi
- Department of Biology, Keio University, Yokohama, Kanagawa, 223-8521, Japan
| | - Shuji Shigenobu
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi, 444-8585, Japan.,NIBB Research Core Facilities, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan
| | - Kiyoto Maekawa
- Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, 930-8555, Japan.
| |
Collapse
|
13
|
Wan H, Zhong J, Zhang Z, Zou P, Zeng X, Wang Y. Discovery of the Dmrt gene family members based on transcriptome analysis in mud crab Scylla paramamosain. Gene 2021; 784:145576. [PMID: 33771605 DOI: 10.1016/j.gene.2021.145576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Doublesex and mab-3 related transcription factors (Dmrts) play crucial roles in sex determination/differentiation and gonad development. The information on Dmrts and their functions are still scarce in mud crab Scylla paramamosain. In this study, 12 published transcriptome data of S. paramamosain were retrieved, pooled, and assembled. From the assembly, 7 Dmrt gene family members were identified and consisted of Spdmrt-like, Spdmrt-1a, Spdmrt-3, Spdmrt-11E, Spidmrt-1, Spdoublesex (Spdsx), and Spidmrt-2. These dmrt genes were predicted to encode 224 aa, 465 aa, 435 aa, 276 aa, 520 aa, 552 aa, and 266 aa protein precursors, respectively. The expression patterns of the dmrt genes were characterized by semi-quantitative PCR. The Spdmrt-like and Spdmrt-1a were exclusively detected in gonads, of which both expression levels in the testis were higher than that in the ovary. The Spdmrt-3, Spdmrt-11E, Spidmrt-1, Spdsx, and Spidmrt-2 were observed in various tissues; all these genes were sexually dimorphic except for dmrt-11E. Specifically, the expression level of Spdmrt-3 and Spidmrt-2 were higher in the testis than that in the ovary. On the contrary, the Spdsx and Spidmrt-1 expression level were higher in ovary than that in testis. The present study's findings provided a fundamental understanding of Dmrt gene family members involving sex determination/differentiation and gonad development in the S. paramamosain.
Collapse
Affiliation(s)
- Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Jinying Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengfei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Xianyuan Zeng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China.
| |
Collapse
|
14
|
Toyota K, Miyakawa H, Hiruta C, Sato T, Katayama H, Ohira T, Iguchi T. Sex Determination and Differentiation in Decapod and Cladoceran Crustaceans: An Overview of Endocrine Regulation. Genes (Basel) 2021; 12:genes12020305. [PMID: 33669984 PMCID: PMC7924870 DOI: 10.3390/genes12020305] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Mechanisms underlying sex determination and differentiation in animals are known to encompass a diverse array of molecular clues. Recent innovations in high-throughput sequencing and mass spectrometry technologies have been widely applied in non-model organisms without reference genomes. Crustaceans are no exception. They are particularly diverse among the Arthropoda and contain a wide variety of commercially important fishery species such as shrimps, lobsters and crabs (Order Decapoda), and keystone species of aquatic ecosystems such as water fleas (Order Branchiopoda). In terms of decapod sex determination and differentiation, previous approaches have attempted to elucidate their molecular components, to establish mono-sex breeding technology. Here, we overview reports describing the physiological functions of sex hormones regulating masculinization and feminization, and gene discovery by transcriptomics in decapod species. Moreover, this review summarizes the recent progresses of studies on the juvenile hormone-driven sex determination system of the branchiopod genus Daphnia, and then compares sex determination and endocrine systems between decapods and branchiopods. This review provides not only substantial insights for aquaculture research, but also the opportunity to re-organize the current and future trends of this field.
Collapse
Affiliation(s)
- Kenji Toyota
- Marine Biological Station, Sado Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan;
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
- Correspondence: (K.T.); (T.S.); (T.I.)
| | - Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan;
| | - Chizue Hiruta
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan;
| | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
- Correspondence: (K.T.); (T.S.); (T.I.)
| | - Hidekazu Katayama
- Department of Applied Biochemistry, School of Engineering, Tokai University, Kanagawa 259-1292, Japan;
| | - Tsuyoshi Ohira
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan;
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
- Correspondence: (K.T.); (T.S.); (T.I.)
| |
Collapse
|